
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1996

An Approach to Evaluate Software Effectiveness An Approach to Evaluate Software Effectiveness

Timothy J. Schalick

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Schalick, Timothy J., "An Approach to Evaluate Software Effectiveness" (1996). Theses and Dissertations.
5880.
https://scholar.afit.edu/etd/5880

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5880&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F5880&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5880?utm_source=scholar.afit.edu%2Fetd%2F5880&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GCS/ENG/96D-24

AN APPROACH

TO EVALUATE SOFTWARE EFFECTIVENESS

THESIS

Timothy J. Schalick, Captain, USAF

AFIT/GCS/ENG/96D-24

19970409 039

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/96D-24

AN APPROACH

TO EVALUATE SOFTWARE EFFECTIVENESS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Systems

Timothy J. Schalick, B.S.

Captain, USAF

December 1996

Approved for public release; distribution unlimited

Acknowledgments

I'd like to thank the Lord, from whom all good things come. I am deeply indebted

to my thesis advisor, Major Mark Kanko, without whose patience, persistence and

constructive criticism, I would have never been able to complete this document. I'd also

like to thank my committee members, Dr Thomas Hartrum and Dr Henry Potoczny, for

their insightful comments and suggestions. A tip of the cap goes to my classmate,

Captain Marshall "messy" Messamore, a good friend and a great Air Force officer, for his

encouragement and sense of humor, but most of all, for his friendship.

Mr Jeff Wiltse and Captain Brian Hermann played a key role in the success of this

research as members of the Software Analysis Team at the Air Force Operational Test

and Evaluation Center (AFOTEC), the sponsor of this research effort. Mr Nelson Estes,

of the C-17 System Program Office here at Wright-Patterson AFB, was instrumental in

providing me with data for the demonstration portion of my research.

The individuals I'd like to thank most are my family: Mary, my wife, who has

always been there; Sarah, my daughter, who got here a little over a year ago amidst the

most tumultuous of circumstances; and Stolie (Stolichnaya) The Wonder Dog, who slept

at my feet while I wrote most of this document. Without the monumental efforts of my

family surrounding me with love and support, I would not be who I am, or where I am,

today. I love you more than you'll ever know, and I dedicate this work to you.

Timothy J. Schalick

ii

Table of Contents

Page

A cknow ledgm ents ... ii

L ist of Figures . x

L ist of T ables . xii

A b stract . xiii

1. Introduction . 1

1.1 B ackground I

1.2 Problem Statem ent 3

1.3 Research Objectives 4

1.4 Research Q uestions 5

1.5 S cope . 5

1.6 A ssum ptions ... 6

2. Literature R eview .. 8

2.1 Introduction .. 8

2.2 Literature Directly Addressing Software Effectiveness 8

2.2.1 PRC, Inc. Report on Software Effectiveness 9
2.2.2 Stanko's Thesis on Software Reliability 12

2.2.3 Zane's Study of Educational Software Effectiveness 13
2.2.4 Sum m ary 13

2.3 Industry Perspective on Software Effectiveness 14

2.3.1 IB M . 14
2.3.2 B oeing .. 15
2.3.3 M icrosoft 15
2.3.4 Lockheed M artin 15
2.3.5 Sum m ary 15

iii

Page

2.4 Military Perspective on Software Effectiveness 16

2.4.1 Department of Defense 16
2.4.2 Air Force Test and Evaluation 16
2.4.3 Air Force Developmental Test and Evaluation 16
2.4.4 Air Force Operational Test and Evaluation 17

2.5 Summary and Conclusion 18

3. Research M ethodology .. 20

3.1 Introduction ... 20

3.2 Original Research Plan 21

3.3 Difficulties Encountered During Research 22

3.3.1 Lack of Previous Research 22
3.3.2 Problems with the PRC Report 23
3.3.3 No References in Industry 24
3.3.4 Sum m ary 24

3.4 Dead Ends for Software Effectiveness Evaluation Methods 25

3.4.1 User's Perspective 25
3.4.2 Static Set of Software Attributes 25
3.4.3 Dynamic Set of Software Attributes 26
3.4.4 Dynamic/Static Sets of Metrics 26
3.4.5 Effectiveness Viewed as Another Term for Quality 27
3.4.6 Sum m ary 28

3.5 M odified Research Plan 28

3.6 Preliminary Definition of Software Effectiveness 29

3.7 AFOTEC's Definition of System Effectiveness 30

3.8 Effectiveness Definitions in Other Fields of Study 31

3.8.1 System Effectiveness 31
3.8.2 Information Systems Effectiveness 33
3.8.3 Effectiveness of Teaching Methods 33
3.8.4 Effectiveness of Strategies for Hardware Reconfiguration 34
3.8.5 Traffic Control Effectiveness 34
3.8.6 Shielding Effectiveness in Materials 34

iv

Page

3.8.7 Summary 35

3.9 Performance-Based Software Attributes 35

3.9.1 Software Reliability 35
3.9.2 Software Quality 36

3. 10 Working Definition of Software Effectiveness 38

3.11 Software Activities Related to Software Effectiveness 39

3.11.1 Testing .. 40
3.11.2 Verification and Validation 41
3.11.3 Requirements Tracing 42

3.12 Summary ... 43

3.13 Software Effectiveness Evaluation Approach 44

4. Evaluating Software Effectiveness through Requirements Traceability 46

4.1 Introduction .. 46

4.2 Definitions ... 48

4.2.1 Requirements.................................... 48
4.2.2 Design ... 50
4.2.3 Code .. 51
4.2.4 Tests .. 51
4.2.5 Artifact ... 52
4.2.6 Element .. 52
4.2.7 Trace .. 53
4.2.8 Structure .. 53

4.3 Assumptions ... 54

4.4 Unique Identification of Elements 57

4.4.1 ORD Elements 59
4.4.2 System Requirements 60
4.4.3 Software Requirements 60
4.4.4 Design Elements 60
4.4.5 Code Elements 60
4.4.6 Tests .. 61

v

Page

4.5 Structures Used for Traceability 61

4.5.1 O RD Structure 61
4.5.2 System Requirements Structure 62
4.5.3 Software Requirements Structure 62
4.5.4 High-Level Design Structure 62
4.5.5 Low-Level Design Structure 63
4.5.6 Validation Tests Structure 63
4.5.7 Code Structure 63
4.5.8 Unit Tests Structure 64
4.5.9 Sum m ary 64

4.6 Trace D escriptions 64

4.6.1 Introduction 64
4.6.2 ORD to System Requirements 66
4.6.3 System Requirements to Software Requirements 66
4.6.4 Software Requirements to High-Level Design 67
4.6.5 High-Level Design to Low-Level Design 67
4.6.6 Low-Level Design to Code 68
4.6.7 Software Requirements to Validation Tests 69
4.6.8 Code to Unit Tests 69
4.6.9 Sum m ary 70

4.7 Implementing Traces in a Database 72

4.7.1 Introduction 72
4.7.2 General Forms. for Database Entries 73

4.8 Database Operations 80

4.8.1 Introduction 80
4.8.2 Database Initialization 81
4.8.3 D ata Entry 81
4.8.4 Error Checking 85
4.8.5 Information Retrieval 86
4.8.6 Creation of Traceability Matrices 91
4.8.7 Sum m ary 91

4.9 Calculation of Software Effectiveness 93

4.9.1 Five Components of Software Effectiveness Evaluation 93
4.9.2 Combining Effectiveness Components for Overall Evaluation . . 93

4.10 Summary of Software Effectiveness Approach 95

5. Demonstration of the Software Effectiveness Traceability Approach 97

vi

Page

5.1 Introduction ... 97

5.2 The Decision Process to Demonstrate SETA 98

5.2.1 Validation of SETA with Actual Data 98
5.2.2 Validation of SETA with Test Data 99
5.2.3 Demonstration of SETA with Actual Data 100

5.3 The Search for Traceability Data 100

5.4 Background Information on C-17 Avionics 101

5.4.1 Core Integrated Processor 101
5.4.2 Operating System Utilities 101
5.4.3 1553 D ata Bus 102

5.5 Overview of MJL-STD-1553 103

5.5.1 Background 103
5.5.2 1553 Data Bus M odes 103
5.5.3 Software for the 1553 Data Bus 104

5.6 Software Development Terminology Used at the C-17 SPO 105

5.6.1 Prime Item Development Specification 105
5.6.2 Computer Program Development Specification 105
5.6.3 Computer Program Product Specification 105
5.6.4 Computer Program Test Procedures 105
5.6.5 U nit Tests 106
5.6.6 Sum m ary 106

5.7 Translation of Element Identification Methods 107

5.7.1 Introduction 107
5.7.2 Element Identification Method for C- 17 SPO Artifacts 107
5.7.3 Translation of Identification Method to SETA 108

5.8 Demonstration of Traceability of 1553 Data Bus Software 108

5.8.1 Introduction 108
5.8.2 ORD to System Requirements 109
5.8.3 System Requirements to Software Requirements 110
5.8.4 Software Requirements to High-Level Design 113
5.8.5 High-Level Design to Low-Level Design 122
5.8.6 Low-Level Design to Code 124
5.8.7 Software Requirements to Validation Tests 131

vii

Page

5.9 Effectiveness of 1553 Data Bus Software 134

5.9.1 Introduction 134
5.9.2 Effectiveness Components........................... 134
5.9.3 Significance of Overall Effectiveness Value 135

5.10 Sum m ary ... 135

5.10.1 Introduction 135
5.10.2 Traceability Must Start Early 136
5.10.3 Additional Benefits of Traceability 136
5.10.4 Limitations Revealed by the Demonstration 137

6. Conclusions and Recommendations 138

6.1 Introduction .. 138

6.2 Research Summ ary 138

6.2.1 O verview 138
6.2.2 Limitations of SETA 140
6.2.3 Limitations of Database Implementation 142

6.3 Addressing Objectives and Questions from Previous Chapters 145

6.3.1 Meeting Research Objectives 145
6.3.2 Answering Research Questions 146

6.4 Additional Benefits of SETA 148

6.4.1 Introduction 148
6.4.2 Additional Benefits of Database Implementation 148
6.4.3 Additional Benefits of Tracing Requirements 149

6.5 Practicality of Implementing SETA 153

6.5.1 Requirements Traceability in AFOTEC Documents 154
6.5.2 Requirements Traceability in MIL-STD-498 155
6.5.3 Requirements Traceability in DoDR 5000.2-R 155

6.6 Recommendations for Future Research 157

6.7 Final Com m ents 158

6.7.1 Importance of the Research 158
6.7.2 Software Effectiveness; What's in a Name? 159

B ibliography .. 161

viii

Page

V ita . 16 7

Appendix A: Acronyms and Abbreviations 168

Appendix B: Selected Code From 1553 Data Bus Software 171

ix

List of Figures

Figure Page

1. Abstract View of Degrees of Traceability 47

2. Example Structures with Traces 54

3. Example of Element Decomposition and Identification Method 58

4. Three Purposes of the Element Identification Method 59

5. Example Section of ORD Structure 62

6. Example of ORD to System Requirements Traces 66

7. Example of System Requirements to Software Requirements Traces 67

8. Example of Software Requirements to HLD Traces 68

9. Example of HLD to LLD Traces 68

10. Example LLD to Code Traces 69

11. Example of Software Requirements to Validation Tests Traces 70

12. Example of Code to Unit Tests Traces 70

13. Format of Database Entry for Element Decomposition 74

14. Example Database Entries Containing Decomposition Information 75

15. Format of Database Entry for Trace Information 75

16. Example Database Section Containing Trace Information 78

17. Example Database Section 79

18. Logical Arrangement of Database Sections 81

19. Example Section of Database after Initialization 82

20. D ata Entry Exam ple ... 83

21. Database Information Used in Software Effectiveness Evaluation 87

22. Example Database for Degree of Traceability Calculation 89

x

Page

23. Example Portion of the Requirements to HLD Traceability Matrix 92

24. Effectiveness Components for an Example Software System 94

25. System Diagram for C-17 Core Integrated Processor Architecture 102

26. ORD to System Requirements Database Entries 110

27. System Requirements to Software Requirements Database Entries 113

28. Partial Decomposition and Description of RO - 3.2.2 114

29. Partial Decomposition and Description of RO - 3.2.8 115

30. Database Entries for Partial Decomposition of RO - 3.2.2 118

31. Database Entries of Partial Decomposition of RO - 3.2.8 119

32. (C ontinued) ... 120

33. Software Requirements to HLD Database Entries 121

34. HLD to LLD Database Entries 125

35. LLD to Code Database Entries for 1553 Driver 128

36. LLD to Code Database Entries for POBIT Utility 129

37. LLD to Code Database Entries for MIBIT Utility 129

38. LLD to Code Database Entries for CommonBIT Utility 130

39. Database Entries for Software Requirements to Validation Tests 132

40. Example Decomposition Database Entries 143

41. Possible Alternate Database Design 144

42. Example of HLD to Requirements Backtraces 150

43. Traces from Example of HLD to Requirements Backtraces 151

44. Example of HLD to Requirements Traces with Requirement Change 153

xi

List of Tables

Table Page

1. Correspondence Between Software Development Artifacts 106

xii

AFIT/GCS/ENG/96D-24

Abstract

The Air Force Operational Test and Evaluation Center (AFOTEC) is tasked with

the evaluation of operational effectiveness of new systems for the Air Force. Currently,

the software analysis team within AFOTEC has no methodology to directly address the

effectiveness of the software portion of these new systems.

This research develops a working definition for software effectiveness, then

outlines an approach to evaluate software effectiveness-- the Software Effectiveness

Traceability Approach (SETA). Effectiveness is defined as the degree to which the

software requirements are satisfied and is therefore application-independent.

With SETA, requirements satisfaction is measured by the "degree of traceability"

throughout the software development effort. A degree of traceability is determined for

specific pairs of software life-cycle phases, such as the traceability from software

requirements to high-level design and low-level design to code. The degrees of

traceability are combined for an overall software effectiveness value.

It is shown that SETA can be implemented in a simplified database, and basic

database operations are described to retrieve traceability information and quantify the

software's effectiveness.

SETA is demonstrated using actual software development data from a small

software component of the avionics subsystem of the C-17, the Air Force's newest

transport aircraft.

xiii

AN APPROACH TO EVALUATE SOFTWARE EFFECTIVENESS

1. Introduction

The Air Force Operational Test and Evaluation Center (AFOTEC) is the single

operational test agency for Air Force acquisition programs. AFOTEC is tasked with the

evaluation of operational effectiveness and suitability of new systems for the Air Force.

The software analysis team within AFOTEC is responsible for the evaluation of

the software portions of systems. Although AFOTEC has standard methodologies to

evaluate system operational effectiveness, they currently have no standard methodology

that directly addresses software effectiveness. Because of the increased number of

software-intensive systems being introduced to the Air Force, Air Force Test and

Evaluation (AF/TE) has suggested that software effectiveness be specifically evaluated by

AFOTEC [PRC94]. This research outlines an approach to evaluate software

effectiveness. From this outline, AFOTEC's software analysis team can develop a full

methodology to evaluate software effectiveness.

1.1 Background

Computer software increasingly affects everyone's life both directly and

indirectly. It is part of the tools used in everyday life in the 20th century: appliances,

automobiles, and television. Software is also more and more a part of complex systems

1

that underlie business infrastructure: air traffic control, telephone service, and the stock

market. Computer software is also important to the United States armed forces.

The military has unique systems that rely on computer software. Most of the

aircraft in the Air Force would not function at all if it were not for computer software

[Kit89]. Software also runs the Navy's ships and the Army's tanks. The functionality of

all the military's weapons systems, information systems, and communications equipment

depend on software. The military's software dependence is made evident by a

comparison of hardware cost to software cost as a percentage of total system cost. Over a

23-year study period (1962-1985), life cycle costs for large, complex weapons systems

flipped from an 80:20 ratio, hardware to software, to a 20:80 ratio [DAF94]. The trend

towards software dependence has continued to the present.

Ironically, with this increased dependency on computer software, it has become all

too common (almost a clich6, unfortunately) that software development efforts have

resulted in products that are late, over budget, incorrect, or incomplete. The military has

not escaped this dilemma. Software functionality, regardless of the type of system

(weapon, communication, or information management) has suffered from performance

shortfalls, as well as cost and schedule overruns [DAF94]. For example, as of 1989 the

C- 17 program had schedule delays and cost overruns of half a billion dollars; the

worldwide command-and-control information system was turned over to another Air

Force agency and restructured after consuming eight years and over a third of a billion

dollars [Kit89].

2

This situation results in a paradox: an increasing dependence on software,

accompanied by the inability of software developers to reliably produce usable software.

This paradox, along with the exploding costs of correcting and maintaining poor quality

software, is the driving force behind the need for software engineering.

Software engineering, the application of engineering discipline to software

development, encompasses a broad range of activities including the assessment and

evaluation of software. Assessments and evaluations measure attributes of software in

terms of its structure and function. Structural attributes include complexity, modularity,

and maintainability. Functional attributes include reliability, usability, and efficiency.

AFOTEC's software analysis team (AFOTEC/SAS) has several methodologies to

assess software attributes such as reliability, usability, and maintainability. The software

analysis team performs these assessments in support of testing for system operational

effectiveness. Evaluating software effectiveness as a vital component of the system leads

to a more complete evaluation of overall system effectiveness. Presently, software

effectiveness is determined by, and dependent on, system effectiveness and is generalized

as follows: "if the system works, the software works" [DAF94].

1.2 Problem Statement

AFOTEC does not have a methodology to directly address the evaluation of

software effectiveness of the software portion of new systems acquired by the Air Force

and currently depends on the evaluation of system effectiveness to determine software

effectiveness.

3

1.3 Research Objectives

The purposes of this research were to define software effectiveness and propose

an approach to evaluate software effectiveness. From this approach, AFOTEC's software

analysis team could develop a full methodology to evaluate software effectiveness. In

order to carry out this research, the effort was divided into the following objectives:

1) Develop a working definition of software effectiveness.

2) Research software effectiveness, including both military and industrial
information on related topics such as software testing, software quality, and
software verification and validation. If necessary, draw parallels from discussions
of effectiveness in other areas of study.

3) Research various approaches to evaluate software effectiveness and
identify where these approaches overlap with current Air Force developmental
testing policies and practices.

4) Recommend an evaluation approach for AFOTEC's Software Analysis
Team (AFOTEC/SAS) to develop into a full methodology.

A working definition was developed first, since effectiveness had to be defined before it

could be evaluated. The development of the definition occurred simultaneously with the

research for software effectiveness evaluation approiches. All the available information

on software effectiveness was pooled to create a standard working definition. With the

working definition in mind, the various approaches to evaluate software effectiveness

were outlined and one approach was recommend to AFOTEC to develop into a full

methodology.

4

1.4 Research Questions

While focusing on the research objectives, this research attempted to answer the

following questions:

1) Does this software effectiveness evaluation support AFOTEC's system
effectiveness evaluation?

2) How can current software development practices facilitate the
evaluation of software effectiveness?

3) Can the effectiveness evaluation be used during the software
development process as an early indicator of the software's effectiveness, i.e.,
before it reaches AFOTEC for operational test and evaluation (OT&E)?

4) Can the effectiveness evaluation be used to determine the product's
readiness to enter OT&E?

1.5 Scope

The primary objective of this research was to outline an approach to evaluate

software effectiveness. The approach focused on the software product, not the process in

which it is developed. Although information is collected during the software

development process to aid in the evaluation of the software's effectiveness, this study

did not address any way of evaluating the software development process.

In addition, this research did not suggest any ways of improving the software, if

necessary, once the effectiveness evaluation is made. It is up to the stakeholders in the

development of the software to decide what changes need to be made, if any, to the

software or the development process.

5

1.6 Assumptions

There were a few assumptions involved in this research concerning the software

product under evaluation and the process in which it is developed.

Software development is a broad and diverse activity, and the capabilities of

software developers vary widely. This study assumed that the software being evaluated

represented a typical system that is evaluated by AFOTEC, i.e., a system with software of

significant size and complexity. This study also assumed that the software being

evaluated was developed with a defined, repeatable process. A further assumption was

this development process provided the various documents referenced in the evaluation

approach, such as the Software Requirements Specification (SRS).

1.7 Sequence of Presentation

This research began with an investigation into current methods of evaluating

software effectiveness. Unfortunately, the evaluation of software effectiveness was not

directly addressed in many documented cases. The few sources that directly addressed

software effectiveness are summarized in Chapter 2. Chapter 3 describes the

methodology used in conducting this research, and accounts for the changes in the

original research plan, due to the lack of information on software effectiveness. The

research methodology outlines the modified research plan and constructs the working

definition of software effectiveness.

After constructing a definition for software effectiveness, Chapter 4 outlines an

approach to evaluate software effectiveness. The evaluation approach utilizes data

6

gathered during the software development process and results in a quantified value of

software effectiveness.

Once the approach is outlined, it must be demonstrated. The evaluation approach

is demonstrated in Chapter 5. Conclusions and recommendations for further research are

contained in the final chapter, Chapter 6.

7

2. Literature Review

2.1 Introduction

The original purpose of this chapter was to review the available literature and

commercial practices for information on software effectiveness. Based on the

information gathered, the intent was to propose a working definition of software

effectiveness and outline several approaches to evaluate software effectiveness.

Unfortunately, there were very few references to software effectiveness in the literature

and in commercial practice. This lack of material led to several changes in the original

research plan, including the creation of a working definition of software effectiveness;

these changes are described in detail in Chapter 3.

The next section of this chapter summarizes the few direct references to software

effectiveness found in the literature. Section 2.3 describes the search for references to

software effectiveness in the commercial software development industry. Then, Section

2.4 reviews military software documentation in a search for references to software

effectiveness. The final section contains a brief summary and conclusion.

2.2 Literature Directly Addressing Software Effectiveness

A search for previous studies on software effectiveness revealed only three

articles that directly address software effectiveness [PRC94, Sta91, Zan92]. In 1994,

PRC, Inc. was tasked with describing software effectiveness evaluation methodologies

for AFOTEC/SAS. Although the topic of Stanko's thesis was not software effectiveness,

8

he defines software effectiveness in terms of software reliability [Sta9 1]. Zane studies

the effectiveness of educational software [Zan92]. Two of these three references

[PRC94, Zan92] specifically point out the scarcity of previous research in software

effectiveness.

2.2.1 PRC, Inc. Report on Software Effectiveness. PRC, Inc., hereafter referred to

as PRC, states that software effectiveness is difficult to define, closely related to quality,

and based on the performance of the software [PRC94]. PRC defines software

operational effectiveness as the degree to which the software supports mission

accomplishment [PRC94]. This is not an adequate response to AFOTEC's questions

about a definition and evaluation method for software effectiveness, for two reasons: 1)

AFOTEC defines system effectiveness in terms of mission accomplishment [AF095], and

2) at present, software effectiveness is determined by and dependent on system

effectiveness [DAF94] (hence the reason for this study). By defining software

effectiveness in terms of system effectiveness, the solution PRC provides AFOTEC is the

practice AFOTEC is trying to get away from, i.e., determining software effectiveness by

system effectiveness! The definition of software effectiveness should coincide with the

definition of system effectiveness, but should not be defined by system effectiveness.

In reference to quality, PRC states that "the quality attributes of the software do,

in fact, reflect the software's operational effectiveness" [PRC94]. This may be true, but

apparently the software quality attributes that AFOTEC does address (maintainability,

usability, maturity, reliability) are not adequate to define software effectiveness.

9

PRC also states that, like most software attributes, software effectiveness is based

on performance [PRC94].

In their report, PRC presents eight "methodologies" for evaluating software

effectiveness. Each methodology is categorized by four characteristics, with each

characteristic offering a number of options in implementation. These options are taken in

various combinations for each methodology, i.e., one set of options (one option for each

characteristic) constitutes one software effectiveness methodology. The four

characteristics and their options are summarized below [PRC94]. However, before these

options are summarized, the definitions of Operational Test and Evaluation (OT&E) and

Development Test and Evaluation (DT&E) are provided:

Operational Test and Evaluation. Testing and evaluation conducted to estimate
the system's military utility conducted in as realistic an operational environment
as possible to estimate the prospective system's operational effectiveness and
suitability. In addition, operational test and evaluation provides information on
organization, personnel requirements, doctrine, and tactics. Also, it may provide
data to support or verify material in operating instructions, publications, and
handbooks [AFO95].

Developmental Test and Evaluation. That testing and evaluation used to
measure progress, to verify accomplishment of development objectives, and to
determine if theories, techniques, and material are practicable and if systems or
items under development are technically sound, reliable, safe, and satisfy
specifications [AF095].

The four options from the PRC report are listed below [PRC94]:

1) AFOTEC Software Quality Assurance (SQA) Role. AFOTEC currently
has no responsibility in planning, implementing, or monitoring the quality
programs during software development. Options for this characteristic include
AFOTEC's involvement in software process improvement, providing an
operational test readiness certification monitor, or providing a proactive
operational test readiness certification participant.

10

2) OT&E Task Measurement Method. There are two primary options to
evaluate the effectiveness of a system during OT&E. Functional level
characteristics data can be acquired and aggregated upward to answer the OT&E
critical operational issues and measures of effectiveness as well as other required
issues. The other option is to evaluate the system, and its software, from the
user's perspective, i.e., user satisfaction.

3) OT&E Data Sources. Data for the OT&E can be obtained from the
information derived during the DT&E efforts or it can come exclusively from the
OT&E mission exercises. While the latter method might be preferred, the DT&E
data may provide the opportunity to significantly reduce redundancy in testing.

4) OT&E Scenario Development. The DT&E scenarios are designed to
demonstrate the compliance with the software's approved specifications, not to
specifically stress the software to identify its breaking points. Also, DT&E does
not necessarily target the software's critical paths as part of the specification
compliance demonstration. These are extremely important to operational users.
For some of the software effectiveness evaluation methodologies, the use of
realistic operational scenarios to stress the software's operational profile
processing capabilities and critical paths will be emphasized.

As stated earlier, the software effectiveness evaluation "methodologies" outlined

by PRC were developed from various combinations of the options for these four

characteristics. In fact, PRC does not outline specific methodologies for evaluating

software effectiveness. The combinations of these four characteristics merely describe

circumstances in which AFOTEC should be more capable of evaluating the effectiveness

of software, as PRC defines it. PRC concludes:

Software quality measures are related to readiness for OT&E and the
users' satisfaction with the software. The options for evaluating software
operation test readiness and effectiveness can be characterize by the level of
AFOTEC involvement in software quality measurement and evaluation of the
software user's satisfaction during OT&E [PRC94]:

PRC also states that software evaluations presently conducted by AFOTEC, such

as suitability, maturity, and maintainability, can be used as early indicators of software

11

effectiveness [PRC94]. This is true if AFOTEC further defines effectiveness in terms of

these attributes that they already assess.

In summary, the PRC study provides no new information to AFOTEC. PRC's

definition of software effectiveness is derived directly from current AFOTEC

terminology. In addition, the eight "methodologies" PRC offers are not methodologies at

all. Finally, in criticism of their own software effectiveness "methodologies", PRC states

that each of the eight methodologies does not adequately assess software effectiveness.

2.2.2 Stanko's Thesis on Software Reliability. Stanko defines software

operational effectiveness as being "... based on reliability as derived from test, or

execution time" [Sta91]. In his thesis, entitled A Standardized Software Reliability

Measurement Methodology, Stanko presents the following definitions:

Software System Effectiveness. A measure of the percentage of time the
software system operates correctly (no failures) versus the total attempted
operational time [Sta91].

Failure. The inability of a system or system component to perform a
required function within specified limits [Sta9 I].

Stanko presents several different reliability models to assess their usefulness to

evaluate software effectiveness. Stanko concludes that "software reliability provides one

way of measuring the operational effectiveness of the weapon system software," and this

can be used to calculate the total weapon system effectiveness [Sta9 1].

Although Stanko's thesis doesn't directly define software effectiveness as meeting

functional requirements, his research states the following: software effectiveness is

"based on reliability"; reliability is defined as the probability of failure-free operation;

12

failure is defined as the inability to perform a required function within specified limits

[Sta91]. Therefore, Stanko implicitly defines software effectiveness as the degree to

which the software meets its functional requirements.

Although the focus of Stanko's thesis was not software effectiveness, but rather

software reliability, his definitions imply a point that will be useful in developing a

working definition of software effectiveness; to be effective, the software must meet its

functional requirements.

2.2.3 Zane's Study of Educational Software Effectiveness. In his study of the

effectiveness of educational software, Zane contacted educational software developers

and asked them to provide any documentation that supported the claims they made with

respect to their software and improved learning performance [Zan92]. Zane defines

educational software effectiveness as a measurement of improved learning performance

through the use of the software. Of the 34 software development companies contacted,

none provided any data to substantiate their claims of increased learning capability from

using their products. Zane concludes that although software effectiveness is one of the

most important attributes to measure in software, especially educational software, it is

rarely done [Zan92]. The most significant determination in Zane's paper is that he

explicitly defines effectiveness by comparing actual performance to expected

performance.

2.2.4 Summary. The main theme in all three studies is that software effectiveness

is based on the actual performance of the software compared to the expected performance

of the software. PRC defines software effectiveness as the degree of software support

towards mission accomplishment [PRC94]. Stanko defines software effectiveness based

13

on reliability [Sta9 I], and reliability is certainly focused on performance. Finally, Zane

defines software effectiveness as the degree to which learning improves in relation to the

claims made by the software's developers [Zan92]. Improved learning is a means of

evaluating how well the software performs. In accordance with these few direct

references to software effectiveness, any definition of software effectiveness must be

rooted in software performance. Software performance is addressed in the development

of the working definition of software effectiveness in Chapter 3.

2.3 Industry Perspective on Software Effectiveness

Four companies were contacted and questioned about their use of the term

"software effectiveness" in software development. The four companies covered a broad

spectrum of software development efforts, including: commercial (Microsoft), corporate

(IBM), aviation (Boeing), and defense (Lockheed Martin). Each company was asked the

same initial question: "How do you define software effectiveness, and how does your

company address it, if at all?" Without exception, each company answered this question

with another question. Each company asked (in one way or another): "What do you mean

by effectiveness?" Additional details from the individual interviews are documented

below.

2.3.1 IBM. Margaret Hedstrom, former member of IBM's Software Quality

Engineering Group, stated that IBM does not specifically address software

"effectiveness" by that term [Hed96]. IBM is concerned with quality throughout

development and after delivery, with quality meaning "more than bug-free" [Hed96].

The overriding issues for IBM's software development efforts include: functionality,

14

usability, and meeting customer expectations. After product delivery, IBM addresses

customer satisfaction by administering follow-on customer surveys [Hed96].

2.3.2 Boeing. John Vu, Senior Principal Scientist at Boeing's Software

Engineering Research and Technology Division, stated that Boeing has "no official

position" on software effectiveness [Vu96]. The critical issues in Boeing's software

development efforts include: meeting requirements, performance, minimizing defects,

and developing software on time, within budget.

2.3.3 Microsoft. Greg Enslow, Technical Sales Representative of the Developer

Tool Sales Team, stated that Microsoft does not directly address software "effectiveness",

but Microsoft is concerned with software quality [Ens96]. Microsoft has created various

methods to address quality in the software products they develop.

2.3.4 Lockheed Martin. Gerald Nieto, Manager of the Application Division's

Project Management Support, stated that "effectiveness is not a term that's used all the

time, but it's occurring more frequently" [Nie96]. Lockheed Martin relates software

effectiveness to process improvement, reduced development time, reduced costs, and the

software's contribution to the whole product. Although Lockheed Martin has begun

collecting metrics on what it terms as "effectiveness", the focus is on the software

development process, rather than the effectiveness of the software product itself [Nie96].

2.3.5 Summary. Without exception, no company contacted used the term

"software effectiveness" in the development or evaluation of their software products. The

absence of the term "software effectiveness" in industry is reiterated by PRC in their

study [PRC94]. While not scientific and not conclusive, this small survey of large,

15

commercial software developers indicates that the term "software effectiveness" is not

widely used in the development of software in industry.

2.4 Military Perspective on Software Effectiveness

2.4.1 Department of Defense. There is no reference to software effectiveness in

Department of Defense (DoD) Regulation (DoDR) 5000.2-R, which contains the

mandatory procedures for major defense acquisition programs and major automated

information system acquisition programs [DoD96b]. Although there are many references

to system effectiveness and the important role software plays in major systems acquired

by the military, there is no mention of software effectiveness with regard to definition or

evaluation method.

2.4.2 Air Force Test and Evaluation. There is no reference to software

effectiveness in Air Force Instruction (AFI) 99-103, Test and Evaluation Process, which

"directs and describes the Air Force Test and Evaluation Process and its relationship to

the systems acquisition process within the policies" of the Department of Defense

[AFI94c]. As with DoDR 5000.2-R above, there are many references in AF 99-103 to

system effectiveness and the important role software plays in major systems. AFI 99-103

also emphasizes the importance of testing software as an integral part of the system

[AFI94c], but there is no mention of software effectiveness.

2.4.3 Air Force Developmental Test and Evaluation. AFI 99-101, Developmental

Test and Evaluation, contains one reference to software effectiveness [AFI94a]. In a list

of what developmental test and evaluation (DT&E) programs test, under the system

performance section, AFT 99- 101 states: "Assess the system's software (including its

16

effectiveness, suitability, and interoperability aspects) and identify limiting factors"

[AFI94a]. This is the only reference to software effectiveness in AFI 99-101. Although

there is information contained on many other aspects of system DT&E, including system

effectiveness, there is no definition of software effectiveness and no guidance on how to

assess software effectiveness.

2.4.4 Air Force Operational Test and Evaluation. There is no reference to

software effectiveness in AFI 99-102, Operational Test and Evaluation, which "provides

guidance and procedures for operational test and evaluation in the Air Force" [AFI94b].

Also, there is no reference to software effectiveness in AFOTEC Instruction (AFOTECI)

99-101, Management of Operational Test and Evaluation, which "provides the specific

guidelines and procedures for the Air Force Operational Test and Evaluation Center

(AFOTEC) conduct of operational test and evaluation (OT&E) on Air Force systems"

[AF095]. AFOTEC Pamphlet (AFOTECP) 99-102, Software Operational Assessment

Guide, contains one reference to software effectiveness [AF094]. Stating that software

operational assessment areas must mirror the system operational assessment areas,

AFOTECP 99-102 lists "impacts affecting operational effectiveness" as one of five

standard areas to be assessed. Although AFOTECP 99-102 contains information on

many other aspects of software assessments, there is no definition of software

effectiveness and no guidance on how to assess software effectiveness.

The Software Operational Assessment Guide [AF094] is the eighth volume in a

series of OT&E guidelines (AFOTEC Pamphlet 99-102) prepared by AFOTEC/SAS.

Although there are guidelines to assess software attributes such as maintainability,

17

usability, maturity, and reliability, there is no guideline to assess software effectiveness.

At present, AFOTEC/SAS determines software effectiveness with the assessment of the

software attributes mentioned previously, aided by the evaluation of system effectiveness.

2.5 Summary and Conclusion

Information that directly addresses software effectiveness is quite sparse. Of the

three sources found in the literature [PRC94, Sta9l, Zan92], the only useful information

they offered was that software effectiveness is based on performance. Although

interviews with only four software development companies hardly constitutes a complete

scientific survey, it is generalized that software effectiveness is not addressed in industry

[Ens96, Hed96, Nie96, Vu96]. Of the four military software documents reviewed,

including documents from the DoD, Air Force, DT&E, and OT&E communities, only

two references to software effectiveness were found [AFI94a, AF094]. These references

to software effectiveness in the military documentation were not accompanied by a

definition of or an evaluation method for software effectiveness.

This lack of information dictated that changes had to be made to the original

research plan. With little information on software effectiveness in the available literature,

industry, and military documentation, it was necessary to develop a working definition of

software effectiveness by other means. Once a working definition was established, an

approach to evaluate software effectiveness could be outlined. The changes to the

research plan, along with the development of a working definition of software

effectiveness, are described in Chapter 3. Using the software effectiveness definition

18

developed in Chapter 3, an approach to evaluate software effectiveness is outlined in

Chapter 4.

19

3. Research Methodology

It is vital to document the research plan undertaken in any study. The research

plan reveals the steps (and missteps) taken along the path in the attempt to solve the

problem at hand. The plan is important to the reader of the research in that the plan must

follow a logical process and common sense or the results of the research effort have little

meaning. The research plan is also important to the author of a research effort to

document the original plan, the problems encountered following the original plan, and the

modified plan. Another benefit to the author of a research effort is the documentation of

the trials, mistakes, and dead ends encountered during the research. In the end, more may

be learned from what does not work than from what works according to the research plan.

3.1 Introduction

This chapter documents the research plan, hereafter referred to as the plan, and its

evolution throughout the research effort. This chapter is a direct result of the problems

encountered during the research into software effectiveness. The first section below

outlines the original plan to investigate software effectiveness and develop an approach to

evaluate software effectiveness. The next section describes the difficulties encountered

while following the original plan. In an attempt to develop an approach to evaluate

software effectiveness, these difficulties led to several dead ends which are described in

Section 3.4. As a result of these dead end approaches, it was necessary to modify the

original plan; this modified plan is outlined in Section 3.5.

20

The first step of the modified plan is accomplished in Sections 3.6 through 3.9

with the development of a working definition of software effectiveness. Since the

information reviewed in Chapter 2 is inadequate to develop a working definition of

software effectiveness, a preliminary definition is formed in Section 3.6, starting with a

"clean slate" and just using the word effective. This preliminary definition of software

effectiveness is refined in Sections 3.7 and 3.8, by examining "effectiveness" in various

contexts. The definition is further refined by Section 3.9, which summarizes two other

software attributes that are comparable to software effectiveness. Following these four

development sections, 3.6 through 3.9, a working definition of software effectiveness is

provided in Section 3.10.

After presenting the working definition for software effectiveness, the focus turns

to the evaluation of software effectiveness. Section 3.11 outlines software development

activities that assess software attributes, since these activities may aid in the development

of an approach to evaluate software effectiveness. Next, Section 3.12 contains a chapter

summary and Section 3.13, the final section, concludes with the main idea in the

proposed approach to evaluate software effectiveness, which is described in detail in

Chapter 4.

3.2 Original Research Plan

The original research plan came from a series of objectives outlined by AFOTEC

[Pro95]. After providing some background information as to the need for a methodology

21

to evaluate software effectiveness, AFOTEC/SAS outlined some basic objectives which

were adapted to the objectives listed in Section 1.3 and repeated below:

1) Develop a working definition of software effectiveness.

2) Research software effectiveness, including both military and industrial
information on related topics such as software testing, software quality, and
software verification and validation. If necessary, draw parallels from discussions
of effectiveness in other areas of study.

3) Research various approaches to evaluate software effectiveness and
identify where these approaches overlap with current Air Force developmental
testing policies and practices.

4) Recommend an evaluation approach for AFOTEC's Software Analysis
Team (AFOTEC/SAS) to develop into a full methodology.

This original plan seemed fairly straightforward, assuming information on software

effectiveness was available.

In summary, the original plan was to review all the available information and

develop a working definition for software effectiveness. Supposedly, in the course of the

research, several approaches to evaluate software effectiveness would be encountered.

The software effectiveness approaches would then be outlined, compared, contrasted, and

one approach would be recommended to AFOTEC/SAS to develop into a full

methodology. AFOTEC's outline of objectives implied that information on software

effectiveness was readily available, but this was not the case.

3.3 Difficulties Encountered During Research

3.3.1 Lack of Previous Research. Although the research outline provided by

AFOTEC implied the availability of information on software effectiveness, there were

22

very few sources that directly addressed software effectiveness. These few sources also

emphasized a scarcity of information on software effectiveness. Also, AFOTEC delayed

in providing one source that directly addressed software effectiveness [PRC94], so as not

to influence the start of this research. AFOTEC provided the PRC report after an initial

search for information on software effectiveness came up empty. Unfortunately, this

document proved problematic.

3.3.2 Problems with the PRC Report. The report from PRC, entitled Software

Effectiveness Evaluation Methodology Study Task Report of Concept Options, was

intended to be an important reference in this research effort, but actually provided little

information on software effectiveness. This document defined software effectiveness

with the same terminology (mission accomplishment) as AFOTEC's definition of system

effectiveness, and did not provide any new insight into software effectiveness.

The methodologies the PRC document offered were not methodologies at all.

PRC's "methodologies" were merely eight options of suggested changes in quality

assurance roles, measurement methods, and data sources that AFOTEC could undertake.

By making these changes, AFOTEC would supposedly be better able to assess software

effectiveness. PRC went on to criticize their own suggestions for effectiveness

approaches by stating that none of them would adequately assess software effectiveness.

Finally, the PRC document had structural problems in the way it was written.

Although the PRC document had an extensive bibliography, there were no citations

inside the document to indicate what information came from which source. Even though

the bibliography listed some sources that provided some relevant background

23

information, there was one source in the bibliography that could not be located. The

phantom document had authorship credited to AFOTEC/SAS and was entitled Software

Operational Effectiveness Assessment for C-17. This document should have provided

some insight into a software effectiveness evaluation method, but no one at AFOTEC had

ever heard of the document, much less written it. The same answer came from the C- 17

System Program Office at Wright-Patterson AFB; no one had ever heard of the document.

3.3.3 No References in Industry. The difficulties in the research continued when

it was determined that there were no references to software effectiveness in industry.

While only four companies in industry were surveyed, they covered a broad range of

software development activities in size and scope. If software effectiveness was being

addressed anywhere in industry, it should have been encountered in one or more of the

following companies that were surveyed: IBM, Microsoft, Boeing, and Lockheed Martin.

All the companies contacted stressed that they were concerned with quality, customer

satisfaction, and meeting budget and schedule constraints. Unfortunately, none of the

companies used the term "software effectiveness", and it is therefore assumed that

software effectiveness is not addressed at any great length anywhere in industry.

3.3.4 Summary. The scarcity of information directly addressing software

effectiveness was disappointing, but not completely debilitating. The nagging question

was why. Why was there virtually no reference material on software effectiveness?

AFOTEC is the single responsible agency for operational test and evaluation for new

systems (and their software) acquired by the United States Air Force. AFOTEC has

enough concern about software effectiveness to sponsor a thesis on the topic; why is it

24

that no one else in the software development community seems to be concerned about

software effectiveness?

With very little reference material for guidance, a definition for software

effectiveness would have to be developed by other means. Assuming a general definition

of effective as another software attribute 'meaning "adequate" or "appropriate", a few

evaluation approaches were considered and eventually rejected (for good reasons) as dead

ends.

3.4 Dead Ends for Software Effectiveness Evaluation Methods

3.4.1 User's Perspective. Influenced by numerous horror stories of unmet user

expectations in software development, software effectiveness was initially viewed

exclusively as user satisfaction. The end-user would determine whether the software was

"effective" or not.

This approach was rejected because there are considerations with the development

of the software that are hidden from the user. These considerations would alter the

"effectiveness" of the software in its final form. For example, consider software

maintainability. Suppose a user initially determines that a software system is effective.

His or her opinion would likely change if a requested software change proposal took too

long to complete, or was not completed at all.

3.4.2 Static Set of Software Attributes. A fixed set of attributes could compose

the overall attribute of software effectiveness. Assuming functionality and reliability are

necessary attributes in any software development effort, other attributes would be added

to create a composite definition of software effectiveness.

25

This approach was rejected because it is not application-independent. With the

many types of software products in development, it is impossible to select a fixed set of

attributes to form a definition of software effectiveness. For example, user-friendliness

would certainly be a desirable attribute to determine effectiveness in a database

application. However, to determine software effectiveness in an embedded system such

as a cruise missile, user-friendliness would not be considered a necessary, or even a

desirable attribute of the missile guidance software.

3.4.3 Dynamic Set of Software Attributes. A dynamic set of attributes could

compose the overall attribute of software effectiveness. Selecting software attributes

"cafeteria-style" to determine software effectiveness would certainly remove the problem

of application dependence. User-friendliness would be selected as an attribute to

determine software effectiveness for the database application, but not as an attribute for

the on-board cruise missile software. Survivability may be selected as a necessary

attribute to determine software effectiveness for the cruise missile software, but

survivability is hardly necessary for a database application.

Unfortunately, this approach was rejected because it is too subjective. In

determining software effectiveness, what attributes are selected will be influenced by who

is making the selection. Opinions may vary greatly as to what is (or is not) an important

attribute to determine software effectiveness for each application under consideration.

3.4.4 Dynamic/Static Sets of Metrics. Perhaps the quantitative nature of metrics

could provide an evaluation approach for software effectiveness. By collecting metrics

on the software during the development process, this data could possibly serve as an

26

"early indicator" of software effectiveness, which would appeal to AFOTEC. This

approach seemed the most promising of all considered so far.

Unfortunately, the metrics approach was rejected for the exact same reasons as the

attribute approach. A static set of metrics would not be application-independent and a

dynamic set of metrics would be too subjective.

3.4.5 Effectiveness Viewed as Another Term for Quality. From the general

definition of software effectiveness, described above as "adequate" or "appropriate",

could software effectiveness just be another term for quality? This would certainly

explain the scant information on software effectiveness in literature and in practice.

Perhaps all the effort and consideration that would have been applied to software

effectiveness has already been expended on another attribute closely related to "adequate"

or "appropriate", such as software quality. Perhaps software effectiveness can be

evaluated by addressing software quality.

This approach was also rejected, for a number of reasons. First, quite simply, it is

not what AFOTEC/SAS requested. The focus of this research is software effectiveness,

not software quality. Although the connection between software effectiveness and quality

must be considered as part of this study, effectiveness will not be defined in terms of

quality. Secondly, defining software effectiveness in terms of quality is merely

substituting one difficult-to-define term for another, so nothing is gained. In addition,

quality implies consideration not only of the software product, but the process with which

it was developed. Software effectiveness concerns the software product exclusively; at

best it could be defined as a subset of quality attributes. Lastly, if software effectiveness

27

is defined as a subset of quality attributes, this approach becomes the first approach that

was rejected: a set of attributes to define software effectiveness.

3.4.6 Summary. All of the software effectiveness evaluation approaches above

were considered and rejected for various reasons. This "thrashing" of ideas stemmed

from a loose interpretation of the term effectiveness. It was necessary to go "back to the

drawing board" to develop a working definition of software effectiveness; the

development of the working definition is covered extensively in Sections 3.6 through 3.9

below.

However, before developing the working definition of software effectiveness, a

modified research plan is outlined in the next section, since the difficulties and dead ends

encountered during the research have changed the original research plan.

3.5 Modified Research Plan

The modified research plan retained as much as practically possible from the

objectives outlined by AFOTEC/SAS. The objectives of the modified research plan are

listed below:

1) Develop a working definition of software effectiveness.

2) Research effectiveness in other areas of study, including AFOTEC's
definition of system effectiveness. Also research other performance-based
software attributes and activities such as software quality, software reliability,
software testing, and software verification and validation.

3) Since there are no software effectiveness methodologies to review,
develop one approach to evaluate software effectiveness to recommend to
AFOTEC/SAS to develop into a full methodology.

4) Demonstrate the operation of the recommended approach to evaluate
software effectiveness.

28

This modified plan was not drastically different than the original research plan. The

working definition of software effectiveness had to be developed by other means since

the previous work on the topic was extremely limited. These limited resources also

called for the development of a software effectiveness evaluation approach. The output

products of this modified plan were identical to the original research plan: a working

definition of software effectiveness and a recommended approach to evaluate software

effectiveness. The working definition of software effectiveness is developed in the next

four sections, with the actual definition presented in Section 3.10. The approach to

evaluate software effectiveness is explained in detail in Chapter 4.

3.6 Preliminary Definition of Software Effectiveness

Software effectiveness is difficult to define precisely. Without a firm definition,

software effectiveness is impossible to evaluate. The Random House Webster's College

Dictionary defines effective as "adequate to accomplish a purpose; producing the

intended or desired result" [Ran92]. In short, effective means "fit for use."

The dictionary definition of effective (and the short definition, "fit for use")

denotes performance or functionality, brought out by the words "accomplish" and

"producing" (and "use"). Effectiveness, as the noun form of the adjective "effective",

describes a property of an object or process. In short, effectiveness means "degree of

fitness for use."

To associate software with the basic definition above, software effectiveness is

29

the degree to which the software performs as required and expected.

Software effectiveness must answer the questions: "Does the software do what it

is supposed to do?" and "Does the software not do what it is not supposed to do?" This

preliminary definition of software effectiveness is referred to in subsequent sections in its

short form: "performs as required". To satisfy the first goal of this thesis, a working

definition for software effectiveness will be developed with software performance in

mind.

AFOTEC tests systems for system effectiveness. Since this software effectiveness

approach is being developed for AFOTEC, it is logical to consider their definition of

system effectiveness in refining the preliminary definition of software effectiveness.

3.7 AFOTEC's Definition of System Effectiveness

AFOTECI 99-101 refers to operational effectiveness and suitability as the two

benchmarks of OT&E and defines system operational effectiveness as follows:

System Operational Effectiveness. The degree of mission
accomplishment of a system when used by representative personnel in the
environment planned or expected (e.g., natural, electronic, threat, etc.) for
operational employment of the system considering organization, doctrine,
tactics, survivability, vulnerability, and threat (including countermeasures,
initial nuclear weapons effects, nuclear, biological, and chemical
contamination threats) [AF095].

From the definition of system operational effectiveness, the mission in "degree of

mission accomplishment" is divided into operational and support tasks that are necessary

for the achievement of a military objective. Critical Operational Issues (COIs) are

questions about the system's operational tasks that must be answered "yes" or "no" as to

30

whether the issue has been addressed or not [AF095]. COIs can be composed of one or

more Measures of Effectiveness (MOEs) or Measures of Performance (MOPs). MOEs

are defined by the operational command as measures of operational capability in terms of

engagement or battle outcome and MOPs are defined as quantitative or qualitative

measures of the system's capabilities or characteristics [AF095]. The "operational

capabilities" of the MOEs and the "capabilities or characteristics" of the MOPs describe

the operational requirements of the system. Therefore, for AFOTEC, system operational

effectiveness generally measures the degree to which the operational requirements are

met. This generalization supports the preliminary definition of software effectiveness,

"performs as required", but adds no new information. Perhaps effectiveness definitions

in other areas of study can aid in refining the preliminary definition of software

effectiveness.

3.8 Effectiveness Definitions in Other Fields of Study

3.8.1 System Effectiveness. A "system" is a collection of individually working

components, contained in a complex structure, and designed to function together.

Examples of some large systems include power plants, factories, and satellite

communication networks.

System effectiveness is based largely on performance [Sei69]. System

components may include hardware, software, input and output data, and, even subjective

things such as operator experience and management pressure. With this many variables

to consider, an effectiveness assessment of such a complicated system requires a divide

31

and conquer strategy. Seiler breaks down overall expected effectiveness of an entire

system into the following components [Sei69]:

E(E) = [E(P) Cp] [E(A) C] [E(R) Cr] [E(S) C] (1)

where E(E) = expected effectiveness of the system
E(P) = expected performance of the system (the basic design)

Cp = statistical confidence in performance
E(A) = expected availability of the system

C11 = statistical confidence in availability
E(R) = expected reliability of the system

Cr = statistical confidence in reliability
E(S) = expected survivability of the system

C, = statistical confidence in survivability

Each expected value component is broken down in a similar manner, until the

components are quantifiable. For example, the reliability component of the system, E(R),

is decomposed into the reliability of the hardware, the reliability of the software, etc. The

statistical confidence in reliability, Cr, is also broken down and matched with each

component of the hardware, software, etc. The reliability of the hardware is then broken

down further into reliability components of the hardware (disk platter, power supply,

circuitry, etc.), again with their associated statistical confidence. Once all the components

of the system are decomposed to the point where they can be assigned explicit values,

they are assembled back into equation 1 to calculate a composite value describing the

system's overall effectiveness.

Decomposition may prove useful in the evaluation of software effectiveness. A

software "system" can be broken down into manageable components which could be

individually evaluated for effectiveness.

32

3.8.2 Information Systems Effectiveness. In measuring the effectiveness of

information systems, performance is the most important factor [Ash94, Eva88, Hua95,

Sco95]. Performance of information systems is measured by different attributes such as

user satisfaction, information quality, and reliability. This definition coincides with the

preliminary definition of software effectiveness, "performs as required".

Ashqar defines information systems effectiveness from two different perspectives:

the user's and the system's [Ash94]. From the user's perspective, Ashqar measures user

satisfaction; from the system's perspective, Ashqar measures performance in terms of

resource utilization, cost, and efficiency [Ash94]. These different perspectives offer

insight to a refinement of the preliminary definition of software effectiveness; if the

software satisfies the user, yet is inefficient and costly in terms of system resources, can

the software still be considered effective?

In generalizing the evaluation of information systems effectiveness, actual

performance is measured against the expected performance of the information system,

which coincides with the recurring theme in the sources that directly address software

effectiveness.

3.8.3 Effectiveness of Teaching Methods. In a comparison study of teaching

methods, Gillis evaluates effectiveness by assessing student learning [Gil85]. One

teaching method consists of computer-based instruction, and the other method involves a

human instructor. Both methods are used in teaching composition writing. Following the

instruction, the students write compositions which are graded independently to assess

which teaching method was more helpful in aiding student learning.

33

The salient point is that teaching effectiveness is measured by the degree of

student learning (quantified by the grades on their compositions after the instruction), i.e.,

by student performance. This effectiveness measure also shows how well each teaching

method fulfills the expectations of the evaluators.

3.8.4 Effectiveness of Strategies for Hardware Reconfiguration. Schwab

describes reconfiguration strategies for real-time, very large scale integrated circuit

processing arrays [Sch95]. Fault-tolerant designs of real-time systems require hardware

reconfiguration to continue to function properly. Schwab evaluates these strategies for

their effectiveness in successful reconfiguration. Effectiveness is determined by how well

these reconfiguration strategies work to support the fault-tolerant circuit design.

3.8.5 Traffic Control Effectiveness. To combat traffic congestion, a number of

intelligent-vehicle highway systems (IVHS) have been introduced [Lo94]. These systems

gather real-time data on automobile traffic flow and provide guidance to motorists so they

may respond to traffic conditions appropriately. Lo outlines an evaluation method for

these systems to determine their effectiveness [Lo94]. Lo defines effectiveness as the

degree of impact on the transportation system due to the application of IVHS. The IVHS

is designed to improve traffic flow and Lo's impact evaluation method determines how

well traffic flow is aided by the IVHS.

3.8.6 Shielding Effectiveness in Materials. Radford discusses various composite

materials and evaluates their effectiveness in shielding against electromagnetic

interference (EMI) [Rad94]. Shielding effectiveness is based on measured electrical

conductivity in the material during exposure to EMI. The EMI is absorbed and directed

away from the component or structure the material is shielding. In shielding against EMI,

34

effectiveness is a quantified measure using a standard, accepted formula in the study of

composite materials. The specific formula is unimportant in regards to software

effectiveness; what is important is the effectiveness of the material is determined by how

well the material performs in shielding against EMI.

3.8.7 Summary. The overriding theme in reviewing effectiveness in other fields

of study is effectiveness is defined by how well something is done or indicates a level of

accomplished tasks. Although these studies provide little new information to refine the

preliminary definition of software effectiveness as "performs as required", these studies

substantiate the preliminary definition. Ashqar's study provides insight into a refinement

for the preliminary definition of software effectiveness; effectiveness can be looked at

from different perspectives. In addition to the perspectives of the user and the system

offered by Ashqar, other perspectives for software effectiveness may include the software

developer, tester, or maintainer.

From the preliminary definition "performs as required", software effectiveness

can be viewed as an attribute of software that is based on performance. To further refine

the preliminary definition of software effectiveness, it may be beneficial to examine other

software attributes that are based on performance.

3.9 Performance-Based Software Attributes

3.9.1 Software Reliability. In reference to "performs as required", software

effectiveness has a connection with software reliability because both attributes are based

on software performance. Although both terms are based on performance, each term

views performance from opposite perspectives. In generalizing "performs as required",

35

software effectiveness is the degree of satisfactory performance, while reliability is the

degree of absence of unsatisfactory software performance.

Stanko defines software effectiveness in terms of reliability [Sta91], and implies

through his definitions that to be effective, software must meet its functional

requirements. However, this definition does not quite capture the preliminary definition

of software effectiveness as "performs as required". Reliability only addresses the

performance half of "performs as required"; there may be other "requirements" that have

little to do with actual performance. For example, reliability does not take into

consideration non-functional attributes such as maintainability or constraints such as

program size. Effectiveness can capture non-functional attributes and constraints if

"performs as required" includes performance aspects as well as meeting the requirements

of the software.

In summary, the refined definition of software effectiveness must contain

reliability's definition within it, i.e., "performs as required" is taken to mean the software

performs adequately and meets software requirements.

3.9.2 Software Quality. Quality is defined by Robert Glass as "the degree of

excellence of something" [Gla92]. Glass' definition is certainly broad enough to contain

reliability, as well as meeting the non-functional requirements described previously.

Glass' definition also coincides with "performs as required", the preliminary definition of

software effectiveness. In general, a high quality software product implies that it

performs adequately and would therefore be effective. Also, software that is effective

would generally imply that it is a quality product. However, software quality is also

36

difficult to define [Gla92], but unlike software effectiveness, there is a large volume of

information that defines software quality and how to evaluate it.

Information on the definition and evaluation of software quality may aid in the

definition and evaluation of software effectiveness. One traditional approach to define

and evaluate software quality is to use a divide and conquer strategy and define quality in

terms of attributes of the software product [Bow85, Cla92, Gla92, ISO91, War87]. In

this manner, each attribute is assessed separately (much like Seiler's calculation of system

effectiveness above), then combined to yield and overall appraisal of the software's

quality. Another traditional approach to define and evaluate quality is to use software

metrics. Many studies attribute software quality to a successful metrics program and vice

versa [Oiv93, Ros94, She90, Wal9l, We193]. These approaches, using a set of attributes

or a set of metrics to define and evaluate software quality, were previously considered and

rejected (in Sections 3.4.2 through 3.4.4) as ways to define and evaluate software

effectiveness.

Finally, while software reliability concerned too narrow a scope by focusing on

software performance, software quality covers too broad a scope by considering the

software development process in addition to the quality of the software product.

Considering the refined preliminary definition of software effectiveness as

adequate performance and meeting requirements begs the question: "can software

performance be defined within the requirements?" The answer is "yes" and the working

definition of software effectiveness is now established as simply "meeting the software

requirements".

37

3.10 Working Definition of Software Effectiveness

Software Effectiveness. The degree to which the software requirements are
satisfactorily met.

In this definition, the term "degree" refers to the percentage of software

requirements that are satisfactorily met.

This definition addresses the questions: "Does the software do what it is supposed

to do?" and "Does the software not do what it is not supposed to do?", since what the

software is supposed to do is defined by its requirements. This definition also coincides

with AFOTEC's definition of system effectiveness, the effectiveness definitions reviewed

from other areas of study, and the definitions of software reliability and quality.

AFOTEC defines system operational effectiveness as the degree of mission

accomplishment. With a mission broken down into tasks to support a military objective,

these tasks can be viewed as mission "requirements" and mission accomplishment is

merely "meeting" the mission tasks. Therefore, meeting requirements for software

effectiveness is analogous to mission accomplishment for system operational

effectiveness. Also, mission tasks are eventually decomposed into MOEs and MOPs

which are measures of the system's "capabilities or characteristics" [AF095].

Capabilities and characteristics are the precise terms used in the IEEE Standard Glossary

of Software Engineering Terminology to define software requirements [IEE90].

In reviewing other fields of study, effectiveness is determined by a comparison of

measured performance to expected performance [Ash94, Eva88, Gil85, Hua95, Lo94,

Rad94, Sch95, Sco95, Sei69]. This certainly agrees with the working definition of

38

software effectiveness, since the software's expected performance is documented in the

software requirements. Particularly noteworthy is Ashqar's study of informational

systems effectiveness and his view of effectiveness from multiple reference points

[Ash94]. Perspectives for software effectiveness may include the developer, user, and

maintainer, and these unique viewpoints are addressed in the software requirements.

At a minimum, software requirements must include adequate functionality and

reliability. Without reliable functionality, all other software attributes have little

meaning. Therefore, the definition of software effectiveness as meeting requirements is

supported by software reliability, since some level of reliability is always assumed to be a

software requirement.

The definition of software effectiveness coincides with software quality, since it is

implied that a quality software product meets all its requirements.

In summary, all the reviewed material on effectiveness supports the definition of

software effectiveness as meeting requirements. Since effectiveness is a software

attribute, it may be beneficial to examine software development activities that evaluate

software attributes, especially attributes that emphasize the satisfaction of software

requirements.

3.11 Software Activities Related to Software Effectiveness

Now that software effectiveness is defined as a software attribute indicating the

degree to which the software requirements are met, the focus turns to the evaluation of

software effectiveness. During the software development process, certain activities are

39

conducted to evaluate software. Some of these activities are concerned with general

software evaluation, such as testing; other activities, such as verification and validation,

specifically evaluate the satisfaction of software requirements. An examination of these

software evaluations may be useful in developing an approach to evaluate software

effectiveness.

3.11.1 Testing. Software testing is often mistakenly identified as an activity that

is conducted to show the software works properly. In actuality, software is tested to show

where the software does not work properly [Gla92, Het88, Hum89, Pre93]. Software

testing is ordinarily divided into two areas: requirements testing and design testing

[Gla92, Het88]. With software effectiveness defined as meeting requirements, testing for

requirements satisfaction may provide insight into developing an approach to assess

software effectiveness.

Testing for requirements satisfaction implies at least three things: requirements

are stated in such a manner that they are testable, tests are designed that show the

requirements are met satisfactorily, and these tests are executed on the software. Hetzel

outlines the paradox of stating a requirement by determining how to test the requirement

and working backwards [Het88]. By concentrating on how the requirement will be

tested, Hetzel states that ambiguity is reduced in specifying the requirement and the

resulting requirement is testable [Het88]. With this method of designing software

requirements by designing the tests for the requirements, the end result is a set of

requirements and a set of tests to test those requirements. What remains to be done is the

execution of those tests on the software, once the software is developed.

40

Considering the definition of software effectiveness, testing for requirements

satisfaction is certainly comparable to evaluating software effectiveness. Also, for the

tests designed to validate the software requirements, the degree to which the tests are

passed satisfactorily is comparable to the degree to which the requirements are met.

Therefore, the evaluation of software effectiveness is analogous to testing for satisfaction

of software requirements. Another software activity that emphasizes the satisfaction of

software requirements is verification and validation (V&V).

3.11.2 Verification and Validation. V&V is a software engineering discipline

that examines the software during and after development to increase the likelihood that

the resulting software product functions correctly and meets the user's expectations.

Specifically, Wallace and Fujii define V&V as follows:

Verification and Validation. V&V comprehensively analyzes and tests
software to determine that it performs its intended functions correctly, to
ensure that it performs no unintended functions, and to measure its quality
and reliability. Verification involves evaluating software during each life-
cycle phase to ensure that it meets the requirements set forth in the
previous phase. Validation involves testing software or its specification at
the end of the development effort to ensure that it meets its requirements
(that it does what it is supposed to do) [Wal89].

It is worth noting that this definition incorporates much of the terminology used in

developing the working definition of software effectiveness, including:

• performs intended functions correctly (does what it is supposed to do)

* performs no unintended functions (does not do what it is not supposed to do)

• quality

• reliability

41

• meets requirements

In regards to software effectiveness, the task of meeting requirements is addressed

in the "validation" portion of V&V. Validation is defined as a process of evaluating

software at the end of the development process to ensure the software requirements are

met [IEE86, IEE90, Lew92, Pre92, Sca94]. Therefore, the evaluation of software

effectiveness is analogous to software validation, since validation ensures the software

requirements are satisfied. The software evaluation in the validation process is

accomplished by testing the software. Consequently, software validation and the

evaluation of software effectiveness are also related because validation primarily involves

testing, which is related to software effectiveness as established in the previous section.

Both testing and validation address the issue of requirements satisfaction well into

the software development process. A working version of the software is needed to test or

validate that the software requirements have been met. However, requirements

satisfaction can be addressed indirectly during the software development process by

"tracing" the requirements throughout the products of the software development process.

3.11.3 Requirements Tracing. The products of the software development process

include the requirements, design, code, and tests. Requirements tracing establishes a

relationship: 1) from an individual requirement, through the design, to the code, and 2)

from the requirement to a test that validates the requirement. The purpose of the traces is

"to establish a relationship between two or more products of the development process"

[IEE90].

42

Assuming completely defined software requirements, complete requirements

tracing implies requirements satisfaction. If a requirement is not considered in the design

it cannot be satisfied, since the requirement is unlikely to be implemented in the code if it

is not in the design. Since requirements tracing indicates the satisfaction of software

requirements, it can be used to evaluate software effectiveness.

Traceability is an attribute of the connection between the software development

products and is defined as follows:

Traceability. The degree to which a relationship can be established between two
or more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given software
component match [IEEE90].

Requirements traceability is analogous to software effectiveness. Traceability is the

degree of connectivity between software development products. Complete traceability

indicates complete requirements satisfaction. Software effectiveness is the degree to

which the requirements are met satisfactorily. Therefore, the evaluation of requirements

traceability may serve as an evaluation of software effectiveness.

3.12 Summary

As stated in the beginning of this chapter, it is vital to document the research plan

undertaken in any study. This study is no different. Faced with an initial set of tasks to

accomplish and armed with a set of assumptions, the research began. Sometimes the

incorrect path was followed, but the elimination of an incorrect answer is as much of a

learning experience as discovering a correct answer.

43

This chapter described the research process undertaken in this study. The original

research plan, as suggested by AFOTEC/SAS, was outlined. Then, the problems

encountered and dead ends pursued were detailed. Following the documentation of these

problems, the modified plan was outlined. Limited references in publications and in

practice led to the development of a definition for software effectiveness as part of the

modified plan.

After defining software effectiveness, three software development activities were

reviewed to provide insight into a possible method to evaluate software effectiveness.

The most promising software development activity that may be used to develop an

approach to evaluate software effectiveness is complete requirements traceability to

determine requirements satisfaction.

The research and definition of software effectiveness satisfied the goal of the

literature review, as well as the first and second objectives of the modified research plan,

as outlined in Section 3.5. Next, the main thrust of the approach to evaluate software

effectiveness is described below.

3.13 Software Effectiveness Evaluation Approach

During a visit to AFOTEC to clarify research objectives, the sponsor emphasized

the importance of an early indicator of software effectiveness. An early indicator of

software effectiveness serves many purposes. First, an early indicator provides

information on the effectiveness of a particular piece of software before it gets to OT&E

and in fact may serve as a qualifier to enter OT&E. Secondly, the early indicator helps

44

AFOTEC answer questions from Air Staff directed towards software effectiveness.

Lastly, an early indicator of software effectiveness is useful to many agencies involved in

the software development process, including the personnel within the DT&E community,

as well as the system program office (SPO).

AFOTEC approved of the effectiveness approach that was presented: to evaluate

software effectiveness through requirements traceability. The traceability approach

serves as an early indicator of software effectiveness, since traceability is maintained

throughout the development of the software. Traceability also allows AFOTEC to

maintain their independence during software development; AFOTEC does not dictate

how something is to be developed, only that the developers maintain traceability

throughout the effort.

The approach to evaluate software effectiveness through requirements traceability

is described in detail in Chapter 4.

45

4. Evaluating Software Effectiveness through Requirements Traceability

4.1 Introduction

This chapter outlines an approach to evaluate software effectiveness using

requirements traceability. Requirements traceability is the capacity to establish and

monitor a connection between a software requirement and its counterparts in the software

development process such as design, code, and tests. In this approach, assuming correct

implementation of a software requirement, complete traceability of a requirement implies

satisfaction of the requirement. This implication connects requirements traceability to the

working definition of software effectiveness established in Chapter 3: the degree to which

the software requirements are satisfactorily met. The software requirement must be

traced through the design to the implementation, and the implementation must be tested

to determine if the requirement has indeed been satisfied. In summary, software

effectiveness is determined by the degree of complete traceability of: 1) the software

requirements, through the design, to the code, and 2) from the software requirements to

the tests that validate those requirements. Figure I 1ortrays an abstract view of the

various software development products and the degrees of traceability between them that

are used to determine the software's effectiveness. The degrees of traceability, as well as

their use in determining software effectiveness, are explained in the sections that follow.

Throughout this chapter, the focus is on the evaluation of software effectiveness.

However, traceability is discussed beyond the connections between the software

development products, and includes the system requirements. In addition, AFOTEC is

46

Degree of Validation

Traceability Tests

Software Degree of Design Degree of Code

Requirements Traceability Traceability

Figure 1. Abstract View of Degrees of Traceability

primarily concerned with traceability from the Operational Requirements Document

(ORD), their governing document for OT&E. AFOTEC is also concerned with

traceability from the code modules to the unit tests, since this traceability gives insight

into the breadth of unit testing. Therefore, the "flow" of traceability in the sections that

follow is from the ORD, to the system requirements, to the software requirements, to the

design, and finally to the code. As described previously, traceability also exists from the

software requirements to validation tests.

Traceability from the ORD and to the unit tests is included in this discussion in

deference to AFOTEC. However, this additional traceability has nothing to do with the

software effectiveness evaluation. The software effectiveness evaluation is only

concerned with traceability and the following software development artifacts: software

requirements, design, code and requirement validation tests.

47

After providing the definitions and assumptions that lay the groundwork to

discuss the evaluation approach, the identification methods and logical structures used in

the trace process are presented in Sections 4.4 and 4.5. Section 4.6 describes all the

traces discussed in this research effort. Section 4.7 implements the traces in database

form. After outlining the database implementation of the traces, Section 4.8 describes the

operations that are used to initialize, populate, and extract information from the database.

A method to calculate an overall effectiveness rating for the software being evaluated is

outlined in Section 4.9. The final section, 4.10, provides a brief summary of the

evaluation approach and the effectiveness calculation, and some concluding remarks.

4.2 Definitions

The following definitions are provided to facilitate the discussion of the

effectiveness evaluation approach outlined in this chapter. Although some of these terms

are generally understood in the software engineering community, subtle differences in

their interpretation abound. The definitions are repeated here for clarity and to establish a

foundation to discuss the effectiveness evaluation approach.

4.2.1 Requirements. Within this study, there many references to requirements.

All references to requirements (whether from the ORD, system requirements, or software

requirements), will either be identified explicitly or will be obvious from the context as to-

what type of requirement is being discussed. The ORD, system requirements, and

software requirements are discussed below.

48

AFOTEC tests exclusively to the ORD to determine system effectiveness. The

ORD is defined by AFOTEC as:

Operational Requirements Document. A document prepared by the respective
using command describing the pertinent quantitative and qualitative performance,
operation, and support parameters, characteristics, and requirements for a specific
candidate weapon system. The ORD documents how a system will be operated,
deployed, employed, and supported and provides initial guidance for the
implementing, supporting, and participating command and agencies. The Air
Force requires a mandatory attachment, called a requirements correlation matrix
(RCM) [AFO95].

In other words, the ORD is a very high-level overview of system capabilities and

characteristics. For example, the ORD for the C- 17 aircraft includes the following

capabilities: 1) "180' turn on a 90' paved runway in approximately 3 maneuvers", and 2)

"airdrop 102 personnel" [Des95].

System requirements address what the system is supposed to do. The hardware

and software requirements are determined from the system requirements. A system

requirement is a capability or characteristic the system must possess upon development.

System requirements specify the complete details of a system that will meet the

operational requirements in the ORD.

The software requirements address what the software is supposed to do. A

software requirement is a capability or characteristic the software must possess upon

development. All the software requirements completely describe the necessary functions

and attributes of the software product in its final form. There are many different kinds of

software requirements that originate from many different sources. In this research,

software requirements are classified into two different classes and four different types.

49

The two classifications of software requirements are functional and nonfunctional.

Functional requirements are characterized by a capability the software must perform.

Functional requirements are further identified as any software activity that takes input,

processes data, or provides output. Put simply, a nonfunctional requirement is any

requirement that is not a functional requirement. Nonfunctional requirements are often

characterized by software attributes such as reliability, maintainability, and usability.

Software requirements are further divided into four different types: original,

derived, interface, and constraint. Original requirements are the initial requirements

defined by the user or generated by the refinement of system requirements into hardware

and software requirements. Interface requirements describe the software's interaction

with other software or hardware components, or human operators. Derived requirements

are additional requirements that necessarily arise as a result of analysis of and/or

development from the original requirements. For example, an original software

requirement to calculate a position in three-dimensional space may result in a derived

requirement for a specialized math function to multiply matrices. If the derived

requirements are not satisfied, the original software requirements cannot be satisfied.

Constraints are limiting factors on the software or its operating environment, such as

programming language, program size, or a particular hardware platform required to run

the software.

4.2.2 Design. The software design addresses how the software is going to do the

tasks outlined by the software requirements. It is quite common to use the word "design"

to describe the creative process as well as the document resulting from the process; such

is the case in the use of the word "design" in this approach. The design is often

50

developed in several steps, with each step representing a further-refined and more

detailed version of the previous step.

In this approach, the design process is divided into two subtasks: high-level

design (HLD) and low-level design (LLD). The HLD defines the overall architecture,

components, and interfaces of the software. The HLD is the "first cut" at describing how

the software will meet the requirements. The LLD is a more detailed version of the HLD.

The main purpose of the LLD is to refine and expand the HLD to the extent that the

design is in sufficient detail to be implemented in a programming language. The LLD is

the "final cut" at describing how the software will meet its requirements.

4.2.3 Code. The code refers to the implementation of the LLD elements in a

programming language, and is also known as source code. This code consists of the

computer instructions necessary to carry out the functions described in the requirements.

This code does not include any other software necessary to create and support the

executable software in its target environment such as batch files, command files, or data

files. Typically, each LLD element is expressed at a level of detail such that it is directly

implemented into one computer software unit (CSU) of code. CSUs are the smallest

logical elements of code that perform a unique function or procedure and are separately

executable and testable [DAF94]. CSUs with related functions are often grouped

together, forming computer software components (CSCs).

4.2.4 Tests. In this approach, the primary purposes of software tests are to

ensure: 1) the software requirements are satisfactorily met (validation tests), and 2) the

code is robust (unit tests). Tests are conducted by executing the software under

controlled conditions, observing the behavior of the software, and making an evaluation

51

about the software. Individual tests can be made up of several test cases which consist of

inputs, execution conditions, and expected outputs.

4.2.5 Artifact. In common usage, an artifact refers to any product of the

development process such as a system specification, software requirements specification

(SRS) or design specification. Artifacts vary between different development processes,

but typically contain complete information for one of these products; for the SRS, this

information includes a unique identifier and a textual description for each software

requirement.

In this study, the common definition of the term "artifact" is narrowed, referring

only to the complete set of unique identifiers for the software elements within each

product of the development process. For the purposes of traceability, there are six

software artifacts: software requirements, HLD, LLD, code, validation tests and unit tests.

For example, in regards to traceability, the LLD artifact contains only the unique

identifiers for all the LLD elements for the software being developed.

There are two system artifacts discussed in this study: the ORD and the system

requirements. These system artifacts and the unit tests (of the software artifacts) are used

to provide the additional traceability requested by AFOTEC, but are not part of the

software effectiveness evaluation.

4.2.6 Element. An element is a single item from the set of unique identifiers in

an artifact, such as a particular system requirement, a specific validation test, or an

individual component of the design. Each element of every artifact is uniquely identified

within the development process. Elements may be decomposed into smaller subelements

(that are also uniquely identified) for clarity.

52

4.2.7 Trace. By definition, a trace establishes a relationship between two or more

elements of the development process. In most cases a trace records an element's

transformation from one form to another, such as a software requirement to a high-level

design element or a low-level design element to code. In all other cases the traces exist

for coverage, such as making sure all requirements or all portions of code are traced to

tests. In this study, traces between elements exist in only one direction. The elements of

a trace are referenced in terms such as: "a trace exists from a software requirement to a

validation test". For example, although there are traces between software requirements

and validation tests, there are no traces from the validation tests to the requirements they

satisfy. The directional connotation of the terms from and to is graphically represented by

arrows in all subsequent figures.

4.2.8 Structure. A structure is a logical, graphical representation of an artifact

and is created in this research for illustrative purposes only. Structures contain the

elements of an artifact in hierarchical order. Arrows are drawn between elements within

structures to graphically depict traces. Since a single element may be traced to one or

more elements in another artifact, two types of arrows are used to represent a trace. A

trace to a single element is represented by a line with a single arrowhead; a trace to

multiple elements is represented by a line with multiple arrowheads. Both trace

representations are shown in Figure 2.

53

HLD Element #1

HLD Element #2

HLD Element #3

Requirement #1

Requirement #2 T

Requirement #3

Requirement #4 HLD Element # 17
HLD Element # 18

Software HLD Element # 19

Requirements
Structure HLD

Structure

Trace to Single Trace to Multiple
Element Elements

Figure 2. Example Structures with Traces

4.3 Assumptions

The approach to evaluate software effectiveness relies on the assumptions listed

below. The assumptions focus on the artifacts and traces involved in the software

effectiveness evaluation. No assumptions are made concerning the additional traceability

requested by AFOTEC, and it is not implied that this traceability approach can be

extended to evaluate system effectiveness.

1) Software requirements are complete and accurate.

By far the largest and most significant assumption, complete and accurate

requirements ensure that the software has a firm foundation from which to make the

effectiveness evaluation. Without this assumption, the evaluation may not represent the

actual "effectiveness" of the software. Using incomplete or inaccurate requirements, the

evaluation will not reflect the capabilities of the software in at least two scenarios: 1) The

54

software is rated as "highly" effective but is unsuitable for the user due to poorly defined

requirements, even though the stated requirements are completely satisfied; .2) The

software has a "low" effectiveness rating but it is unknown whether the inadequacies of

the software stem from poorly defined requirements, a deficient software development

process, or both.

2) Software requirements are quantifiable, measurable, and testable.

As stated previously, software effectiveness is based on the degree of satisfaction

of the requirements. Assumption two facilitates the satisfaction evaluation by ensuring

that requirements have specific criteria to determine satisfaction. Without this

assumption, the software requirements cannot be assessed as to whether they are satisfied

or not, severely degrading the effectiveness evaluation.

3) Decomposition of elements is complete and correct. This assumption is

similar to the first assumption, concerning complete and correct software requirements.

According to the first assumption, decomposition of requirements is complete and

correct. The first assumption must be extended to the decomposition of all other

development artifacts. Without the third assumption, "poor" software effectiveness could

not be solely attributable to the lack of traceability, since the perceived lack of

effectiveness may be due to inadequate decomposition of the design. The third

assumption allows software effectiveness to be based solely on traceability of the artifacts

throughout the development process.

4) Traces are complete and correct.

All defined traces must actually exist, and all traces are connected properly.

55

5) Complete traceability between elements implies that traced elements .are

complete and correct counterparts in the software development process.

This assumption is also similar to the first assumption concerning complete and

accurate requirements. Since the effectiveness evaluation is measured by the degree of

traceability of the requirements, the elements that are connected by the traces must be

correct and complete counterparts to each other. E.g., for the traces that connect the

software requirements to the design, it is assumed that each requirement is completely

and correctly addressed by the design element or elements the requirement is traced to. In

other words, the presence of the trace indicates that the requirement has been successfully

implemented in the design, i.e., the design correctly and completely satisfies the

requirement.

6) The ability to trace software requirements is in place from the onset of

software development, and the traces are updated as software is developed, used,

and maintained.

The ability to trace requirements must be considered an integral part of the

software development plan. It is necessary to document traceability from the first stages

of software development since it is virtually impossible to "catch up" once the traces are

not kept current. Documenting traceability cannot be an add-on, an afterthought, or a

separate activity considered unrelated to software development.

The effectiveness measurement is intended to be used during development as a

"snapshot" of current progress and throughout the software's use to aid in software

maintenance. It is vital that the traces between the various elements of software artifacts

56

are updated as the software is developed, used, and maintained. If the traces are not

updated, any evaluation of the software that is based on the traces will be inaccurate,

since the outdated traces will not represent the current state of the software. In essence,

the effectiveness evaluation is only as accurate as the most recently documented traces

between software elements.

4.4 Unique Identification of Elements

All elements are uniquely identified using character codes and a nested numbering

scheme. This identification method uses character codes for two primary reasons: 1) to

identify from which artifact the element comes and, 2) to distinguish the different types of

elements within an artifact. For example, "RSYS" may be used to identify system

requirements; within the software requirements, "RO" and "RD" may be used to

respectively identify original and derived requirements.

In addition to the character codes, this identification method uses a numerical

nesting notation to organize the different elements as they are decomposed into more

explicit detail. For example, the software requirement RSW - 12 may be decomposed

into subrequirements RSW - 12.1, RSW - 12.2, and RSW - 12.3. This decomposition

may continue as necessary, with RSW - 12.1 broken down further into RSW - 12.1.1,

RSW - 12.1.2, etc. Refer to Figure 3 for clarification of the identification and

decomposition of elements.

57

RSW- 12

R -_12.1 RSW- 12.2

RSW- 12.1.1 1 RSW- 12.1.2 RSW- 12.1.3I RSW- 12.2.1]: RSW-12.2.2

{ Further decomposition as necessary

Figure 3. Example of Element Decomposition and Identification Method

The identification method was developed for three purposes, which are listed

below and shown in Figure 4:

1) to document the decomposition of elements within the structure

2) to document traces between elements

3) to connect the element back to the artifact that contains its textual description

Note that Figure 4 shows decomposition of the elements by indenting subelements within

the structure. Element decomposition will be illustrated within the structures in this

manner with all the remaining examples.

It should be noted that all the character codes for elements described in this study

were chosen arbitrarily and are for illustrative purposes only. In actual practice, software

developers will certainly use codes unique to their development process. For example, a

software developer may use design element codes that are assigned from each functional

area or design team. Similarly, requirements may be identified by functional area or

analysis team. The character codes used to identify the different elements in this study

are described below.

58

Requirements High-Level Design
Structure Structure

RO- 1 2) Trace DH-I

1) Decomposition RO - 1.1 DH- 1.1
RO- 1.2 DH- 1.2

RO - 2 DH - 2
RO - 2.1 DH - 2.1

RO - 2.2 DH - 2.2

RO -2.3 DH -3

Software Requirement Specification
3) Connect to Artifact R .RO - 2.2

Analyst:
Ms Jane Tischler,

Airwork
Corporation

Date: 18 September 1995
The software shall calculate the trajectory of all observed satellites un
with an accuracy of +/- .02 meters and a response time not less than
not to exceed system constraints specified in Table 1 - o h

Figure 4. Three Purposes of the Element Identification Method

4.4.1 ORD Elements. The capabilities and characteristics of the system that are

listed in the ORD are identified by the following code and the nested numbering scheme

as described above:

ORD - system capability or characteristic from the ORD

It should be noted that the actual ORD for the C- 17 has a slightly different

notation to identify the system capabilities, using lower case letters for decomposition.

For consistency, this method will be translated into the identification method used in this

study. For example, a capability described in ORD paragraph 4d(3)(a) will be identified

as ORD - 4.4.3.1, substituting the letter's position number in the alphabet for the letter

identifying the ORD subparagraph.

59

4.4.2 System Requirements. Detailed system requirements are identified by the

following code and the nested numbering scheme as described above:

RSYS - system requirement

4.4.3 Software Requirements. Software requirements are identified by any of

following codes and the nested numbering scheme as described above:

RO - original requirement

RD - derived requirement

RC - constraint requirement

RI - interface requirement

4.4.4 Design Elements. Both HLD and LLD elements are annotated with a code

and the same nested numbering system as described above. Although these software

elements represent different software artifacts and are contained in different structures for

traceability illustrations, both types of design elements are described here because of their

close relation to each other. The design element codes are described as follows:

DH - high-level design

DL - low-level design

4.4.5 Code Elements. Source code elements are identified by either of the

following codes and the same nested numbering system as described above. The source

code elements are labeled with the standard military software development notation

(CSC, CSU). The source code element identifiers are described as follows:

CSC - computer software component

CSU - computer software unit

60

The computer software configuration item (CSCI) identifier is not used to describe

elements of code. The level of detail of a CSCI (in code) is comparable to the lowest-

level element of the HLD and the upper-level elements of the LLD, and actually overlaps

the design. Perhaps a different approach may decompose the LLD elements into CSCIs

and then trace the CSCIs to CSCs and CSUs. In this approach, the term CSCI is omitted

for clarity, and the lowest-level LLD elements are traced directly to the CSCs or CSUs.

4.4.6 Tests. The tests are identified by either of the following codes and the same

nested numbering system as described above. Although these software elements

represent different software artifacts and are contained in different structures for

traceability illustrations, both types of design elements are described together here

because of their close relation to each other. The test identifiers are described as follows:

TR - validation test to ensure requirement is satisfactorily met

TU - unit test for one CSU

4.5 Structures Used for Traceability

As stated previously, a structure is a logical representation of an artifact and is

created in this research for illustrative purposes only. Structures contain the unique

identifiers of the elements that make up the artifacts of the development process. The

structures used to illustrate traceability are described below.

4.5.1 ORD Structure. If necessary, capabilities and characteristics in uniquely

identified paragraphs in the ORD are decomposed into individual capabilities and

characteristics. For example, if a paragraph in the ORD contains two or more capabilities

that the system in development must possess, these capabilities can be identified using the

61

nested numbering scheme within the ORD structure. Refer to Figure 5 for an example

section of the ORD structure.

ORD - 3.4.2
ORD - 3.4.2.1
ORD - 3.4.2.2

ORD - 3.4.3
ORD - 3.4.4

ORD - 3.4.4.1
ORD - 3.4.4.2

ORD - 3.4.4.3

Figure 5. Example Section of ORD Structure

4.5.2 System Requirements Structure. If necessary, system requirements are

decomposed into further detail and are contained in a structure similar to Figure 5.

Subsystem requirements are indented below the system requirement they are decomposed

from. System requirements are decomposed into sufficient detail to distinguish software

requirements and hardware requirements.

4.5.3 Software Requirements Structure. Software requirements are decomposed,

if necessary, into further detail and are contained in a structure similar to Figure 5, with

subrequirements indented below the software requirement they are decomposed from.

Software requirements are decomposed into sufficient detail to be addressed by the

software design.

4.5.4 High-Level Design Structure. The HLD elements capture the "big picture"

of the software's architecture and are contained in a structure similar to Figure 5. If

necessary, the HLD elements are decomposed into subdesign elements for clarity. This

62

decomposition should not go into detail beyond the complexity level of a CSCI. A CSCI

is described as performing a "common end-use function" and, in implementation, may

"contain 100,000 lines-of-code" or more [DAF94].

4.5.5 Low-Level Design Structure. The LLD is intended to capture all the

explicit details necessary to "flesh out" the lowest-level HLD elements and are contained

in a structure similar to Figure 5. If necessary, the LLD elements are decomposed into

subdesign elements for clarity. This decomposition should continue until subdesign

elements consist of significant detail to be implemented in a programming language. The

complexity of the lowest-level LLD element should correspond to a CSU, the LLD

element's counterpart in code.

4.5.6 Validation Tests Structure. This structure contains the tests that ensure the

requirements have been satisfactorily met by the software and are contained in a structure

similar to Figure 5. Tests can be decomposed into further detail such as input, execution

conditions, and expected output. For example, a validation test TR - 3 that is created to

ensure requirement RO - 3.1 is satisfied may be decomposed into five test cases, TR - 3.1

through TR - 3.5. Each test case of TR - 3 may be decomposed further into unique

identifiers for input, execution conditions, and expected output, with respective

identifiers: TR - 3.1.1, TR - 3.1.2, TR - 3.1.3, TR - 3.2.1, etc.

4.5.7 Code Structure. Software code is often modularized into manageable units.

These software units, known as CSUs, are the implementation of the LLD elements and

are contained in a structure similar to Figure 5. CSUs are not decomposed further, since

they perform a single function and represent the smallest unit of compilable, executable

63

code [DAF94]. However, to group similar functions, this approach allows several LLD

elements to be contained in one CSC, then the CSC is decomposed into CSUs.

4.5.8 Unit Tests Structure. This structure contains the tests that ensure the

individual CSUs have been tested at the unit level, and are contained in a structure similar

to Figure 5. "Proof' of robustness for code of substantial complexity is impossible;

however, the purpose of these tests is to ensure (to the greatest degree possible) that the

code is robust. The unit tests can be decomposed into further detail such as input,

execution conditions, and expected output, as in the decomposition of the validation tests.

4.5.9 Summary. The structures described above only exist conceptually. Each

structure contains the unique element identifiers for the development artifact it represents,

such as the software requirements or the validation tests. These structures provide the

basis from which connections can be made to other artifact structures using the traces

described below. Traces are made between individual elements of specific structures to

establish a relationship between the elements.

4.6 Trace Descriptions

4.6.1 Introduction. Section 4.6 describes all the traces that connect the

development artifacts, such as the traces from 'the software requirements to the HLD

elements. The traces between the elements in the structures that represent the

development artifacts are the crux of the software effectiveness evaluation. For the

software effectiveness evaluation, the traces establish a connection from the needs and

expectations of the user (the software requirements) to the implementation (the code). In

64

addition, the traces establish a connection from the software requirements to their

validation tests for the software effectiveness evaluation.

In this study, a trace is always establishedfrom a single element in a structure. As

shown in Figure 2, a trace may be connected to a single element or multiple elements.

Whether a trace is connected to a single element or multiple elements, it is still referred to

as a trace (singular). A trace from a single element permits the familiar 1 to 1 and 1 to n

relationships. To allow m to 1 and m to n relationships, multiple traces are used. For

example, multiple software requirements may be addressed by a single HLD element or

several requirements may be validated by many different tests.

Traces are established from a single, decomposed lowest-level element in a

structure to the highest-level element(s) of the structure being traced to. If necessary,

these high-level element(s) are then decomposed to their lowest level of detail, and these

lowest-level elements are then traced to the highest-level elements of the next structure

being traced to. This tracing then continues to the next appropriate development

structure. The exception to this "lowest-to-highest" rule occurs in the traces from the

LLD to the code; traces are established between the lowest-level LLD elements and the

CSUs (which are already at their lowest level and not decomposed any further). The

traces between the different structures are described below and displayed in simplified

examples in Figures 6 through 12. These figures are simplified for illustrative purposes;

the fact that element identification numbers are similar in some cases, such as ORD -

1.2.1 tracing to RSYS - 1 in Figure 6, does not imply that there must be a correlation in

identification numbers between traced elements.

65

Complete traceability is the goal; in this study, completely traced software

requirements mean all the software requirements are satisfied and the software is

effective. Therefore, the degree of traceability of the software requirements throughout

the software development artifacts determines, by definition, the degree of software

effectiveness.

4.6.2 ORD to System Requirements. These traces connect the capabilities and

characteristics described in the ORD to the requirements of a system that will accomplish

these capabilities and characteristics. An example of ORD to system requirements traces

is shown in Figure 6.

System Traces
ORD Requirements continue

Structure Structure TO Software
Requirements

ORD - 1 Traces RSYS - 1 Structure
ORD - 1.1 RSYS - 1.1
ORD - 1.2 RSYS -1.1.1 No

ORD - 1.2.1 RSYS - 1.1.2
ORD - 1.2.2 RSYS- 1.1.3
ORD- 1.2.3 RSYS - 1.2

* RSYS - 1.2.1
* RSYS - 1.2.2
* RSYS -2

Figure 6. Example of ORD to System Requirements Traces

4.6.3 System Requirements to Software Requirements. As system requirements

are decomposed into further detail, the system engineer determines which components of

the system will be addressed by hardware and which will be addressed by software.

66

These traces connect the lowest-level decomposed system requirements to the highest-

level software requirements. An example of system requirements to software

requirements traces is shown in Figure 7.

System
Requirements

Structure Software
Requirements

RSYS - 1 Traces Structure
RSYS - 1.1 Traces

RSYS - 1.1.1 RO - 1 continue TO
Traces RSYS - 1.1.2- RO - 1.1 HLD Structure
FROM RSYS- 1.1.3 RO- 1.1.1
ORD RSYS- 1.2 RO- 1.1.2 -

RSYS- 1.2.1_ RO- 1.2
RSYS - 1.2.2 RO - 1.2.1

RSYS - 2 RO - 1.2.2
* RO- 1.2.3
* RO -2

Figure 7. Example of System Requirements to Software Requirements Traces

4.6.4 Software Requirements to High-Level Design. These traces connect the

lowest-level decomposed software requirements to the highest-level HLD elements. An

example of software requirements to HLD traces is shown in Figure 8.

4.6.5 High-Level Design to Low-Level Design. These traces connect the

decomposed lowest-level HLD elements to highest-level LLD elements. An example of

HLD to LLD traces is shown in Figure 9.

67

Trace HLD Traces
FROM Software Structure continue
System Requirements TO LLD

Requirements Structure DH- I Structure
Structure Traces DH - 1.1

RO- 1 DH- 1.2
RO - 1.1 DH-2

RO- 1.1.1_ DH-3
RO - 1.1.2 DH - 3.

RO-DH -3.
RO- 1.2.1 DH-4
RO - 1.2.2

Figure 8. Example of Software Requirements to HLD Traces

Traces HLD LLD Traces
FROM Structure Structure continue

Software Traces TO Code
Requirements DH - 1 DL

Structure DH- 1.1 DL-I.1
DH- 1.2 DL- 1.2

DH-2 DL-1.3
DH - 3 DL - 1.4

DH - 3.1 DL - 1.5
DH-3.2 DL-1.6
DH-3.3 DL-1.7

DH-4 DL-2

Figure 9. Example of HLD to LLD Traces

4.6.6 Low-Level Design to Code. These traces connect the lowest-level LLD

elements to the code elements, either CSCs or CSUs. LLD elements are decomposed into

explicit detail with complexity similar to a CSU, and are often traced directly to a CSU.

68

However, similar functions represented by LLD elements may be combined and traced to

a CSC, then decomposed into CSUs. An example of LLD to code traces is shown in

Figure 10.

LLD Code

Structure Structure
Traces

0 DL - I CSC - I
DL-I1.1 CSU-I1.1 r-- o

Traces DL - 1.2 CSU - 1.2

FROM DL- 1.3 CSU- 1.3 Traces
HLD DL - 1.4 CSU - 1.4 continue TO

Structure DL - 1.5 CSU - 2 Unit Tests
DL- 1.6 CSU - 3 Structure
DL - 1.7 CSU - 4

1 DL-2 CSU - 5

Figure 10. Example LLD to Code Traces

4.6.7 Software Requirements to Validation Tests. These traces connect the

software requirements to the validation tests, as defined in Section 4.2.4, that show the

requirements have been satisfactorily met. An example of software requirements to

validation tests traces is shown in Figure 11.

4.6.8 Code to Unit Tests. These traces connect the lowest-level code elements

(CSUs) to unit tests that "exercise" the code and, as described in Section 4.5.8, ensure (to

the greatest degree possible) that the code is robust. An example of code to unit test

traces is shown in Figure 12.

69

Software Validation
RequirementsTet

StructureStuur

-RO - I____-_I

RO - 1 R-1.1
Trace RO - 1. 1. 1 TR - 1.2__

FROM RO -1. 1.2 ___-_1.3

System RO - 1.2 _____- __2

Requirements RO - 1.2.1 TR - 2.1__

Structure RO - 1.2.2 TR - 2.2__

RO -_1.2.3 ___-_2.3

RO -1.2.4 TR -2.4
* TR -2.5

Figure 11. Example of Software Requirements to Validation Tests Traces

Code Unit
Structure Tests

Traces Structure
P. CSC -1_ _ _ _

CSU- 1.1 TU- 1
Traces CSU -1.2 TU -1.1

FROM LLD CSU -1.3 TU -1.2
Structure CSU - 1.4 TU - 1.3

CSU -2 TU-2
PCSU -3 TU -2.1

CSU -4 TU -2.2
* TU -2.3

Figure 12. Example of Code to Unit Tests Traces

4.6.9 Summary. The traces described above provide the connection between

elements of specific development artifacts. The unique identifiers from the artifacts are

70

contained in the logical structures described in Section 4.5. The traces exist between the

elements contained in the structures for one of two reasons:

1) To track elements during the development process, such as the traces that

connect the software requirements to the HLD elements.

2) For accountability, i.e. coverage, to ensure all software requirements are traced

to validation tests and all CSUs are traced to unit tests.

It should be noted that there are no traces between ORD capabilities and tests and

system requirements and tests. These traces may be appropriate in another evaluation

approach, but they are unnecessary in the software effectiveness evaluation outlined in

this research.

So far, structures have been described as existing logically, containing the unique

element identifiers from the artifacts of the development process. The traces have existed

logically also, represented in figures as arrows connecting elements contained in the

structures. The structures and arrows in this study were created for illustrative purposes,

to explain traceability between the artifacts of the development process, and the

illustration ends here. There will be no more discussion of tracing "the unique element

identifiers contained in the structures that represent the development artifacts". Traces

exist between artifact elements, and will be discussed in this manner from this point on.

To shift from the logical world of structures (for artifacts) and arrows (for traces)

to the real world, artifacts and traces are implemented in a database in the following

section. All of the traces described in Section 4.6 are included in the database described

below.

71

4.7 Implementing Traces in a Database

For clarification, the "implementation" described in this section shows how the

traces previously described can be put into practical use or fulfilled by a database. The

database approach described in this section is an example implementation and is not a

"database" in the standard sense, but an abstract organization of information; in this case,

the information is the decomposition information and the trace information. In addition,

this implementation may be compared to the standard definition of a relational database,

in that there are two types of relations: decomposition relations and trace relations.

Finally, this "database implementation" should not be taken as a model of efficiency or

optimization. There are dozens of commercial products available that allow the storage

and retrieval of traceability information, many of which have been evaluated by the Air

Force's Software Technology Support Center [DAF95]; this example is given only to

provide some insight into how the traceability information that is mentioned above can be

documented and used.

4.7.1 Introduction. Section 4.7 outlines an implementation to document, then

quantify, the traces between artifacts of the development process. The traces are

implemented in a database, and traceability information is obtained from searching the

database. The trace database, hereafter referred to as the database, contains the elements

for all the artifacts and all the traces between the elements. The database also contains all

the decomposition information for the highest to lowest-level elements within each

artifact.

72

It is important to note that although the decomposition information (via the

numbering scheme) for the elements is contained in the database, these relationships are

not considered traces. In short, elements are decomposed within artifacts and are traced

between artifacts. Traces are established from the lowest-level elements of one artifact to

the highest-level elements of the next artifact in the development process. For example,

lowest-level software requirement RO - 2.2.3 is traced to highest-level HLD element

DH - 2. These highest-level elements are eventually decomposed to their lowest-level

elements, where they are traced to the next artifact in the development process.

Element decomposition could be followed just by using the nested numbering

scheme described previously, thus leaving the decomposition information out of the

database entirely. However, just using the numbering scheme to keep track of element

decomposition creates a dependency that inhibits reuse. For example, suppose a design

element can be decomposed into subdesign elements that are available from a reuse

library. The design element identifiers from the reuse library can be stored in the

database as decomposition information, even though the identification numbers are

unrelated to the design elements they are "decomposed" from. By keeping the

decomposition information in the database, element reuse is possible, and traces are not

"lost" within the artifact as elements are decomposed.

In summary, all the elements for all the artifacts and all their respective traces are

stored in the database, as well as each element's decomposition information; however,

decomposition information is not to be confused with trace information.

4.7.2 General Forms for Database Entries. There are two types of database

entries, and each type of entry has three fields for data. One type of database entry

73

contains the element decomposition information, with one entry for each level of

decomposition. For example, one database entry would be needed to decompose

software requirement RO - I into RO - 1.1, RO - 1.2, and RO - 1.3. The other type of

database entry contains trace information, with one entry for each trace, as in software

requirement RO - 1.2.1 being traced to HLD element DH - 1.

The format for the element decomposition entry is shown in Figure 13.

(1) (2) (3)

Element to Complete List of
be Decomposed Flag Subelements

Figure 13. Format of Database Entry for Element Decomposition

The three attribute fields, referred to as columns (1), (2), and (3) in Figure 13, are defined

as follows:

(1) Element to be Decomposed. This element cannot be directly traced to

another element in another artifact; therefore, it must be decomposed into subelements.

The element in column (1) is decomposed into two or more subelements that will be

listed in column (3) of the same entry.

(2) Complete Decomposition Flag. The number in this field is either a one

(complete decomposition) or a zero (incomplete decomposition), indicating whether the

element in column (1) has been completely decomposed. In this study, since all

decompositions are assumed to be complete and correct, this field will always be set to 1.

In a situation where not all elements are decomposed completely, as in the development

74

of new software, this field can be used to monitor the decomposition of elements and

artifacts.

(3) List of Subelements. This field contains the list of subelements that are

decomposed from the element in column (1) of the same entry.

An example section of decomposition database entries is shown in Figure 14.

RO-7 1 RO- 7.1
RO - 7.2

Decomposition RO - 7.1 1 RO - 7.1.1

of RO-7 RO -7.1.2
RO - 7.1.3

RO - 7.2 1 RO - 7.2.1
RO - 7.2.2

RO - 8 1 RO - 8.1
RO - 8.2
RO - 8.3
RO - 8.4

Figure 14. Example Database Entries Containing Decomposition Information

In this figure, RO - 7 is decomposed into its lowest-level elements, followed by the initial

decomposition of RO - 8.

The second type of database entry contains trace information; the format for the

trace information entry is shown in Figure 15.

(1) (2) (3)

Element Traced Complete Element(s) Traced
FROM Flag TO

Figure 15. Format of Database Entry for Trace Information

75

The three attribute fields, referred to as columns (1), (2), and (3) in Figure 15, are defined

as follows:

(1) Element Traced FROM. The element in this field is the origin of the trace

for this database entry. For example, in a software requirement to HLD element trace, the

trace is establishedfrom the software requirement to the HLD element(s). In this

example, the software requirement identifier would be entered in column (1).

(2) Complete Trace Flag. The number in this field is either I (complete trace)

or 0 (incomplete trace), indicating whether the element in column (1) has been completely

traced to the element(s) in column (3). The field is set to 0 during database initialization

and is only set to 1 when the element or elements that constitute a complete trace for this

entry are listed in column (3). (Operations on the database, including initialization and

maintenance are discussed in greater detail in Section 4.9). Once again, a "complete"

trace connects one element to one or more elements in another artifact; this connection

wholly and succinctly satisfies the element being traced from to the element(s) being

traced to.

(3) Element(s) Traced TO. The element or elements in this field are the target

of the trace for this database entry. For example, in a software requirement to HLD

element trace, the trace is establishedfrom the software requirement to the HLD

element(s). In this example, the HLD element(s) would be entered in column (3).

In certain database entries, this column contains "N/A", which stands for "not

applicable". The most common use of N/A in column (3) occurs when, by definition, no

76

trace exists from the lowest-level decomposed element in column (1). For example, once

the tests (both validation tests and unit tests) are decomposed into their lowest-level

elements, there is no further decomposition or tracing in this implementation. Test

elements are not traced to any other development artifacts; therefore, N/A is entered in

column (3) for these trace entries.

The other (much less frequent) use of N/A in column (3) occurs when no trace

logically exists from the element in column (1). For example, suppose there is a software

requirement that states the software must be coded in the Ada programming language.

This software requirement has no logical trace to any HLD element; therefore, N/A is

entered in column (3) for this trace entry. In these rare instances, traceability begins in

the ORD and stops before being completely traced through to the code. N/A is entered in

column (3) for this trace entry so as to distinguish such a situation from an incomplete

trace. It is important to point out that N/A is never entered in column (3) of the element

decomposition entries; N/A is only entered in column (3) of the trace entries, and only

when necessary.

An example section of database entries containing trace information is shown in

Figure 16. In this figure, the lowest-level elements of RO - 7 are traced to the highest-

level elements of the HLD.

In the database, the two types of entries are distinguished by the element

identifiers in columns (1) and (3). If columns (1) and (3) contain identifiers from the

same artifact, the database entry contains decomposition information. If columns (1) and

(3) contain identifiers from different artifacts, the database entry contains a trace.

77

RO- 7.1.1 1 DH- 6

Software DH- 7

Requirements RO - 7.1.2 1 DH - 7

Traced to HLD RO - 7.1.3 1 DH-6

Elements RO - 7.2.1 1 DH - 7
I DH- 8

RO - 7.2.2 0

Figure 16. Example Database Section Containing Trace Information

In the database, the two types of entries are distinguished by the element

identifiers in columns (1) and (3). If columns (1) and (3) contain identifiers from the

same artifact, the database entry contains decomposition information. If columns (1) and

(3) contain identifiers from different artifacts, the database entry contains a trace.

There is a problem distinguishing the two types of entries if column (3) is blank.

During development, if an element in column (1) has not been decomposed or traced

from yet, column (3) will be blank. Consider RO - 7.2.2 in Figure 16. At this point in

development, it is impossible to determine whether RO - 7.2.2 requires further

decomposition or a trace established from it. In this study, this problem is remedied by

the third assumption; all element decomposition is assumed to be complete and correct,

so RO - 7.2.2 must be a trace entry that has not been completed yet. In practice, without

this assumption, there is still a problem distinguishing the two types of entries if column -

(3) is blank. This problem must be addressed by the implementors of the approach, who

may rely on an assumption also, i.e., RO - 7.2.2 in Figure 16 is assumed to be

decomposed to its lowest level, and needs trace information entered in column (3).

78

An example section of the database is shown in Figure 17 and displays the

database entry format information discussed so far. This figure contains the

RO - 3 1 RO - 3.1
RO - 3.2

Decomposition RO - 3.1 1 RO - 3. 1.1

of RO-3 RO -3.1.2
RO - 3.1.3

RO - 3.2 1 RO - 3.2.1
RO - 3.2.2

RO- 3.1.1 1 DH- 3

Software DH- 4

Requirements RO - 3.1.2 1 DH - 3

Traced to RO - 3.1.3 1 DH - 3

HLD Elements RO - 3.2.1 1 DH - 3
DH -4

DH-4 I DH - 4.1
DH - 4.2

Decomposition DH - 4.1 1 DH - 4.1.1
ofDH-4 DH -4.1.2

DH - 4.1.3
DH- 4.2 1 DH -4.2.1

DH - 4.2.2

DH- 4.1.1 1 DL- 13

HLD Elements DL - 14

Traced to DL- 15
DL- 16

LLD Elements DL- 17
DH - 4.1.2 1 DL- 18

DL - 19
DL - 20

Figure 17. Example Database Section

79

decomposition of RO - 3 into its lowest-level elements. Then, these lowest-level

software requirements are traced to HLD elements. Next, the HLD elements are

decomposed into their lowest-level elements. Finally, the lowest-level HLD elements are

traced to LLD elements. The database section in Figure 17 shows one portion of the

entire database, which contains decomposition and trace information from the ORD,

eventually to the software requirements, and from the LLD elements to the unit tests.

4.8 Database Operations

4.8.1 Introduction. The entire database consists of six logical "sections", with

each section containing the element decomposition information for one development

artifact, as well as the tracesfrom those elements. The sections are logically arranged in

the database according to Figure 18, with the sections numbered 1) through 6). This

arrangement serves three purposes:

1) It divides the database into logical sections based on the development artifact.

2) From the top down, each section "flows" (tracewise) into the next section.

3) The ordered arrangement allows for faster database searches.

Now that the format of the database entries and the logical arrangement of the

database sections have been explained, the actual operations on the database are described

in the sections that follow.

80

1) Decomposition of ORD

Traces from ORD to System Requirements

2) Decomposition of System Requirements

Traces from System Requirements to Software Requirements

3) Decomposition of Software Requirements

Traces from Software Requirements to Validation Tests

Decomposition of Validation Tests

Traces from Software Requirements to HLD

4) Decomposition of HLD

Traces from HLD to LLD

5) Decomposition of LLD

Traces from LLD to Code

6) Decomposition of Code

Traces from Code to Unit Tests

Decomposition of Unit Tests

Figure 18. Logical Arrangement of Database Sections

4.8.2 Database Initialization. In this implementation, database initialization

results in the database containing the decomposed ORD. The intent is to "grow" the

database from this point; trace the lowest-level ORD elements to system requirements,

decompose the system requirements, trace the lowest-level system requirements to

software requirements, etc. Figure 19 shows a sample section of the initialized database,

with the completely decomposed ORD elements and the lowest-level ORD elements

(ORD - 1.1.1.1.1 through ORD - 1.1.1.1.4) not yet traced to system requirements.

4.8.3 Data Entry. Element decomposition data and trace data are entered into the

database in an ongoing process, beginning with the onset of system development and

ending with the system's retirement. Therefore, the database should be considered a

"living" thing, as important to the final software product as the development process

81

itself. The database in this implementation provides a connection from capabilities

specified in the ORD to their appearance in the final product. This data must be

maintained as requirements change (and requirements will change), or the database will

quickly become outdated and useless. As stated earlier, the database "grows" from the

ORD; this is accomplished by adding the traces from the ORD to the system

requirements.

Decomposition ORD - 1 1 ORD - 1.1

of ORD ORD- 1.2
ORD- 1.3

ORD-1.1 1 ORD- 1.1.1
ORD - 1.1.2
ORD - 1.1.3

ORD- 1.2 t ORD- 1.2.1
ORD- 1.2.2

ORD- 1.3 1 ORD- 1.3.1
ORD- 1.3.2
ORD- 1.3.3

ORD- 1.1.1 1 ORD- 1.1.1.1
ORD - 1.1.1.2

ORD- 1.1.1.1.10 Not yet traced

Lowest-level ORD - 1.1.1.1.2 0 to system
ORD elements ORD - 1.1.1.1.3 0 requirements

ORD - 1.1.1.1.4 0

Figure 19. Example Section of Database after Initialization

Data entry is further explained by continuing from the initialization example

shown in Figure 19. The lowest-level ORD elements have been duplicated in Figure 20,

where they are traced to system requirements. Also, Figure 20 shows the decomposition

of the system requirements traced for the ORD elements. Finally, Figure 20 shows the

82

ORD - I.... RSYS - 1
RSYS - 2

_____________ __RSYS - 3

Lowest-level ORD - 1. 1. 1.1.2 1 RSYS - I Traces to
ORD elements RSYS - 2 system
from Figure 19 RSYS 4 requirements

ORD - 1. 1. 1.1.3 0 RSYS - 1
__RSYS - 2

ORD - 1. 1. 1.1.4 1 RSYS -2
RSYS - 3

___________ RSYS -4

RSYS-1 I RSYS-1.1
____ ____ ___ ____ ___ RSYS - 1.2

Decomposition of RSYS - 1.1 1 RSYS - 1. 1. 1

System RSYS - 1. 1.2
RequirmentsRSYS - 1. 1.3
RequremntsRSYS - 1. 1.4

RSYS -1.2 1 RSYS -1.2.1
____ ____ ___ ____ ___ RSYS - 1.2.2

RSYS - 1. 1. 1 1 RSYS - 1. 1.1. 1
RSYS - 1. 1. 1.2
RSYS - 1. 1. 1.3

RSYS - 1.1.2 0 Traces to
RSYS - 1.1.3 0 software

RSYS - 1. 1.4 0 _________ requirements

RSYS - 1.2.1 1 RSYS - 1.2.1.1 expected
________________RSYS - 1.2.1.2

RSYS - 1.2.2 1 RSYS - 1.2.2.1
____ ____ ___ ____ ___ RSYS - 1.2.2.2

RSYS - 1. 1. 1.1 0 Traces to
RSYS - 1. 1. 1.2 0 software

* requirements
* expected

Figure 20. Data Entry Example

83

lowest-level system requirements expecting trace information (software requirements) to

be entered in column (3). The example database section in Figure 20 also contains

several database entries that have previously been described only in text.

Figure 20 shows two examples of incomplete traceability. ORD capability ORD -

1.1.1.1.3 is traced to system requirements RSYS - 1 and RSYS - 2, yet the complete trace

flag in column (2) of the database entry is still set to 0.

During development, some traces may be more easily determined than others. The

developer can leave the complete trace flag set to 0 until he or she has determined the

elements in column (3) represent a complete trace from the element in column (1). The

example in Figure 20 should be interpreted as follows: the developer knows that ORD -

1.1.1.1.3 traces to RSYS - 1 and RSYS - 2, but realizes there are more system

requirements needed to address this particular ORD capability. Therefore, the developer

enters the information of which he or she is certain, but leaves the complete trace

indicator at 0. Then, the trace can be revisited and completed at a future date, at which

time the complete trace indicator will be set to 1. The other type of incomplete

traceability is displayed in Figure 20 by the following system requirements: RSYS - 1.1.2

through RSYS - 1.1.4, RSYS - 1.1.1.1, and RSYS - 1.1.1.2. These system requirements

have not been addressed yet, and need software requirements entered in column (3) to

establish traces for these entries.

The database continues to expand in this manner. The software requirements are

entered in column (3) of the system requirements to software requirements traces. Then

84

the software requirements are decomposed as describe previously. The software

requirements are then traced to HLD elements, which are decomposed, then traced to

LLD elements, etc., until all the decomposition and trace data is entered in the database.

This cycle of decomposition and tracing occurs over the course of system development.

4.8.4 Error Checking. A minimum amount of error checking is required in a

database of this size, complexity, and importance. Error checking can either be

accomplished upon data entry, as a separate utility that is executed on the database, or

some combination of the two. Only the most basic, necessary types of error checking are

described in the paragraphs that follow.

Both decomposition and trace entries in the database must be checked for

accuracy. Of course, all input should be checked for valid element character codes,

complete flag indicators (0 or 1), and element identification formats. In addition,

decomposition must be checked for accuracy. For example, an error should result if the

database reflects the decomposition of RO - 5.3.1 into RO - 5, RO - 6, and RO - 7,

because a lower-level element cannot be decomposed into upper-level element. Also, an

error should result if the elements are decomposed using valid character codes outside the

artifact of the element being decomposed. For example, it is incorrect to decompose

software requirements (RO) into code elements (CSUs).

Traces must be checked for accuracy also. Only legitimate traces are permitted; in

this implementation, there are no traces from the HLD to the ORD. Therefore, an attempt

to enter such a trace in the database should result in an error. In addition, traces must be

checked to ensure they are traced at the correct level, i.e., from the lowest-level of

85

decomposition to the highest-level of the element traced to. For example, it is incorrect

to attempt to trace a lowest-level requirement such as RO - 2.3.1.4 to a HLD element such

as DH - 2.4.1.3.

Once decomposition and trace data is entered in the database, information can be

retrieved immediately. As development progresses and more data is added to the

database, more information about the system under development becomes available. The

retrieval of information from the database is discussed in the next section.

4.8.5 Information Retrieval. Since the focus of this research is the definition and

evaluation of software effectiveness, the discussion of information that is retrieved from

the database will only concern information that can assist in this effort. The database

sections from Figure 18 are displayed again in Figure 21, with emphasis on the sections

that will provide the trace information used in the evaluation of software effectiveness.

These emphasized database sections in Figure 21 involve five of the six software artifacts

discussed Section 4.2.5. The sixth software artifact, unit tests, is not used in the

evaluation of software effectiveness.

The four database sections emphasized in Figure 21 are the core of the software

effectiveness evaluation:

1) Traces from Software Requirements to HLD

2) Traces from HLD to LLD

3) Traces from LLD to Code

4) Traces from Software Requirements to Validation Tests

86

1) Decomposition of OR])

Traces from ORD to System Requirements

2) Decomposition of System Requirements

Traces from System Requirements to Software Requir

3) Decomposition of Softw.re Reqiements

Traces from Software Requirements to Vaidaioi Tests

.Decomposition of Vadidation Tests

Traces from Software Requirements to L
4).Decomposition of I-L.)

Traces from HLD to LLD

5)> Decomposition of LLD
Traces from LLD to Code

6) Decomposition of Code

Traces from Code to Unit Tes.t..

Decomposition of Unit Tests

WData used in software effectiveness evaluation

WData NOT used in software effectiveness evaluation

Figure 21. Database Information Used in Software Effectiveness Evaluation

Each type of trace listed above is described in Section 4.6, Trace Descriptions, and will

be referred to individually as a set of traces and collectively as the sets of traces. These

sets of traces, stored as software development information, will provide all the

information necessary to determine the software's effectiveness, as defined in Chapter 3.

Namely, software effectiveness is defined as the degree to which the software

requirements are satisfactorily met (Section 3.10), and requirements satisfaction is

implied by complete requirements traceability throughout the software development

process (Section 3.11.3).

87

Each of the four sets of traces above provides a degree of traceability, stated as a

percentage, between two software artifacts of the development process. For each set of

traces, the degree of traceability is the number of traces that actually exist divided by the

number of traces that should exist. Refer to Figure 22, which contains a sample portion

of the database; this figure will be used to explain the calculation of the degree of

traceability.

Put simply, the traces are identified by the character codes in columns (1) and (3)

of each database entry, and the number of complete traces is counted by adding up the

complete trace flags that are set to 1 in column (2) of each identified trace. The number

of complete traces is divided by the number of traces of that type; this yields the degree of

traceability between the two software artifacts participating in the trace. For the small

section of the software requirements to HLD traces in Figure 22, there are 13 traces, 10 of

which are complete, yielding 10/13 or 77% as the degree of traceability. This calculation

is repeated for all the requirements to HLD traces, yielding the degree of traceability

between the software requirements and the HLD.

Each set of traces yields a degree of traceability. This degree of traceability

pertains to the "completeness" of the connection between the two software artifacts. The

connections between the artifacts are documented by each set of traces. By following the

example of the traceability calculation on the sample database in Figure 22, traceability

calculations are made for each set of traces. These traceability calculations yield four

degrees of traceability, which correspond to the four sets of traces, and quantify the

88

10 of 13 traces Degree
are complete of Traceability

= 10/13 =77%

RO- .1.1 1 DH- I
DH -2
DH -3

RO-1.1.2 DH-I
DH -2
DH -3
DH -4

RO - 1.1.3 0

RO - 1.1.4 1 DH-2
DH -3
DH -4

RO - 1.2.1 I DH-4
DH -5
DH - 6

RO - 1.2.2 1 DH - 3
DH -4
DH - 5
DH -6

RO- 1.2.3 0 DH-5

DH -6

RO - 1.2.4 1 DH - 2
DH - 3
DH -4

RO - 1.2.5 1 DH - 3
DH-4
DH - 5
DH - 6

RO - 1.2.6 1 DH - 5
DH-6

RO - 1.2.7 1 DH-5
DH -6
DH -7

RO- 1.3.1 1 DH- 6
DH -7
DH- 8

RO - 1.3.2 0 DH-7

Figure 22. Example Database for Degree of Traceability Calculation

89

following aspects about the software being developed:

1) How well the software requirements were incorporated into the HLD.

2) How much of the HLD was retained during the detailing to the LLD.

3) How much of the LLD was implemented in the code.

4) How many software requirements were traced to validation tests.

These four pieces of information, quantified by the four degrees of traceability, will be

referred to as the components of software effectiveness, since they are used in the

software effectiveness calculation. The software effectiveness calculation is explained in

Section 4.9.

Although these components of software effectiveness are the most important

information retrieved from the database, other information indirectly related to software

effectiveness can be obtained from the database. By searching on the complete trace

flags, elements that are not traced can be located. Elements that are not traced show

incomplete traceability, which reveals where the software is ineffective, according to the

definition of software effectiveness. These incomplete traces expose requirements that

have not been incorporated in the HLD, requirements that have no validation test, and

LLD elements that have not yet been coded. Incomplete traces show the remaining work

in the software development process and also prevent requirements, design elements, and

tests from being "lost" during development.

There are two types of incomplete traces and they can be distinguished by the

elements (or lack of elements) in column (3). One type of incomplete trace is a software

element that has not yet been considered by the developers at all and, consequently, has

90

no software elements in column (3) of the database entry. From Figure 22, there is one

requirement that is not addressed at all: RO - 1. 1.3.

The other type of incomplete trace is a "partially" complete trace. A partially

complete trace contains software elements in column (3) of the database entry, but these

elements do not completely address the element being traced from column (1). From

Figure 22, the requirements that have partially complete traces are RO - 1.2.3 and RO -

1.3.2.

4.8.6 Creation of Traceability Matrices. The traceability matrix is a graphical

presentation of the data contained in the database. The data From Figure 22, showing a

portion of the requirements to HLD database, is presented in matrix form in Figure 23.

Traces appear as shaded squares on a horizontal line connecting the requirement with

HLD element(s). Complete traceability and partial traceability between elements are

shown in two different shades at the intersection of the requirement and the HLD

element. A lack of traceability from a software requirement to an HLD element is

indicated by a horizontal blank line in the matrix.

By inspection of the matrix in Figure 23, it is simple to see that RO - 1.1.3 has not

been addressed in the HLD since it has no trace to any HLD elements and RO - 1.2.3 and

RO - 1.3.2 are partially traced to the HLD. At a glance, the traceability matrix shows a

"picture" of the software's effectiveness; as more darkly shaded squares are added to the

matrix, the software is "seen" as more effective.

4.8.7 Summary. Section 4.8 describes the operations that can be performed on

the database, as well as the various types of information that can be retrieved from the

91

Traceability ofN c

e r ntRequirements
to High-Level

RO - 1.1.1
RO - 1. 1.2
RO - 1.1.3
RO - 1.1.4
RO - 1.2.1
RO - 1.2.2

RO - 1.2.3
RO - 1.2.4
RO - 1.2.5

RO - 1.2.6
RO - 1.2.7
IRO - 1.3.1

IRO - 1.3.2

"=Comolete Traceability

=Partial Traceability

D=No Traceability

Figure 23. Example Portion of the Requirements to HLD Traceability Matrix

database. Although many types of information can be obtained from the database, the

focus in this section was the information that can aid in the evaluation of software

effectiveness. This information includes:

1) Calculations for the degrees of traceability, which are components of the

overall software effectiveness calculation.

2) Identification of incomplete traceability, which reveals where the software is,

by definition, ineffective.

3) A graphical presentation of software effectiveness in a traceability matrix.

92

It is important to note that partial traceability only indicates a lack of complete

traceability. Partial traceability is not predictive, i.e., there is no way to determine how

"close" the trace is to complete traceability. Therefore, partial traceability offers little

more information than no traceability at all. However, partial traceability shows some

progress towards complete traceability and is easily distinguished in the database, so

partial traceability is identified and documented in this approach.

4.9 Calculation of Software Effectiveness

4.9.1 Five Components of Software Effectiveness Evaluation. Four components

of software effectiveness are described in Section 4.8.5 above. These components

quantify the degree of traceability between the artifacts of the software development

process. The fifth component of the software effectiveness evaluation is the percentage

of validation tests passed satisfactorily. Although it has nothing to do with traceability,

this fifth component is necessary in the calculation of software effectiveness. If the

software requirements are completely traced through the design to the code, yet the

software fails all of its validation tests, the software cannot be considered effective. In

summary, the five components of software effectiveness consist of five percentages: four

describe the degree of tracability between the software artifacts, and the fifth indicates the

percentage of validation tests passed.

4.9.2 Combining Effectiveness Components for Overall Evaluation. A composite

value for software effectiveness can be obtained by using the five effectiveness

components. To simply average the separate components would be misleading, because

an average does not take into consideration the impact one effectiveness component has

93

on another. For example, consider the software system in Figure 24. The five

components of software effectiveness are:

1) 50% traceability from software requirements to HLD

2) 100% traceability from HLD to LLD

3) 100% traceability from LLD to Code

4) 100% traceability from software requirements to validation tests

5) 50% of the validation tests passed

50%

100% Validation Validation

Traceability Tests Tests

Passed

Software 50% HLD 100% LLD 100% Code

Requirements Traceability Traceability Traceability

Figure 24. Effectiveness Components for an Example Software System

A simple average of all five effectiveness components yields:

50% +100% +100% +100% + 50% =80%
5

94

This overall effectiveness rating is misleading, since 80% effective implies the software is

20% from being completely (100%) effective, but does not describe the fact that half of

the software requirements did not make it into the design.

To obtain a more representative overall assessment of the software's

effectiveness, multiply the effectiveness components together. Multiplying the

components for an overall assessment is similar to calculating the reliability of a system

by multiplying the reliabilities of each of the system's individual components. The

multiplication of the individual components to achieve an overall quantification is also

similar to Seiler's calculation of system effectiveness, as described in Section 3.8.1. In

the example from Figure 24, the overall assessment of software effectiveness yields:

(50%) (100%) (100%) (100%) (50%) = 25%

The calculation above, by multiplying, conserves the impact of inadequate traceability

between artifacts. The calculation does not "spread out" the lack of traceability between

components over all the other components, as it does with a simple average. By

multiplying, this overall effectiveness rating provides better insight into a system that has

failed to account for half of its requirements.

4.10 Summary of Software Effectiveness Approach

This chapter outlined an approach to evaluate software effectiveness through

requirements traceability, which will subsequently be referred to as the Software

Effectiveness Traceability Approach (SETA). Software effectiveness is defined as the

95

satisfaction of software requirements which is measured by the traceability from the

software requirements throughout the various software development artifacts. The degree

of traceability is measured in the development process by the number of elements that are

traced from one artifact to another, such as the software requirements to the HLD. There

is a degree of traceability, expressed as a percentage, for each of the following sets of

traces in this approach:

1) Software Requirements to HLD

2) HLD to LLD

3) LLD to Code

4) Software Requirements to Validation Tests

Each degree of traceability represents a component of the software effectiveness

evaluation. The fifth component of software effectiveness is the percentage of validation

tests passed satisfactorily. The components of software effectiveness can be viewed

separately to consider the progress made in various stages of the software development

process, or they can be multiplied together for a composite software effectiveness value.

An example database implementation of SETA was provided. The information

concerning the software artifacts and the traces between them are stored in the database,

and the traceability information can be entered, edited, and retrieved to yield the software

effectiveness components described above.

96

5. Demonstration of the Software Effectiveness Traceability Approach

5.1 Introduction

The Software Effectiveness Traceability Approach (SETA), outlined in Chapter 4,

is demonstrated below. The demonstration utilizes actual data from a real-world software

development program in the database form previously described. The traceability data

used in the demonstration is from a small portion of the avionics system software aboard

the C-17. The C-17 is the latest aircraft in the Air Force inventory that provides airlift of

outsize cargo to austere airfields, as well as airdrop and full aeromedical evacuation

capabilities [Des95].

This chapter begins with a discussion of the process which led to the decision to

demonstrate the traceability portion of SETA. Section 5.3 documents the search for

traceability data. In the next section, 5.4, some background information is provided on

some of the components of the C-17 avionics system. Section 5.5 gives more detailed

information on MIL-STD-1553B, the standard for one particular avionics component on

the C-17 known as the 1553 Data Bus. The demonstration traces the 1553 Data Bus

software from the ORD to the code and from the software requirements to their validation

tests. However, before the demonstration, the software development artifacts from the

C- 17 SPO are described in Section 5.6. The next section, 5.7, describes the correlation

between the artifacts from the C-17 SPO and the artifacts from SETA. Section 5.8

contains the demonstration of SETA, using the data from the C-17 SPO and the

terminology from SETA. The effectiveness calculation for the 1553 Data Bus software is

given in Section 5.9. The final section offers a summary and some concluding remarks.

97

5.2 The Decision Process to Demonstrate SETA

The decision to demonstrate the traceability portion of SETA was made after

considering other alternatives. To lend credibility to SETA, it was necessary to go

beyond an explanation and offer some sort of indication that SETA worked as envisioned.

The best validation method would be to apply SETA to a software development

project from its inception, and evaluate its utility after the software product is delivered.

This validation method is impractical, since the development cycle of the typical software

development project evaluated by AFOTEC may take several years to deliver a final

product; more practical alternatives that were considered are discussed below.

5.2.1 Validation of SETA with Actual Data. Validating SETA with actual

traceability data would have been the next best way to legitimize the approach, but this

presented a few insurmountable problems. Validating SETA using traceability data

involves three basic steps:

1) Locate historical data on a software development project, either stand-alone or

as part of a weapon system, that has been evaluated by AFOTEC/SAS.

2) Take the traceability data from the software development project located in step

one, and apply it to SETA, i.e., enter the data in the database and calculate the software's

effectiveness.

3) Compare the effectiveness rating with the results of AFOTEC's evaluation.

There are a few problems with this process, which make this type of validation

impossible. First of all, the sheer size of some of the software projects evaluated by

AFOTEC make it difficult to use them in SETA, since the data entry alone would take

98

time and effort beyond the focus of this research. However, this difficulty could have

possibly been overcome by using data from a small portion of a software development

project, then generalizing the results to the entire project. Secondly, locating historical

data on a software development project that has been evaluated by AFOTEC was not

difficult, but locating the traceability data for a given project was extremely difficult.

Complete traceability data that would be applicable to SETA simply does not exist.

Granted, there is some traceability data for each software development project, but none

of the data was complete to the point where could be directly used in SETA. Finally,

since AFOTEC has no effectiveness evaluation methodology currently in use, there are no

other effectiveness evaluation results with which to compare the results of SETA.

Considering these problems, validation with actual data was eliminated as a way to

legitimize SETA.

5.2.2 Validation of SETA with Test Data. Another alternative to lend credibility

to the software effectiveness evaluation approach would be to develop traceability data

for a simulated software development project, apply SETA to the traceability data of this

test-case project, and analyze the results.

This alternative had many difficulties as well. Several examples of simulated

traceability data were provided in the explanation of SETA in Chapter 4. An additional

example would not prove beneficial, since the traceability data could be manipulated to

display any effectiveness result that would show SETA in the most favorable light. Test

cases or examples aid in the explanation of SETA, but are too subjective for validation if

99

they are introduced by the developer of the approach. Therefore, this variation on the

validation of SETA was rejected as well.

5.2.3 Demonstration of SETA with Actual Data. The final alternative was to

demonstrate SETA with actual data from an existing software development project. In

this way, SETA gains more credibility than from the examples and explanations provided

during the development of the approach. In addition, limitations to SETA may be

discovered that would lead to changes before it was actually implemented into a full

methodology. The demonstration of SETA to evaluate software effectiveness begins with

a search for traceability data from an actual software development project.

5.3 The Search for Traceability Data

Finding traceability data on software for large weapon systems, particularly

aircraft, proved extremely difficult. None of the seven SPOs contacted at Wright-

Patterson AFB had the complete traceability necessary to apply to SETA. This was

surprising, since requirements traceability is required in software development projects,

according to the Data Item Descriptions (DIDs) referred to in MIL-STD-498 [MIL94].

Until recently, MIL-STD-498 was the governing document for software development in

the military; it defined "a set of activities and documentation suitable for the development

of both weapon systems and Automated Information Systems" [MIL94].

Of all the SPOs contacted, the C-17 SPO was the most promising prospect, since

they were in the process of documenting complete software traceability. Their

traceability included: system-level requirements to software requirements, software

100

requirements to software design, software design to code, and software requirements to

tests. This was precisely the traceability data needed to demonstrate the software

effectiveness approach.

Unfortunately, the C-17 traceability data was not complete; therefore, hard copies

of the software development documentation were provided to manually collect the

traceability data. Before the demonstration of SETA, it is necessary to explain the

terminology involved with the particular section of software that will be traced, as well as

the software development documentation at the C-17 SPO.

5.4 Background Information on C-17 Avionics

5.4.1 Core Integrated Processor. The Core Integrated Processor (CIP) is a

general purpose computer specifically designed to meet the real-time requirements of the

C-17 aircraft [McD96]. There are two CIPs aboard each aircraft, with one operating as a

backup. Figure 25 shows the architecture of the CIPs, connected by the MIL-STD-1553B

Dual Redundant Data Busses.

5.4.2 Operating System Utilities. The OSU serve as the primary software

interface between the CIP hardware and the C-17 Application Software (AS) of the

various avionics subsystems. The OSU design is decomposed into 13 CSCs, one of

which is the driver for the 1553 Data Bus. The 1553 Driver provides the control software

for the message traffic on the data bus. Other CSCs in the OSU include the Built-In Tests

(BITs) executed during power-up and maintenance, which perform diagnostic checks on

101

CIP 1

Pro essr I/O odl les NVM Growth Power O O Primary Power

Molulesi - Dicrel, I/O - Processors - Cond - -0 Emergency Power
(w w/o 155 - Araog'I/O -I/O -Supp2

I I I - Memory - Cntrl - O 28 VDC; Battery Direct Bus*
-Display I/F 4 Discrete inputs

HSDB Discrete outputs-T- 4 -cAnalog inputs

Backplane Bus Analog excitation

MCi "Primary power may be 115 VAC (1 or 3 Phase),
(BC) or 28 VDC. Emergency Power may be

115 VAC Single Phase or 28 VDC. The same
power source may be used for both Primary
and Emergency. as a single source/input

MB1 * Internal Switch forBattery Direct power controlled
- - by operational Software.

Inter CIP Data Bus MIL-STD-1553
(Provisional) Dual RedundantData Buses Other CIP External Interfaces:

- High Speed Data Bus (e.g. Fiber or 1OBaseT)

MB2 - Support Channel Interface (e.g. IEEE-488)

M(2

,ntea n H-11nnDiscrete inputs
Discrete outputs

Proca
es s

r I/O lod es NVM Grnoh Power Analog inputs
Modlesi -Dicret t I/O -Processors Cond Analog excitation(Ww / 1,, -An log O 0 I 1/ I" ,/

D I IM m r o 00 28 VDC; Battery Direct Busi , I I" isplay I/F
o 0 Primary Power

Backplane Bus
CIP 2

K. Rhine
12/3/94

Figure 25. System Diagram for C-17 Core Integrated Processor Architecture [McD96]

the 1553 Data Bus. The driver software, as well as the BIT software, for the 1553 Data

Bus are the focus of the traceability demonstration.

5.4.3 1553 Data Bus. A major component of the CIP architecture is the 1553

Data Bus that is used to communicate between the avionics subsystems aboard the

aircraft. The dual-redundant 1553 Data Busses are located in the center of Figure 25,

connecting the two CIPs. Since the 1553 Data Bus software is the focus of the

traceability demonstration, some background information of this particular component of

the C-17 avionics system is provided in the next section.

102

5.5 Overview of MIL-STD-1553

5.5.1 Background. MIL-STD- 1553 standardized the communication connections

between avionics subsystems on aircraft. Up until the late 1960s, subsystem

communication was handled by an increasing number of discrete physical connections

between avionics units, resulting in increased weight and complexity [Tyl9 1]. To address

this problem, MIL-STD-1553 was established in 1968; this standard was updated in 1978

and released as MIL-STD-1553B, but is still generally referred to as MIL-STD-1553.

Although the terms MIL-STD-1553 and 1553 Data Bus are often used interchangeably, in

this chapter MIL-STD-1553 refers to the document that describes the capabilities and

characteristics of the actual component, which is referred to as the 1553 Data Bus.

The 1553 Data Bus saves space and weight by replacing the interconnecting wires

between avionics units with a single twisted pair. All the communication between

avionics subsystems is multiplexed over this wire. The 1553 Data Bus also offers cost

savings from the decreased space and weight aboard the aircraft. Additional cost savings

are realized through standardization; the 1553 Data Bus can be used on many types of

aircraft.

5.5.2 1553 Data Bus Modes. Up to 32 units or terminals can be connected to the

data bus. One terminal, known as the bus controller, acts as a "traffic cop" as it

coordinates the flow of information along the data bus [Tyl9 1]. Another type of terminal -

is the monitor, a passive device, that records data for later analysis and can act as a

backup to the bus controller [Tyl9 1]. The third type of terminal is the remote terminal

and is defined as "all terminals not operating as the bus controller or bus monitor"

[Tyl9 I]. Remote terminals gather data from aircraft sensors and convert the data to a

103

format that can be placed on the 1553 Data Bus. The remote terminals also receive

information from the data bus, and convert it to a format that can be used by the aircraft.

5.5.3 Software for the 1553 Data Bus. The 1553 Data Bus requires software to

function properly. The 1553 Driver is responsible for interfacing between the AS from

the various avionics subsystems and the 1553 Data Bus. The 1553 Driver allows the AS

to specify the operating modes of the interface. Corresponding to the modes described in

Section 5.5.2 above, the interface can function as Bus Controller (BC), Remote Terminal

(RT), Bus Monitor (MON) or a combination of Remote Terminal/Bus Monitor

(RT/MON) [Tyl9 1]. The 1553 Data Bus provides communication between avionics

components by using messages. A message entry is an individual bus transaction, which

contains various pieces of data, such as commands, data to transmit (or data to receive),

and message status information [Tyl9 1].

In addition to the driver, the 1553 Data Bus requires diagnostic programs that are

used to check the functions of the data bus during power-up or maintenance. These

diagnostic programs are tests that are built in to the 1553 software architecture, and are

referred to as BITs (for Built-In Tests). The BITs for the 1553 Data Bus are portions of

the power-on BITs (POBITs) and the maintenance initiated BITs (MIBITs), which test all

the components of the CIP. For the demonstration, only the portions of the POBITs and

MIBITs that contain the tests for the 1553 Data Bus are considered. However, before the

demonstration, an explanation of the software development terminology used at the C- 17

SPO is provided in the next section.

104

5.6 Software Development Terminology Used at the C-17 SPO

5.6.1 Prime Item Development Specification. The Prime Item Development

Specification (PIDS) contains the system requirements. Specifically, the PIDS

"establishes the performance, design, development and verification requirements" for a

particular system [McD96]. In this case, the system is actually the CIP. The PIDS for the

CIP corresponds to the system requirements artifact in SETA.

5.6.2 Computer Program Development Specification. The Computer Program

Development Specification (CPDS) "establishes the performance, design, test and

qualification of a computer program identified as Operating System Utilities" [Loc96a].

The software specified in this document is a collection of drivers that provide interfaces

to the CIP. The CPDS for the Operating System Utilities (OSU) corresponds to the

software requirements in SETA.

5.6.3 Computer Program Product Specification. The Computer Program Product

Specification (CPPS) "establishes the requirements for complete identification of the C 17

Core Integrated Processor (CIP) Operating System Utilities (OSU)" [Loc96b]. The CPPS

contains the preliminary design, the detailed design, and the code for the OSU. The

preliminary design corresponds to the HLD in SETA. The detailed design corresponds to

the LLD in SETA. Of course, the code in CPPS refers to the same artifact (the code) in

SETA.

5.6.4 Computer Program Test Plan. The Computer Program Test Plan (CPTPI)

documents the test procedures that test against the software requirements in the CPDS.

These test procedures are not to be confused with the BITs, which are part of the 1553

software architecture. These test procedures validate the requirements of the 1553

105

software. Since the BITs are part of the 1553 software, there are actually test procedures

in the CPTPI that test the BITs. Incidentally, the acronym "CPTPI" is used to distinguish

the test plan from another software artifact, the Computer Program Test Procedures

(CPTPr). The tests in the CPTPI correspond to the validation tests in SETA.

5.6.5 Unit Tests. The unit tests were not available for the traceability

demonstration of SETA. The unit tests are created and maintained at the individual

contractor that develops a particular piece of software [Est96]. Therefore, traceability

from the CSUs to the unit tests is not included in the demonstration of SETA.

5.6.6 Summary. The artifacts for the software development process at the C-17

SPO correspond to the artifacts in SETA. The correspondence between these artifacts is

summarized in Table 1.

Software Development Corresponding Software
Artifacts for the OSU Development Artifacts from

of the CIP aboard the C-17 SETA
ORD ORD
PIDS System Requirements
CPDS Software Requirements
CPPS HLD
CPPS LLD
CPPS Code

CPTPr Validation Tests

Table 1. Correspondence Between Software Development Artifacts

From this point forward, for the purposes of the demonstration, the terminology from

SETA will be used.

106

5.7 Translation of Element Identification Methods

5.7.1 Introduction. The element identification method in the artifacts from the

C-17 SPO that contain the OSU software are very similar to the code and numbering

scheme of SETA. Since the artifacts from SETA will be used in the demonstration, the

identification scheme from SETA will also be used in the demonstration, for consistency.

The differences in the two identification methods, and the translation of the C- 17 SPO

identification method to the SETA identification method, are explained in the next two

sections.

5.7.2 Element Identification Method for C-17 SPO Artifacts. Within the C-17

SPO artifacts (PIDS, CPDS, etc.), there are no "codes" as in SETA. A similar nested

numbering scheme is used for decomposition, and it is understood from the context what

elements are being discussed. In the case of the C-17 SPO, the context is the artifact

being considered; if there is a reference to paragraph 3.1.2.2 in the CPDS, it is understood

that the element being discussed is a software requirement. The numbering scheme is

nested, as with SETA, except elements within a paragraph of a software artifact are offset

by brackets. For example, within paragraph 3.1.2.2 of the CPDS, the software

requirement in the paragraph may list five subrequirements. These five subrequirements

are identified within the traceability sections of the artifact as 3.1.2.2 [1], 3.1.2.2 [2],

3.1.2.2 [3], etc. In further decomposition, lower-case letters are used to identify

subelements. For example, 3.1.2.2 [1] is decomposed into 3.1.2.2 [1] a), 3.1.2.2 [I] b),

etc. Although the lower-case letters are used in the text of the artifact, they are not used

in the traceability section. The decomposition recorded in the traceability section stops at

the level indicated by the brackets, such as 3.1.2.2 [1].

107

5.7.3 Translation of Identification Method to SETA. The translation of the

identification method in the C-17 SPO artifacts to SETA is quite simple, and similar to

the translation of the ORD element identification method discussed in Section 4.4.1. The

translation of the identification method used in the C-17 SPO software artifacts is

accomplished as follows: the brackets are removed and the familiar dotted notation is

substituted; for the lower-case letters, the number indicating the letter's position in the

alphabet is substituted for the letter. For example, from the CPDS, 3.1.2.2 [1] a) is

translated into RO - 3.1.2.2.1.1 in SETA. The CPPS contains the preliminary design,

detailed design, and code in separate sections; the elements in these sections are

translated with the appropriate number and the codes corresponding to HLD, LLD and

CSU respectively.

Now that the terminology has been defined and a translation description has been

given, a demonstration of the traceability for the 1553 Data Bus software is provided in

the next section.

5.8 Demonstration of Traceability of 1553 Data Bus Software

5.8.1 Introduction. Traceability of the 1553 Data Bus software is accomplished

in the following sections, using the terminology from SETA. Each section describes

where the 1553 Data Bus (or its associated software) appears in the software development

artifact and its connection to the next artifact in the software development process. As

stated previously, traceability to the units tests is not included since these tests are kept by

the contractor and were not available for this research. Traceability is described in two

ways: first, the traces are described in text; then, the traces are described graphically, by

108

providing examples of database sections containing the traces. Throughout the

demonstration, only the elements that have a direct relationship to the 1553 Data Bus are

considered; all other elements are ignored.

5.8.2 ORD to System Requirements. The 1553 Data Bus is referenced in the

ORD in paragraph 5a(2)(c) [AMC93]. This is translated into the terminology from SETA

and is subsequently referred to as ORD - 5.1.2.3. The 1553 Data Bus requirement from

the ORD is stated as follows:

USAF designated standard avionics systems will be used where
appropriate. The aircraft will have reliable and maintainable avionics equipment
with adequate growth potential in computer memory and processing. An
integrated avionics architecture is imperative. MIL-STD-1553B multiplex data
busses will be used to integrate existing avionics systems and increase growth
capability. Particular attention must be paid to partitioning the avionics
components. The aircraft design must facilitate the cooling of the avionics
equipment such that routine ground maintenance operations can be performed at
internal compartment temperatures up to 90 degrees Fahrenheit [AMC93].

The first requirement in the paragraph, "MIL-STD- 1 553B multiplex data busses will be

used.. .", will be designated ORD - 5.1.2.3.1. The rest of the subrequirements are

ignored, since they have nothing to do with the 1553 Data Bus. ORD 5.1.2.3.1 is traced

to RSYS - 3.7.1 and RSYS - 3.7.6.6, which are paragraphs in the system requirements

document; decomposition and traceability from ORD - 5.1.2.3, as entered in the database,

are shown in Figure 26.

109

ORD - 5.1.2.3 1 ORD - 5.1.2.3.1

ORD - 5.1.2.3.1 1 RSYS - 3.7.1

RSYS - 3.7.6.6

Figure 26. ORD to System Requirements Database Entries

5.8.3 System Requirements to Software Requirements. The text of the two system

requirements paragraphs, RSYS - 3.7.1 and 3.7.6.6, which were traced from ORD -

5.1.2.3.1, are shown below. RSYS - 3.7.1 is stated in the systems requirements artifact as

follows:

MIL-STD-1553B Bus Interface. Dual-redundant, multiplex data buses in
accordance with MIL-STD-1553B notice I interface. The MIL-STD-1553 buses
shall be able to be configurable as Bus Controller (BC) or Remote Terminal (RT)
or Bus Monitor (BM) or both RT and BM simultaneously via software commands
[McD96].

RSYS - 3.7.1 is decomposed into the following subsystem requirements:

RSYS - 3.7.1.1
A hardware requirement that specifies the use of a 1553 Bus interface.

RSYS - 3.7.1.2
The MIL-STD-1553 buses shall be able to be configurable as Bus

Controller (BC) or Remote Terminal (RT) or Bus Monitor (BM) or both RT and
BM simultaneously via software commands.

Traceability of RSYS - 3.7.1.1 ends here, since it is a hardware requirement, but

traceability will continue for RSYS - 3.7.1.2.

RSYS - 3.7.6.6 is stated in the systems requirements artifact as follows:

110

MIL-STD-1553 multiplex bus data transfer characteristics. The CIP shall
have 1I/ modules that shall be implemented in accordance with MIL-STD- 1553B
notice 1. The CIP design shall be interrupt driven so that the processor can meet
the MIL-STD- 1553 timing requirements. The MIL-STD- 1553 multiplex bus shall
have Bus Controller, Remote Terminal, Bus Monitor, and Remote Terminal/Bus
Monitor capability that shall be selectable under program control. The MIL-STD-
1553B Multiplexed Bus design shall provide an interrupt mechanism to the 1/0
modules. Self-test shall be available via software commands from the OFP
[Operational Flight Profile]. Self-test shall be comprehensive enough to provide
fault detection capability defined in Built-In Test (BIT) paragraph 3.5.1.1.1
Organizational Level BIT Provisions [McD96].

RSYS - 3.7.6.6 is decomposed into six subsystem requirements:

RSYS - 3.7.6.6.1
The CIP shall have I/O modules that shall be implemented in accordance

with MIL-STD- 1553B notice 1.

RSYS - 3.7.6.6.2
The CIP design shall be interrupt driven so that the processor can meet the

MIL-STD-1553 timing requirements.

RSYS - 3.7.6.6.3
The MIL-STD-1553 multiplex bus shall have Bus Controller, Remote

Terminal, Bus Monitor, and Remote Terminal/Bus Monitor capability that shall
be selectable under program control.

RSYS - 3.7.6.6.4
The MIL-STD- 1553B Multiplexed Bus design shall provide an interrupt

mechanism to the 1/0 modules.

RSYS - 3.7.6.6.5
Self-test shall be available via software commands from the OFP

[Operational Flight Profile].

RSYS - 3.7.6.6.6
Self-test shall be comprehensive enough to provide fault detection

capability defined in Built-In Test (BIT) paragraph 3.5.1.1.1 Organizational Level
BIT Provisions.

111

Decomposition of RSYS - 3.7.1 and RSYS - 3.7.6.6, along with the traceability of their

lowest-level subrequirements is shown in Figure 27. Refer to Figure 27 as the

decomposition and traceability of the system requirements to the software requirements

are explained in further detail.

Traceability for the purposes of software effectiveness stops here for RSYS -

3.7.1.1, RSYS - 3.7.6.6.1 and RSYS - 3.7.6.6.2, since they are hardware requirements for

the CIP. In a full-blown traceability approach, these system requirements would be traced

to hardware requirements, then traced to hardware design, etc. Since they have nothing to

do with the software, these system requirement to hardware requirement traces are

ignored in the database and play no part in the software effectiveness evaluation. RSYS -

3.7.6.6.3 is a duplicate of RSYS - 3.7.1.2 above, so it can be traced to the same software

requirement that governs software control of the 1553 Data Bus mode. RSYS - 3.7.6.6.4

and RSYS - 3.7.6.6.5 are traced to their respective software requirements. RSYS -

3.7.6.6.6 requires that self-tests must follow another system requirement, RSYS -

3.5.1.1.1. This situation is accounted for by "decomposing" subrequirement RSYS -

3.7.6.6.6 into RSYS - 3.5.1.1.1. Then, RSYS - 3.5.1.1.1 is appropriately traced to the

software requirement concerning self-tests, which is shown in Figure 27. In summary,

the subrequirements that will continue to be traced are RSYS - 3.5.1.1.1 and RSYS -

3.7.6.6.3 through RSYS - 3.7.6.6.5. These lowest-level system requirements are traced to

software requirements in Figure 27; the traceability demonstration continues in the next

section with these software requirements.

112

RSYS - 3.7.1 1 RSYS - 3.7. I.1

RSYS - 3.7.1.2

RSYS - 3.7.1.2 1 RO - 3.2.2

RSYS - 3.7.6.6 1 RSYS - 3.7.6.6.1
RSYS - 3.7.6.6.2
RSYS - 3.7.6.6.3
RSYS - 3.7.6.6.4
RSYS - 3.7.6.6.5

RSYS - 3.7.6.6.6

RSYS - 3.7.6.6.6 1 RSYS - 3.5.1. "1.1

RSYS - 3.5.1.1.1 1 RO - 3.2.8

RSYS - 3.7.6.6.3 1 RO - 3.2.2

RSYS - 3.7.6.6.4 1 RO - 3.2.2

RSYS - 3.7.6.6.5 1 RO - 3.2.8

Figure 27. System Requirements to Software Requirements Database Entries

5.8.4 Software Requirements to High-Level Design. Software requirements RO -

3.2.2 and RO - 3.2.8, are partially decomposed and described in Figures 28 and 29,

respectively. These software requirements RO - 3.2.2 and RO - 3.2.8, were traced from

the system requirements in Figure 27.

113

RO - 3.2.2 :1553 Driver
RO - 3.2.2.1 :1553 Operational Mode Selection

RO - 3.2.2.1.1
RO - 3.2.2.1.2

RO - 3.2.2.2 :1553 BC Operations
RO- 3.2.2.2.1 :1553 BC Write

RO - 3.2.2.1.1

RO - 3.2.2.1.9
RO - 3.2.2.2.2 :1553 BC Start

RO - 3.2.2.2.1

RO - 3.2.2.2.9
RO - 3.2.2.2.3 :1553 BC Read

RO - 3.2.2.3 :1553 MON Operations

RO - 3.2.2.4 :1553 RT Operations

RO - 3.2.2.5 :1553 RT/MON Operations

Figure 28. Partial Decomposition and Description of RO - 3.2.2

114

RO - 3.2.8 Built-In Test (BIT)

RO - 3.2.8.1 BIT Operational Modes

RO - 3.2.8.1.4 • Maintenance Initiated BIT (MIBIT)

RO - 3.2.8.1.4.2.17 •1553 Receiver RAM Pattern Test (RRPT)

RO - 3.2.8.2 • BIT Test Organization and Execution

RO - 3.2.8.2.3 • Test Requirements
RO - 3.2.8.2.3.1 • Power-On BIT (POBIT)

RO - 3.2.8.2.3.1.1 :1553 Receiver RAM Pattern Test (RRPT)

RO - 3.2.8.2.3.3 :1553 Test Group
RO - 3.2.8.2.3.3.1 :1553 Mode Code Processing Test (MCPT)

RO - 3.2.8.2.3.3.2 :1553 Multiple Receive Test (MRXT)

RO - 3.2.8.2.3.3.3 :1553 Off-Line Loopback Test (OLBT)

RO - 3.2.8.2.3.3.4 :1553 Register Test (MRGT)

RO - 3.2.8.2.3.3.5 :1553 RT Address Parity Test (RAPT)

RO - 3.2.8.2.3.3.6 :1553 RT Address Test (RTAT)

Figure 29. Partial Decomposition and Description of RO - 3.2.8

115

The software requirement for the 1553 Data Bus driver, RO - 3.2.2, is

decomposed into RO - 3.2.2.1 through RO - 3.2.2.5. Each of the five subrequirements is

decomposed further in the C-17 documentation, eventually yielding 62 lowest-level

software requirements.

For the purposes of this demonstration, only RO - 3.2.2.1 and RO - 3.2.2.2 will

continue to be traced. As an example of the type of software requirement at the lowest

level of decomposition, the text of RO - 3.2.2.1 and a portion of the text of RO - 3.2.2.2

are provided below, from the software requirements document [Loc96a]:

RO - 3.2.2.1 Operational Mode Selection

RO - 3.2.2.1.1
The 1553 driver shall accept a command from the AS to select the

operating mode: either BC or RT, or MON or RT/MON.

RO - 3.2.2.1.2
The 1553 bus shall be reconfigured in less than 2 milliseconds when

commanded to switch operating modes.

RO - 3.2.2.2 1553 BC Operations

RO - 3.2.2.2.1 1553 BC Write

RO - 3.2.2.2.1.1
The driver shall accept a list that specifies the number of message

entries (maximum 512 entries) and an individual message entry for each
message.

RO - 3.2.2.2.1.2
Bus transactions shall occur based on the order specified by the

message entries. That is, the first entry is the first bus transaction to be
commanded.

RO - 3.2.2.2.1.3
A message entry shall specify the bus (A or B) in which to attempt

the message transaction.

116

Software requirement RO - 3.2.8, which encompasses the BITs, is also decomposed into

several subrequirements that concern the 1553 Data Bus. These BITs include RO -

3.2.8.1.4 (MIBIT), RO - 3.2.8.2.3.1 (POBIT) and RO - 3.2.8.2.3.3 (1553 Test Group).

The decomposition of RO - 3.2.8.1.4 and RO - 3.2.8.2.3.1 include the same test, RO -

3.2.8.3.1.1, the "1553 Receiver RAM Pattern Test Module (RRPT)" [Loc96a]. Put

simply, both maintenance tests and power-on tests (MIBIT and POBIT) occasionally use

the same test procedures during self-test.

RO - 3.2.8 is eventually decomposed into hundreds of lowest-level requirements.

As before, for the purposes of this demonstration, most of the software requirements will

be "trimmed" and traceability will continue with the following software requirements:

RO - 3.2.8.1.4.2.17 (RRPT)

RO - 3.2.8.2.3.1.1.1 (RRPT)

RO - 3.2.8.2.3.3.1 (MCPT)

RO - 3.2.8.2.3.3.3 (OLBT)

RO - 3.2.8.2.3.3.5 (RAPT)

Figures 30 through 33 show the database entries for the selected software requirements

that will continue to be traced for the demonstration. Figure 30 begins with the partial

decomposition of the software requirement for the 1553 Data Bus Driver, RO - 3.2.2, into

its lowest-level elements.

Next, Figures 31 and 32 show the partial decomposition of RO - 3.2.8 into its

lowest-level subrequirements.

117

RO - 3.2.2 1 RO - 3.2.2.1
RO - 3.2.2.2
RO - 3.2.2.3

RO - 3.2.2.1 1 RO - 3.2.2.1.1
RO - 3.2.2.1.2

RO - 3.2.2.2 1 RO - 3.2.2.2.1

RO - 3.2.2.2.1 1 RO - 3.2.2.2.1.1
RO - 3.2.2.2.1.2

RO - 3.2.2.2.1.3
RO - 3.2.2.2.1.4
RO - 3.2.2.2.1.5
RO - 3.2.2.2.1.6
RO - 3.2.2.2.1.7

RO - 3.2.2.2.1.8
RO - 3.2.2.2.1.9

Figure 30. Database Entries for Partial Decomposition of RO - 3.2.2

Finally, Figure 33 shows the traces from the selected lowest-level

subrequirements of RO - 3.2.2 and RO - 3.2.8 to their corresponding HLD elements.

These traces were taken from the tracability matrices in the C-17 documentation.

118

RO - 3.2.8 1i RO - 3.2.8.1

_________________ } RO - 3.2.8.2

RO -3.2.8.1 1

RO - 3.2.8.1.4

RO -3.2.8.1.4 1 RO -3.2.8.1.4.1
RO - 3.2.8.1.4.2

____-_3.2.8.1.4.2.1 _ _ _ _ _ _ _

RO--33.2.8.1.4.2.1

RO - 3.2.8.2 1 RO - 3.2.8.2.1
RO - 3.2.8.2.2
RO - 3.2.8.2.3

Figure 3 1. Database Entries of Partial Decomposition of RO - 3.2.8

119

RO - 3.2.8.2.3 1 RO - 3.2.8.2.3.1
RO - 3.2.8.2.3.2
RO - 3.2.8.2.3.3

RO - 3.2.8.2.3.1 1 RO - 3.2.8.2.3.1.1

RO - 3.2.8.2.3.3 1 RO - 3.2.8.2.3.3.1
RO - 3.2.8.2.3.3.2
RO - 3.2.8.2.3.3.3

RO - 3.2.8.2.3.3.4
RO - 3.2.8.2.3.3.5
RO - 3.2.8.2.3.3.6

RO - 3.2.8.2.3.3.1 1 RO - 3.2.8.2.3.3.1.1
RO - 3.2.8.2.3.3.1.2

RO - 3.2.8.2.3.3.1.3
RO - 3.2.8.2.3.3.1.4
RO - 3.2.8.2.3.3.1.5
RO - 3.2.8.2.3.3.1.6
RO - 3.2.8.2.3.3.1.7

RO - 3.2.8.2.3.3.3 1 RO - 3.2.8.2.3.3.3.1
RO - 3.2.8.2.3.3.3.2
RO - 3.2.8.2.3.3.3.3
RO - 3.2.8.2.3.3.3.4
RO - 3.2.8.2.3.3.3.5
RO - 3.2.8.2.3.3.3.6

RO - 3.2.8.2.3.3.5 RO - 3.2.8.2.3.3.5.1
RO - 3.2.8.2.3.3.5.2
RO - 3.2.8.2.3.3.5.3
RO - 3.2.8.2.3.3.5.4
RO - 3.2.8.2.3.3.5.5

Figure 32. (Continued)

120

RO - 3.2.2.2.1.1 1 DH - 3.2.1

RO - 3.2.2.2.1.2 1 DH - 3.2.1

RO-3.2.2.2.1.9 1 DH-3.2.1

RO - 3.2.8.1.4.2.17 1 DH - 3.2.9

RO - 3.2.8.2.3.1.1 1 DH - 3.2.6

RO - 3.2.8.2.3.3.1.1 1 DH - 3.2.10

RO - 3.2.8.2.3.3.1.2 1 DH - 3.2.10

RO - 3.2.8.2.3.3.1.3 1 DH - 3.2.10

RO - 3.2.8.2.3.3.1.4 1 DH - 3.2.10

RO - 3.2.8.2.3.3.1.5 1 DH - 3.2.10

RO-3.2.8.2.3.3.1.6 1 DH-3.2.10

RO - 3.2.8.2.3.3.1.7 1 DH - 3.2.10

RO - 3.2.8.2.3.3.3.1 1 DH - 3.2.10

RO - 3.2.8.2.3.3.3.2 1 DH - 3.2.10

RO - 3.2.8.2.3.3.3.3 1 DH - 3.2.10

RO - 3.2.8.2.3.3.3.4 1 DH - 3.2.10

RO - 3.2.8.2.3.3.3.5 1 DH - 3.2.10

RO - 3.2.8.2.3.3.3.6 1 DH - 3.2.10

RO - 3.2.8.2.3.3.5.1 1 DH - 3.2.10

RO - 3.2.8.2.3.3.5.2 1 DH - 3.2.10

RO - 3.2.8.2.3.3.5.3 1 DH - 3.2.10

RO - 3.2.8.2.3.3.5.4 1 DH - 3.2.10

RO - 3.2.8.2.3.3.5.5 1 DH - 3.2.10

Figure 33. Software Requirements to HLD Database Entries

121

5.8.5 High-Level Design to Low-Level Design. All of the software requirements

that will continue to be traced in this demonstration are traced to one of four HLD

elements, which are listed and described below:

DH - 3.2.1 :1553 Driver

DH - 3.2.6 : POBIT Utility

DH - 3.2.9 : MIBIT Utility

DH - 3.2.10 : CommonBIT Utility

Portions of the text for these four HLD elements, which were traced from the selected

software requirements, are presented below. The text of the HLD elements is provided to

show the depth and breadth of the design at this point in the software's development. It

should be noted that any references to sections or appendices within the portions of text

below are in regards to the HLD artifact from the C-17 SPO (in this case, the CPPS).

DH - 3.2.1 1553 Driver

The requirements allocated to this CSC from the CPDS are listed in
Section 7. No derived design requirements have been imposed on this CSC at this
time. The preliminary design of this CSC is an Ada package specification listed in
Appendix A.

The 1553 driver is responsible for interfacing between the AS and one of
the C-17 1553B buses. Each CIP is connected to both dual redundant 1553B
buses. Separate interface hardware is provided to interface with each mission bus.
Each 1553B bus will have a separate driver that is created to attach the driver to
the appropriate bus.

The 1553B driver, allows the AS to specify the operations of the interface:
The interface can function as a Bus Controller (BC), Remote Terminal (RT), Bus
Monitor (MON) or combination of Remote Terminal/Bus Monitor (RT/MON).

The main interface between the AS and the driver is through the use of
VxWorks READ, WRITE, and IOCTL operations. A READ operation returns
data and status information. The data and status information returned is a
function of the operational mode selected. A WRITE operation provides data and
command information. The data and command structures are a function of the

122

operational mode. Since a common parameter passing structure is used in READ
and WRITE operations, some information contained in the parameters is not used
in some modes of operations, or may have a different meaning based on the
operational mode.

The intent is to have one main parameter passed to the WRITE and
returned from the READ. This parameter will consist of two parts: a header and a
variable number of individual message entries. The header will contain general
purpose data, such as the number of message entries, overall bus status
information. A message entry is a definition of an individual bus transaction (i.e.
1553B message). The message entry will contain various pieces of data, such as
commands, data to transmit (or data received), message status information, etc.

In addition to the basic commands, the 1553B driver also sets the
VxWorks Error Number (errno) for specific types of errors. The 1553B Driver
also allows for AS Hook routines via the VxWorks Message Queue structure
[Loc96b].

DH - 3.2.6 POBIT Utility

The requirements allocated to this CSC from the CPDS are listed in
Section 7. No derived design requirements have been imposed by Sanders on this
CSC at this time. The preliminary design of this CSC consists of a C language
specification that is listed in Appendix A.

After the application of power, each processor within the CIP
automatically executes Power-On BIT (POBIT). The purpose of POBIT is to
execute a set of tests required to assure minimum equipment performance within
the alloted [sic] maximum execution time. As part of the Bootstrap function,
POBIT is physically located within the Bootstrap PROM. Once POBIT execution
has started, it will run to completion without interruption, i.e. it will run until all
tests have been executed or the first failure has been detected.

POBIT is run separately in each processor. POBIT Tests associated with
specific hardware functions are grouped together into POBIT Test Modules. As
each Test is completed within a POBIT Test Module, a "Test Progress Indicator"
will be incremented and written to a dedicated location within the Non-Volatile
Memory, to the RS232 Serial Port A, and to a spare register that is available to
other processors via the VME backplane. A failure of any POBIT test in either
processor is considered a fatal CIP error and will be handled by the Bootstrap
Utility [Loc96b].

DH - 3.2.9 MIBIT Utility

The requirements allocated to this CSC from the CPDS are listed in
Section 7. No derived design requirements have been imposed on this CSC at this

123

time. The preliminary design of this CSC consists of an Ada package specification
listed in Appendix A.

MIBIT is the only Initiated BIT utility. Its purpose is to re-execute and
augment the tests supplied by the other modes of BIT in order to fully satisfy
failure detection and isolation requirements. Normal MIBIT operation consits
[sic] of an automatic sequencing of tests.

Upon request from the AS, MIBIT activates and replaces all other
functions within the CIP. MIBIT is an on-ground only test mode and the AS must
ensure that on-ground interlocks are satisfied prior to issuing the request. The CIP
Fail Out discrete will be asserted for the duration of MIBIT. This serves to notify
the other CIP that the CIP in MIBIT cannot support normal operation while
MIBIT testing is ongoing.

BIT Test Modules that are shared by more than one BIT mode (EPOBIT,
PBIT or MIBIT) are called from the CommonBIT CSC.

If a failure is detected, MIBIT creates a full fault record for storage in
NVM. MIBIT will attempt to complete a full pass of all tests based on the
continuation criteria for the failed test. Upon completion of all tests, if a failure
was detected on either processor, it is considered to be, in effect, a fatal CIP error
and the processor (and ultimately the CIP) will hang and appear dead to the
outside world. If MIBIT completes successfully in one processor, that processor
will wait for MIBIT to complete successfully in the other processor until time out.
When both processors have successfully completed MIBIT, they will both initiate
a soft reset in order to restart the CIP and bring it back to normal operation
[Loc96b].

DH - 3.2.10 Common BIT Utility

The requirements allocated to this CSC from the CPDS are listed in
Section 7. No derived design requirements have been imposed on this CSC at this
time. The preliminary design of this CSC consists of an Ada package specification
listed in Appendix A.

BIT Test Modules that are shared by more than one BIT mode (EPOBIT,
PBIT or MIBIT) are called from the CommonBIT CSC. If a failure is detected,
CommonBIT creates a full fault record for storage in NVM. The CommonBIT
CSC has no direct interface to the AS [Loc96b].

The HLD elements are not decomposed any further and are traced to the LLD elements as

shown in Figure 34.

5.8.6 Low-Level Design to Code. The LLD elements that were traced from the

HLD elements in Figure 34 will continue to be traced in the demonstration, and are listed

124

and described below:

DL - 4.1 1 t553 Driver

DL - 4.6 • POBIT Utility

DL - 4.9 • MIBIT Utility

DL - 4.10 • CommonBIT Utility

DH-3.2.1 1 DL-4.1

DH - 3.2.6 1 DL - 4.6

DH -3.2.9 1 DL -4.9

DH - 3.2.10 1 DL -4.10

Figure 34. HLD to LLD Database Entries

Portions of the text for these four LLD elements are presented below [Loc96b]. The text

of the LLD elements is provided to show the depth and breadth of the design at this point

in the software's development.

DL - 4.1 1553 Driver

This CSC is the interface between the AS and the 1553B Devices on the
[Input/Output Processor] IOP. This CSC is designed to be a VxWorks 10
compatible driver that is accessed via the VxWorks 10 System.

DL - 4.6 POBIT Utility

This CSC, when activated by the Bootstrap CSC, performs a Power-On
Built-In-Test (POBIT) of the processor modules and the [Input/Output Module]
IOM.

125

DL - 4.9 MIBIT Utility

This CSC, when activated by the Application Software (AS), performs a
Maintenance Initiated Built-In-Test (MIBIT) of the processor modules and the
[Input/Output Module] IOM.

DL - 4.10 CommonBIT Utility

This CSC encapsulates BIT Test Modules that are shared between the
EPOBIT, PBIT and MIBIT CSCs.

In the C-17 software development artifacts, the code modules are not uniquely identified

by a nested number, so they could not be translated into the identification method from

SETA. However, the names of the code modules and their corresponding LLD elements

were identical. For the purposes of this demonstration, the code modules are given the

same numeric identifiers as their corresponding elements in the LLD from where they are

traced.

Each element in the LLD is decomposed in a manner similar to the previously

described decompositions. For example, the driver for the 1553 Data Bus, DL - 4.1, is

decomposed into DL - 4.1.1 through DL - 4.1.13. Each subelement is further

decomposed into two more subelements. The first subelement lists the specifications and

constraints of that particular component of the driver; the second subelement contains the

actual design. As an example, the text from the decomposition of DL - 4.1.1, the first

subelement of the 1553 driver, is provided below.

126

DL - 4.1.1 CDIOpenWrapper

This CSU initializes the VxWorks 1O system using the CDIOpen CSU.
Its main purpose is to convert data formats for the VxWorks 10 system.

DL - 4.1.1.1 CDIOpenWrapper Design Specification/Constraints

None.

DL - 4.1.1.2 CDIOpenWrapper Design

1. Input/output data elements - This CSU has the following I/O elements:
a. pDev - A pointer to a VxWorks I/O Device Header.
b. Name - Address of the name of the device.
c. Mode - VxWorks 1/0 Mode.
d. Integer returned by this function.

2. Local data elements - This CSU has the following local data elements:
a. Fd - A local VxWorks file descriptor (fd).
b. Result - A CDIStatusType which indicates the status of the CDIOpen.

3. Interrupts and signals - None

4. Algorithms - Calls the CDIOpen CSU and gets Result and Fd back.

5. Error handling - If an Ada exception occurs in this CSU, a failure status is
returned.

6. Data conversion - Converts VxWorks 1/0 Open syntax to Ada-specific
CDIOpen syntax.

7. Use of other elements - CDIOpen

8. Logic flow - Returns success status when CDIOpen returns success
and returns failure if CDIOpen fails or an Ada exception occurs.

9. Data structures - None.

10. Local data files or database - None.

11. Limitations - None [Loc96b].

127

Decomposition and trace database entries are displayed in Figures 35 through 38,

respectively, for the following LLD elements: 1553 Driver, POBIT Utility, MIBIT Utility,

and CommonBIT Utility. In these figures, only the portions of software selected in

Section 5.8.4, to be continued in the traceability demonstration, are shown. This software

includes portions of the 1553 Driver and the BITs.

DL -4.1 1 L-4. 1.1

__________________DL - 4.18.

DL -4.1.8 1 DL -4.1. 8.1
__DL - 4.1.8.2

DL -4.1.90 1 DL -4.1.9.1
_____ ____ _____ ____ DL - 4.1.1.2

DL -4.1. 10 1 DL -4.1.10.1
____ ___ ____ ___ DL -4.1.10.2

DL -4. 1.111 DL S- 4.1.11.1

DL -4.1.9.2 1 CSU -4. 1.9.2

DL -4.1.10.2 1 CSU -4.1.10.2

DL -4.1.11.2 1 CSU -4.1.11.2

Figure 35. LLD to Code Database Entries for 1553 Driver

128

DL -4.6 1 DL -4.6.1

DL - 4.6.55

DL - 4.6.28 1 DL - 4.6.28.1
DL - 4.6.28.2

DL - 4.6.28.2 1 CSU - 4.6.282

Figure 36. LLD to Code Database Entries for POBIT Utility

DL -4.9 1 DL -4.9.1

DL - 4.9.34

DL -4.9.28 1 DL -4.9.28.1
DL - 4.9.28.2

DL -4.9.31 1 DL -4.9.3 1.1
DL - 4.9.3 1.2.

DL - 4.9.28.2 1 CSU - 4.9.282

D5L -4.9,31.2 1 CSU -4.9.31.2

Figure 37. LLD to Code Database Entries for MIBIT Utility

129

DL-4.10 1 DL-4.10.1

DL - 4.10.41

DL-4.10.34 1 DL-4.10.34.1
DL - 4.10.34.2

DL- 4.10.36 1 DL-4.10.36.1
DL - 4.10.36.2

DL- 4.10.37 1 DL- 4.10.37.1
DL - 4.10.37.2

DL -4.10.34.2 CSU-4.10.34 .2

DL - 4.10.36.2 1 CSU- 4.10.36.2

IDL-4 ,10 , 2 1 CSU-4.10.,3.2

Figure 38. LLD to Code Database Entries for CommonBIT Utility

The CSUs traced thus far are listed below. The CSUs are described by the CSC in which

they are contained and the name of the actual procedure or function in code. The code for

the CSUs that are traced in the demonstration is contained in Appendix B. The code is

included in this research for completeness, to show the entire path from the statement in

the ORD to the actual code.

CSU - 4.1.8.2 :1553 Driver, CDI_Open

130

CSU - 4.1.9.2 :1553 Driver, CDIClose

CSU - 4.1.10.2 :1553 Driver, CDIRead

CSU - 4.1.11.2 :1553 Driver, CDIWrite

CSU - 4.6.28.2 : POBIT Utility, RRPT

CSU - 4.9.28.2 : MIBIT Utility, RRPT

CSU - 4.9.31.2 : MIBIT Utility, Run_1553_TestGroup

CSU - 4.10.34.2 : CommonBIT Utility, CommonBITOLBT

CSU - 4.10.36.2 : CommonBIT Utility, CommonBITMCPT

CSU - 4.10.37.2 : CommonBIT Utility, CommonBITRAPT

5.8.7 Software Requirements to Validation Tests. Software requirements RO -

3.2.2 and RO - 3.2.8 are decomposed into several subrequirements. The software

requirement for the 1553 Data Bus driver, RO - 3.2.2, is decomposed into RO - 3.2.2.1

through RO - 3.2.2.5. Each of the five subrequirements is decomposed further, and

eventually yields 62 lowest-level requirements. Once again, refer to Figure 28 for a

partial decomposition and description of RO - 3.2.2.

As before, for this demonstration, only RO - 3.2.2.1 and RO - 3.2.2.2 will be

traced to the validation tests in the demonstration. Figure 39 shows the database entries

for the traces of the software requirements to the validation tests. The decomposition of

software requirements RO - 3.2.2.1 and RO - 3.2.2.2 were shown in Figures 28 and 30.

131

RO - 3.2.2.2. 1.1 1 TR - 3.3.3.5.3.2
TR - 3.3.3.5.5.1

RO - 3.2.2.2.1.2 1 TR - 3.3.3.5.3.3
RO - 3.2.2.2.1.3 1 TR - 3.3.3.5.3.1

RO - 3.2.2.2.1.4 1 TR - 3.3.3.5.3.1

RO - 3.2.2.2.1.5 1 TR - 3.3.3.5.3.2
_____________________ TR - 3.3.3.5.3.3

RO - 3.2.2.2.1.6 1 TR - 3.3.3.5.3.3

RO - 3.2.2.2.1.7 1 TR - 3.3.3.5.4.1

RO - 3.2.2.2.1.8 1 TR - 3.3.3.5.4.1

RO - 3.2.2.2.1.9 1 TR - 3.3.3.5.7.1

RO - 3.2.8.1.4.2.17 1 TR - 3.3.3.5.1.

RO - 3.2.8.2.3. 1.1 1 TR - 3.3.3.5.13.16

RO - 3.2.8.2.3.3. 1. 1 1 TR - 3.3.3.5.15.5

RO - 3.2.8.2.3.3.1.7 1 TR - 3.3.3.5.15.5

RO - 3.2.8.2.3.3.3.1 1 TR - 3.3.3.5.15.3

RO - 3.2.8.2.3.3.3.6 1 TR - 3.3.3.5.15.3

RO -3.28.2..3..1 1TR 3.33.515.

RO - 3.2.8.2.3.3.5.2 1 TR - 3.3.3.5.15.7

RO - 3.2.8.2.3.3.5.3 1 TR - 3.3.3.5.15.7

RO - 3.2.8.2.3.3.5.4 1 TR - 3.3.3.5.15.7

RO - 3.2.8.2.3.3.5.5 1 TR - 3.3.3.5.15.7

Figure 39. Database Entries for Software Requirements to Validation Tests

132

The text for two of the validation tests are presented below. The text of the

validation tests are provided to show the depth and breadth of the test process that ensures

the requirements are satisfactorily met.

TR - 3.3.3.5.13.16 : 1553 Receiver RAM Test

This test verifies correct operation of the 1553 Receiver RAM TEST
module (RRPT). The RRPT tests the entire 1553 Receiver RM address space for
address, data, coupling, or stuck-at bit faults. This test will perform the following:

a) Verify the RRPT runs in the IOP,
b) Verify RRPT runs during POBIT and MIBIT,
c) Confirm the RRPT tests 1553 Receiver RAM for both chipsets as

required,
d) Confirm RRPT ability to verify required failure recording in POBIT

and MIBIT mode, and
e) Confirm RRPT verifies continuation requirements after failure
[Loc96c].

TR - 3.3.3.5.15.5 :1553 Off-line Loopback Test

This test verifies the correct operation of the 1553 Off-line Loopback Test
module (OLBT). The OLBT tests that the ACE BC Off-Line Self-Test passes and
that the 1553 chipsets are capable of transmitting and receiving messages on both
mission buses while in Self-Test mode. This test will:

a) Verify the OLBT runs in the IOP only,
b) Verify OLBT runs during EPOBIT and MIBIT,
c) Verify that OLBT declares a fault if the Off-Line Self-Test fails,
d) Verify that OLBT declares a fault if transmission or receipt of messages

is unsuccessful on either bus in Self-Test Mode,
e) Verify that OLBT performs required failure recording, and
f) Verify that OLBT meets continuation requirement after failure
[Loc96c].

This concludes the demonstration of complete traceability of a single requirement

from the ORD to the code, and from the software requirements to the validation tests.

133

The next step is to perform the software effectiveness calculation, which is accomplished

in the next section.

5.9 Effectiveness of 1553 Data Bus Software

5.9.1 Introduction. The software effectiveness calculation below is only for the

portion of the 1553 Data Bus software used in the demonstration of SETA. For the

purposes of the demonstration, it was necessary to focus on a select portion of the

software requirements, since tracing all the requirements would have become unwieldy.

5.9.2 Effectiveness Components. The following effectiveness components were

taken from the database entries in the demonstration. Listed below are the component

name, the number of complete traces divided by the number of elements that required a

trace, and the result given as a percentage:

Requirements to HLD: 21/21 = 100%

HLD to LLD: 4/4 = 100%

LLD to Code: 10/10 = 100%

Requirements to Tests: 29/29 = 100%

The results of validation tests are not available at this time, since delivery of the

CIP from Lockheed Martin will not officially occur until a year from now [Est96].

Therefore, the component for the effectiveness value for the percentage of validation tests

satisfactorily passed is 0%. Of course, multiplying these components together yields an

overall effectiveness value of 0%. This overall effectiveness rating is misleading, since

134

the software has some degree of effectiveness (based on the other components), and the

data on the percentage of validation tests passed exists, but is just not available.

5.9.3 Significance of Overall Effectiveness Value. This overall effectiveness

value of 0% is insignificant in terms of describing the state of the software. First of all,

the traceability information must be available to make any worthy effectiveness

evaluation using SETA. Secondly, it is understood that SETA is being applied after-the-

fact, so it should not be surprising to see the traceability components at 100%. The

demonstration emphasizes the fact that the traceability data must be maintained from the

onset of development, and all the data must be available to make a credible overall

effectiveness evaluation.

5.10 Summary

5.10.1 Introduction. The purpose of this chapter was to demonstrate SETA, the

approach to evaluate software effectiveness by using traceability of requirements, that

was developed in Chapter 4. Traceability was successfully demonstrated using data from

the development process of the software for the 1553 Data Bus, which connects various

components of the avionics system aboard the C-17 aircraft.

After describing the process that led to the decision to demonstrate SETA, and the

search for traceability data, some background information was provided on the avionics

system components of the C- 17. More detailed background information was provided for

the 1553 Data Bus, a major component of the C-17 avionics system. Then, the

correlation between the software development terminology at the C-17 SPO and SETA

135

was outlined. Traceability was demonstrated by completely tracing selected requirements

for the 1553 Data Bus from the ORD to the code, and from selected software

requirements for the 1553 Data Bus to the validation tests. Finally, the software

effectiveness calculation was determined, although it led to a misleading overall

effectiveness value of 0%. The process of applying actual data to SETA revealed some

interesting information about requirements traceability and SETA itself.

5.10.2 Traceability Must Start Early. The demonstration showed the importance

of one of the assumptions in SETA; traceability must be maintained as the software is

developed, used, and maintained. The job of maintaining complete requirements

traceability is made much easier if it is done incrementally, as the software is developed.

This small demonstration also showed how difficult it is to establish requirements

traceability on a program that has been in the development stages for many years. The C-

17 SPO has dedicated one person, full-time, to establish complete requirements

traceability for the operating system utilities of the CIP; after almost two years, the effort

is far from complete [Est96].

5.10.3 Additional Benefits of Traceability. In addition to evaluating software

effectiveness as it is defined in this research, traceability offers additional benefits to the

software developer. Traceability allows the developer to see the impact that change to

one artifact of the software has on other artifacts. Also, traceability may serve as an

indicator of progress in the software development process; for example, progress can be

measured by the percentage of software requirements that are traced to the design.

Additional benefits of traceability are discussed in further detail in Chapter 6.

136

5.10.4 Limitations Revealed by the Demonstration. The demonstration revealed

some limitations to SETA. This is beneficial to the research, since these "bugs" would

have to be addressed before SETA is developed into a full methodology. A

demonstration with actual software development data from a real-world project is an

appropriate way to "exercise" SETA and uncover its limitations. The limitations of SETA

are discussed in further detail in Chapter 6.

137

6. Conclusions and Recommendations

6.1 Introduction

This chapter begins with a summary of the research, then revisits the objectives

and questions from previous chapters to determine whether or not they were adequately

addressed by the research. Section 6.4 outlines some additional benefits to establishing

and maintaining requirements traceability throughout the software development process.

The next section, 6.5, addresses the issue of requirements traceability in military

documentation, and suggestions for future research are presented in Section 6.6. Final

comments are offered in Section 6.7.

6.2 Research Summary

6.2.1 Overview. The focus of the research changed when it was determined that

virtually no information existed on software effectiveness. Initially, the plan was to

review the available information on software effectiveness and the methodologies to

evaluate software effectiveness. Then, from this information, a working definition of

software effectiveness and an evaluation approach would be outlined. Unfortunately,

there was very little information on software effectiveness, so the focus changed to the

creation of a definition for software effectiveness. Based on the proposed definition, an

approach to evaluate software effectiveness was outlined. Since this is a new approach to

software effectiveness, it is admittedly a "straw man" that is subject to criticism. It was

AFOTEC's desire to obtain a developed approach to evaluate software effectiveness.

138

As created in this research, the definition of software effectiveness follows a

simple, logical pattern. Software effectiveness refers to how well the software performs.

The desired software performance is specified by the software requirements; therefore,

software effectiveness specifies to what extent the software requirements are met.

SETA, the approach to evaluate software effectiveness, also follows a simple,

logical pattern. If software effectiveness is defined by the degree to which the software

requirements are met, one way to ensure the requirements are met is to trace the

requirements through all the phases of the software development process. Assuming

complete and correct requirements, by completely tracing the software requirements to

the design and then to the code, and also tracing from the requirements to validation tests,

the requirements will be satisfied. The degree to which the requirements are satisfied is

the "degree of traceability" between selected software artifacts, i.e., the percentage

calculated from the number of the traces that actually do exist and the number of traces

that should exist. The degrees of traceability between selected software artifacts, coupled

with the percentage of validation tests passed satisfactorily, determine the effectiveness of

the software.

It was shown that the traces could be implemented in a database, and the degree of

traceability is calculated by searching such a database for the number of complete traces,

and dividing by the total number of software elements (requirements, design components,

etc.) that should be traced.

139

SETA was demonstrated with actual data from a small portion of the C- 17

avionics software. The demonstration revealed some minor limitations in SETA as well

as the implementation. These are outlined below.

6.2.2 Limitations of SETA. The demonstration in Chapter 5 revealed some minor

limitations that must be addressed prior to developing SETA into a full methodology.

The largest limitation is the inability to validate SETA as part of this research. Although

SETA makes sense according to the definition of software effectiveness and follows a

logical progression, the lack of a validation step may call the credibility of SETA into

question. SETA may be validated incrementally by applying the approach to a small

software subsystem, assessing the utility of SETA, then applying the approach to larger

and larger portions of a system. During this incremental validation of SETA, problems

with the approach would be resolved and SETA could then be validated on a complete

system.

There are two other limitations in the finer details of SETA. In tracing the lowest-

level elements from one software artifact to a highest-level element of another artifact,

the details of the lowest-level elements are obscured by the generality of the highest-level

element. Consider an example from the demonstration; some of the BITs, such as the

1553 RAM Test, were decomposed into extremely detailed requirements. These minute

requirements included testing individual bits of registers and comparing registers for

equality. When these details are traced to the HLD element "1553 RAM Test", they are

accounted for, but it may not be clear where they are specifically addressed until the

"1553 RAM Test" HLD element is decomposed into smaller subelements. Also, what the

140

"highest-level" element in the next artifact may be open to interpretation. For example,

should the software requirements from the 1553 RAM Test be traced to the HLD element

for the 1553 RAM test? Should the requirements be traced to the "1553 Tests" HLD

element, then decomposed into the 1553 RAM Test and other tests? Perhaps the software

requirements should be traced to the HLD element "Tests", and decomposed from that

point. This obfuscation can be remedied by tracking the detailed subelements that are

traced to a highest-level element during the decomposition. In short, these detailed

subelements could be tracked with an intra-trace to account for the details during

decomposition within an artifact, as opposed to the inter-traces that establish the

relationship between artifacts that have been discussed throughout this research.

Another limitation involved the partial traces in the database. A partial trace in

the database is indicated by the appearance of elements in the "element(s) traced to"

column and a 0 for the complete trace flag for that entry. Defined in this way, "partial

traceability" does not differentiate between the two following extreme cases: 1) an

element that needs to be traced to one additional element for complete traceability and 2)

an element that needs to be traced to ten (or one hundred) additional elements for

complete traceability. This minor limitation could possibly be addressed by inserting a

fractional value in the complete trace flag field in the database entry. This fractional

value would have to be determined by an experienced software developer that was

familiar with the project, and the value would be just an estimate. This value would

indicate how complete the trace is in its present state; therefore it would determine how

many additional elements would need to be added to the "element(s) traced to" field to

141

complete the trace from the element in the "element traced from" field. Unfortunately,

this introduces more subjectivity to SETA.

A final limitation to SETA concerns integration testing. The only traces in SETA

that involved testing were from the software requirements to the validation tests and from

the lowest-level LLD elements to the unit tests. A more thorough traceability approach

would have included a combination of higher-level LLD elements traced to integration

tests, to ensure the individual CSUs functioned together properly. This limitation, as well

as the other limitations mentioned above, do not discredit SETA; they merely point out

issues that must be addressed before developing SETA into a full methodology.

6.2.3 Limitations of Database Implementation. There are also limitations to the

database implementation that must be addressed before it can be used to monitor

traceability and evaluate software effectiveness. As stated before, this database

implementation is not to be taken as a model of efficiency or optimization; it would have

to be analyzed by someone with specialized skills in database design before it could be

developed into a usable product.

The biggest drawback of the database implementation is the duplication of data

during decomposition. Each decomposed element has its subelements "copied" back to

the "element to be decomposed" column of another database entry. Refer to Figure 40 for

an example.

142

0 -2.1.
0-2.4

RO-2.1 -02.

RO-2.1. 0

RO- 2.1.,0 " 0 -

R0-2.-2.10

RO-2.2 , 0-2.2.

0 2.2.4

RO 2..2 k"J0-2.2RO - 2.1.3 0ROR - 2...42
RO -O - 2.2.3RO-2.2.2 0

RO - 2.3.5

Figure 40. Example Decomposition Database Entries

Figure 40 shows the duplication of data quite clearly as each decomposition in the

right column is transferred to the "element to be decomposed" column on the left.

Perhaps a more efficient method of database implementation would be to conceptually

"grow" the database horizontally in addition to vertically. Refer to Figure 41 for a

possible alternate database design.

143

RO-2 1 RO- 2.1 1 RO- 2.1.1 RO- 2.1.1.1
RO - 2.1.1.2 *

RO - 2.1.1.3

RO - 2.1.1.4
RO - 2.1.2 1 RO - 2.1.2.1

RO - 2.1.2.2
RO - 2.1.2.3

RO - 2.1.3 1 RO - 2.1.3.1
RO - 2.1.3.2

RO - 2.1.4 1 RO - 2.1.4.1
RO - 2.1.4.2

RO - 2.1.4.3
RO - 2.2 RO - 2.2.1 1 RO - 2.2.1.1

RO - 2.2.1.2

RO - 2.2.1.3
RO - 2.2.1.4

Figure 41. Possible Alternate Database Design

Another limitation with the implementation of SETA is the overhead required to

determine the existence of a trace in the database. To distinguish between a trace and

decomposition information, SETA requires a comparison between the element codes in

columns (1) and (3) of the database. If the codes are the same, the entry is decomposition

information; if they are different, the entry is trace information. This could be remedied

by a flag for each entry indicating whether the entry is a trace or decomposition

information.

Despite the minor limitations in SETA and the implementation, the research

adequately addressed both the goals and questions outlined in the previous chapters.

144

6.3 Addressing Objectives and Questions from Previous Chapters

6.3.1 Meeting Research Objectives. The primary objectives of this thesis were to

develop a working definition of software effectiveness and outline an approach to

evaluate software effectiveness. These goals came directly from the problem statement in

Section 1.2, which is repeated below.

AFOTEC does not have a methodology to directly address the evaluation of
software effectiveness of the software portion of new systems acquired by the Air Force
and currently depends on the evaluation of system effectiveness to determine software
effectiveness.

The primary objectives were detailed into four objectives, which were initially presented

in Chapter 1. A lack of information on software effectiveness in literature and in practice

led to a modification of these objectives in Section 3.5. The four objectives of the

modified research plan are addressed below.

1) Develop a working definition of software effectiveness.

This objective was met in the subsections leading up to Section 3.10, where

software effectiveness was defined as the degree to which the software requirements are

satisfactorily met.

2) Research effectiveness in other areas of study, including AFOTEC's
definition of system effectiveness. Also research other performance-based software
attributes and activities such as software quality, software reliability, software
testing, and software verification and validation.

This objective was thoroughly addressed in Chapters 2 and 3.

145

3) Since there are no software effectiveness methodologies to review, develop
one approach to evaluate software effectiveness to recommend to AFOTEC/SAS to
develop into a full methodology.

This objective was addressed in Chapter 4, with the development of SETA to

evaluate software effectiveness through requirements traceability. A database

implementation for SETA was also outlined in this chapter. In addition, database

operations were described that allow the retrieval of information, such as an effectiveness

value, for the software product being evaluated.

4) Demonstrate the operation of the recommended approach to evaluate
software effectiveness.

This objective was addressed in Chapter 5. The traceability portion of SETA was

addressed in Section 5.8 and the software effectiveness calculation was completed in

Section 5.9.

6.3.2 Answering Research Questions. While focusing on the research objectives,

some questions were raised that concerned AFOTEC, the sponsor of this research. The

four research questions from Section 1.4 are addressed below.

1) Does this software effectiveness evaluation support AFOTEC's system
effectiveness evaluation?

Yes, this evaluation approach supports AFOTEC's system effectiveness

evaluation by ensuring the software requirements (which are a large part of the system

requirements) are met. After all, AFOTEC's definition of system effectiveness, as

specified in Section 3.7, is defined as meeting system operational requirements.

2) How can current software development practices facilitate the evaluation
of software effectiveness?

146

Assuming SETA is used to evaluate software effectiveness, the following

software development practices would facilitate the evaluation:

" Unique identification of elements within software artifacts.

• Requirements traceability

• Requirements management

• Peer reviews

These practices can aid in the evaluation of software effectiveness since they all ensure

the proper application of SETA. SETA requires unique identification of the software

elements (requirements, design components, etc.). Any attempt at requirements

traceability would aid in establishing the database implementation. SETA assumes

correct and complete requirements; in the real world, this assumption can be addressed by

aggressive requirements management. Finally, peer reviews aid in any approach to

improve software; decomposition and trace information can be "peer reviewed" in the

same manner as requirements, design, or code.

3) Can the effectiveness evaluation be used during the software development
process as an early indicator of the software's effectiveness, i.e., before it reaches
AFOTEC for OT&E?

Yes, the effectiveness evaluation can serve as an early indicator of software

effectiveness. From the onset of development, the components of effectiveness described

in Section 4.9.1 can be used as early indicators. As software development continues,

progress can be monitored by reviewing the degrees of traceability between the

requirements and the design, the design and the code, etc. Although a final effectiveness

147

value may not be useful before the project has entered the coding and testing phases of

development, a substantial amount of information can be gathered during the initial

stages of software development.

4) Can the effectiveness evaluation be used to determine the product's
readiness to enter OT&E?

Yes, indirectly. The effectiveness evaluation can be used to determine if the

software is not ready to enter OT&E. As stated previously, SETA provides a substantial

amount of information about the software during its development. Consider a software

project that is supposedly ready to enter OT&E. By following SETA, it is determined

that only half the software requirements are addressed by the design. In addition, only

half the requirements are traced to validation tests, and all these tests have failed. This

information implies that something is obviously wrong with the software, and it is

certainly not ready to enter OT&E.

6.4 Additional Benefits of SETA

6.4.1 Introduction. While developing SETA (and the implementation), some

additional benefits of requirements traceability were uncovered. One such benefit is that

SETA can serve as an early indicator and can provide insight to Air Staff (one of

AFOTEC's concerns) as well as the SPO during software development. Other benefits

were also discovered with the database implementation.

6.4.2 Additional Benefits of Database Implementation. Searching on selected

element codes within the database can reveal a considerable amount of information about

the software being developed. For example, consider the software requirements. The

148

software requirements can be identified by function and the database can be searched to

determine what functions have been addressed in the design. If the customer is concerned

over the user-interface, the database can be checked to see how many of the user interface

requirements have been designed and tested. In addition, by selecting element codes

unique to a certain software development process, software requirements can be sorted by

design team, and employee progress can be monitored as requirements are addressed by

the design. Similar database searches can focus on uniquely identified requirements that

involve safety or performance issues.

6.4.3 Additional Benefits of Tracing Requirements. Besides ensuring

requirements satisfaction, there are many benefits in tracing requirements. In fact, it is

considered by some to be a necessary part of large-scale software development [Dav95,

Lin93, Wat94]. Requirements traceability, unlike testing and validation, improves

confidence in meeting requirements before the product is complete [Cro96]. Also, traces

highlight the effect that a change to one artifact can have on the other artifact in the

software development process. For example, if a requirement changes, the traces indicate

the impact on the design, the code, and the tests used to validate that requirement. In

addition, traceability helps prevent "bells and whistles" from being added into the design

or the code if the design elements or code modules are not traced from a specific

requirement. Furthermore, the absence of traces from requirements to validation tests

exposes holes in test coverage. In summary, Lindstrom emphasizes that requirements

traceability "can be one of the best mechanisms for ensuring completeness and

monitoring progress" during software development [Lin93]. These additional benefits

can be realized in SETA as a result of a natural occurrence within the database

149

implementation, which will be referred to as a backtrace. In order to explain what

backtraces are, and what benefits can be derived from them, it is necessary to use the

logical structures and arrows initially presented in Chapter 4.

Put simply, backtraces refer to traces that are opposite in direction to the

"forward" traces discussed in this research. Backtraces are a consequence of the creation

of the traces used in the determination of software effectiveness. While not addressed at

all in SETA, since they make no contribution to the evaluation of software effectiveness,

backtraces are of significant importance to warrant a brief discussion. An example of

backtraces for HLD to software requirements is shown in Figure 42.

Requirements HLD
Structure Structure

RO -1 DH-IR O -1.1 4 D - .

RO - 1.1 ADHR- 1. 1
RO- 1.2 DH- 1.2

RO -2 DH-2RO -2.1 4..................:: H 2.

RO-2.1 D-2.1

RO -2.2 DH -2.2

RO -2.3 DH -3

". . DH-4

Backtrace

Figure 42. Example of HLD to Requirements Backtraces

Backtraces can be analyzed to reveal more information about the software being

developed. First, backtraces can be used to identify errors in traces. Looking at how

backtraces connect design elements to requirements provides a way to double-check the

150

established traces. In Figure 42, if RO - 2.3 is actually supposed to be traced to DH - 3

instead of DH - 4, analyzing all the backtraces from DH - 4 and DH - 3 will reveal this

incorrect trace. Granted, this can also be found by analyzing the requirement to HLD

traces, but the backtraces provide this "error-checking" from another perspective.

More importantly, backtraces reveal excess elements in the software artifacts.

Consider Figure 43, which shows the traces from Figure 42.

Requirements HLD
Structure Structure

RO- 1 DH- I
RO- 1.1 DH- 1.1

RO- 1.2 DH- 1.2

RO -2 DH-2

RO- 2.1 DH- 2.1
RO - 2.2 DH - 2.2

RO - 2.3 DH - 3
SR DH-4

Trace

Figure 43. Traces from Example of HLD to Requirements Backtraces

Assume the HLD is complete, and the developers are ready to begin a more detailed

design. By analyzing the backtraces, and eliminating each design element that is traced

back to a software requirement, what remains are excess design elements. From Figure

42, DH - 3 is an excess design element. This same procedure can be used to find excess

code (sometimes known to as "dead" code) and excess tests. These excess elements are

sometimes referred to as "gold-plating" that waste valuable development resources. It

151

should be noted that these excess elements cannot be arbitrarily deleted, since they may

be traced to other elements in the development process.

There are other reasons why "excess" design elements may appear in the database.

These design elements may be a result of requirements that were changed or eliminated,

and it may be more difficult to remove the design elements than to leave them in the

design. Reuse is another reason why excess design elements may exist in the database; if

a design component is reused that can adequately address certain software requirements,

yet has "extra" features that are not necessary in the design, these features will appear as

"excess" elements and will be discovered by backtraces.

Finally, backtraces can aid in regression testing. Consider Figure 44, which

shows the traces from Figure 43 with a slight modification. Software requirement RO -

2.2 has been changed. It has been determined that a slight modification of DH - 4 will

satisfactorily address this changed requirement. Therefore, to reflect this change in

traceability, the trace from RO - 2.2 to DH - 2 has been changed to now trace to DH - 4.

Figure 44 reflects the updated trace for RO - 2.2.

By using backtraces, all the requirements that trace to the modified design element

DH - 4 can be identified. In this case there is one requirement that traces to the modified

design element: RO - 2.3. As a part of regression testing, all the validation tests which

this requirement traces to must be reaccomplished, since the change in the design element

it traces to may no longer address the requirements satisfactorily.

In summary, backtraces are a byproduct of establishing requirements traceability

to measure software effectiveness. Although backtraces are not part of the software

152

Requirements HLD
Structure Structure

RO- I DH - 1

RO - 1. 1- " DH- 1.1

RO -1.2 DH- 1.2
RO - 2 DH -2

RO- 2.1 DH - 2.1

RO -2.2 DH - 2.2
RO - 2.3 DH - 3

* DH -4

Trace

Figure 44. Example of HLD to Requirements Traces with Requirement Change

effectiveness evaluation, they warrant a brief discussion since they can be useful in

detecting "gold-plating" in the design, "dead" code, or unused tests. Backtraces are also

used to validate existing traces between software artifacts. Lastly, backtraces are used

after requirements and design changes to aid in regression testing. Incidentally,

backtraces can be viewed in the Traceability Matrix in Figure 23 from Section 4.8.6 by

looking at the shaded squares along a vertical line connecting a specific HLD element

with a software requirement.

6.5 Practicality of Implementing SETA

As stated previously, there are virtually no references to software effectiveness in

the available documentation. Since SETA is based on requirements traceability, the

practicality of implementing the approach may be determined by the availability of

information on requirements traceability in current documentation and in practice.

153

There are references to requirements traceability in AFOTEC's software

evaluation documentation. There are also references to requirements traceability in MIL-

STD-498, and the Data Item Descriptions (DIDs) mentioned throughout the standard

[DoD94]. The references in MIL-STD-498 are significant, since up until recently, all

software development efforts were required to adhere to this standard. A search for

documentation on requirements traceability uncovered two articles stating that the DoD

mandated requirements traceability [Cro96, Wat94]. Subsequently, references to

requirements traceability were found in the one DoD regulation that was reviewed

[DoD96b].

6.5.1 Requirements Traceability in AFOTEC Documents. Requirements

traceability is addressed in two AFOTEC pamphlets. In the Software Operational

Assessment Guide, AFOTECPAM 99-102, Volume 8, requirements traceability from the

ORD to the system specification is considered "desirable" [AFO94b]. In addition,

complete requirements traceability by the development contractor is considered an

"absolute necessity" for complex systems [AFO94b].

The Software Maintainability Evaluation Guide, AFOTECPAM 99-102, Volume

3, describes traceability as "connecting programming information between all levels of

lesser and greater detail" and "a clearly defined trail between top-level requirements and

detailed implementation" [AFO94a]. Traceability is one of three documentation

characteristics that are evaluated to determine maintainability; the other two

characteristics are organization and descriptiveness [AFO94a]. In summary, AFOTEC

154

not only addresses requirements traceability as part of their own maintainability

evaluation, they also demand requirements traceability from the development contractor.

6.5.2 Requirements Traceability in MIL-STD-498. The former standard for

software development and documentation for the military, MIL-STD-498, has many

references to requirements traceability. For each document in the software development

process, requirements specification, design specification, test plans, etc., requirements

traceability plays a major role. MIL-STD-498 utilizes the DIDs to describe the format of

the previously mentioned documents. Requirements traceability is an established part of

the following DIDs:

1) System/Subsystem Specification (SSS)

2) System/Subsystem Design Description (SSDD)

3) Software Requirements Specification (SRS)

4) Software Design Description (SDD)

5) Software Product Specification (SPS)

6) Software Test Plan (STP)

7) Software Test Description (STD)

This is precisely the requirements traceability data needed for the software effectiveness

approach developed in Chapter 4. Unfortunately, MIL-STD-498 allows the

documentation to be tailored, allowing the software developer to eliminate the sections

concerning traceability from each of the documents mentioned above.

6.5.3 Requirements Traceability in DoDR 5000.2-R. The most profound

reference to requirements traceability was located in DoDR 5000.2-R [DoD96b], the

subject of which is provided below.

155

5000.2-R SUBJECT: Mandatory Procedures for Major Defense Acquisition
Programs (MDAPs) and Major Automated Information System (MAIS)
Acquisition Programs

The most shocking revelation in this document was that requirements traceability is not

only mandatory, it is used to certify readiness for OT&E. The text of the particular

paragraph is provided below.

3.4.3 Certification of Readiness for Operational Test and Evaluation.

The developing agency shall prepare a DT&E Report, and formally certify
that the system is ready for the next dedicated phase of operational test and
evaluation to be conducted by the DoD Component operational test activity. The
developing agency shall also provide software maturity criteria and performance
exit criteria necessary for certification for operational test. Risk management
metrics, measures, indicators, and associated thresholds shall include cost,
schedule, requirements traceability, and fault profile. A mission impact analysis
of unmet metrics shall be completed before certification for operational tests
[DoD96b].

All the references to requirements traceability in the documents above begs the question:

"Why is there no complete traceability data for large software development

projects, if requirements traceability is: 1) required by DoD regulation, 2) stressed in the

former standard for software development and documentation (MIL-STD-498), and 3)

considered an 'absolute necessity' by AFOTEC?"

Obviously, this level of traceability would have assisted the author in developing

the Chapter 5 demonstration. However, the more disconcerting thought involves all the

software development projects that have gone over-budget or beyond schedules because

of inadequate software development practices, including requirements traceability.

156

6.6 Recommendations for Future Research

There are many directions in which to continue this research effort; several are

listed below with some explanatory comments.

1) Survey software development organizations in the military as well as
industry, and document the efforts at complete requirements traceability.

Since requirements traceability is an essential factor in successful software

development, it would be useful to know the degree to which it is being accomplished in

the military as well as industry. This is especially true in the software development

efforts for the military, since requirements traceability is mandatory in all major software

projects.

2) Expand the software effectiveness approach developed in this research to
determine system effectiveness.

This expansion would require addressing the limitations to SETA and the

database implementation described above, and adding more components of traceability.

The additional system effectiveness components would include traces from ORD to

validation tests as well as traces from system requirements to validation tests.

3) Address the largest assumption in SETA concerning complete and correct
requirements.

The assumption concerning complete and correct requirements can be eliminated

from SETA by adding another step to the software development process. This additional

step is an aggressive requirements engineering program. By focusing on requirements

157

elicitation, requirements management, and requirements validation, complete and correct

requirements verge upon a reality, eliminating the assumption in SETA.

4) Address the assumption in SETA concerning complete and correct
traceability between software artifacts.

This assumption can be eliminated from SETA by adding yet another step to the

software development process. Formal methods may be used to ensure a complete and

correct "transition" from one software artifact to another. For example, formal methods

can be used to make the transition from software requirements to preliminary design,

preliminary design to detailed design, and from detailed design to code.

5) Perform a survey of requirements management tools.

Since there are dozens of commercial software products that aid in managing

requirements, perform a survey of the available tools. This survey would include a

thorough comparison and contrast of all the products to document strengths and

weaknesses, especially in the area of requirements traceability.

6) Implement SETA and apply it to a software development project.

6.7 Final Comments

6. 7.1 Importance of the Research. The importance of this research cannot be

overemphasized. In addition to addressing AFOTEC's concerns about a working

definition and evaluation method for software effectiveness, as well as their request to

add traceability from the ORD and to the unit tests, the research uncovered some insight

into the importance of requirements traceability. Granted, the definition and evaluation

158

method for software effectiveness may not be the best answer, but it is an answer, where

apparently no answer existed previously. Perhaps this research can serve as a launching

point for additional research on the topic of software effectiveness; then again, perhaps

the term "effectiveness" should be dismissed as a descriptive term for software.

6.7.2 Software Effectiveness; What's in a Name? In closing, something must be

said about "software effectiveness" and the nagging question from Section 3.3.4: "why is

it that no one else in the software development community seems to be concerned about

software effectiveness?"

As it turns out, software effectiveness may be just two words put together in an

attempt to describe the "goodness" of software. This in no way minimizes the importance

of software effectiveness (or this research), since AFOTEC's mission is to evaluate the

operational effectiveness of systems (and therefore software) for the Air Force. It may be

the case that AFOTEC has inherited the term effectiveness from their previous

evaluations of system effectiveness. It may also be time to examine the origin and

necessity of the word "effectiveness".

In his 1981 paper entitled, Operational Test and Evaluation of Software, Murch

quotes a report from 1970 that uses the term "effectiveness" as one of the five broad

categories of OT&E [Mur81]. Murch then describes effectiveness as an attribute that

should be assessed to determine the software's "readiness for operations" [Mur8 1]. It

certainly appears that "software effectiveness" is a direct descendant of "system

effectiveness".

159

Perhaps the term "software effectiveness" can now be put to rest as a vague term

that once had a purpose in software development but, in the light of the maturing

discipline of software engineering, no longer has a place. Then, more time and effort can

be spent on the policies and practices that improve the "goodness" of software and have

been studied extensively, such as software quality assurance, V&V, software process

improvement, and requirements traceability.

160

Bibliography

[AFO94a] Department of the Air Force. Software Maintainability Evaluation Guide.
AFOTECP 99-102, Volume 3. Kirtland AFB, NM: HQ AFOTEC, 15 June
1994.

[AFO94b] Department of the Air Force. Software Operational Assessment Guide.
AFOTECP 99-102, Volume 8. Kirtland AFB, NM: HQ AFOTEC, 15 June
1994.

[AF095] Department of the Air Force. Management of Operational Test and
Evaluation. AFOTECI 99-101. Kirtland AFB, NM: HQ AFOTEC, 2
October 1995.

[AF194a] Department of the Air Force. Developmental Test And Evaluation. AFI
99-101. Washington: DoD, 25 July 1994.

[AFI94b] Department of the Air Force. Operational Test And Evaluation. AFI
99-102. Washington: DoD, 22 July 1994.

[AFI94c] Department of the Air Force. Test And Evaluation Process. AFI 99-103.
Washington: DoD, 25 July 1994.

[AMC93] Air Mobility Command. Operational Requirements Document for C- 17
Acquisition. AMC 002-091. HQ AMC/XPQC, Scott AFB, IL. 15

September 1993.

[Ash94] Ashqar, Abdelhaleem, and others. "Use of a Group Support System to
Evaluate Management Information System Effectiveness," Journal of
Systems and Software, 24: 267-275 (March 1994).

[Bow85] Bowen, Thomas P., Gary B. Wigle, and Jay T. Tsai. Specification of
Software Quality Attributes. Technical Report RADC-TR-85-37 Vol 1.
Griffiss Air Force Base, New York: Rome Air Development Center,
February, 1985.

[Cla92] Clapp, Judith A. and Saul F. Stanten. A Guide to Total Software Quality
Control. Technical report RL-TR-92-316. Griffiss Air Force Base,
New York: Rome Laboratory, December, 1992.

[Cro96] Cross, Gary. "Tracking the Changing Face of System Development,"
Real-Time Magazine, 1: 10-12 (January-March 1996).

161

[DAF94] Department of the Air Force. "Guidelines for Successful Acquisition and
Management of Software Intensive Systems: Weapons Systems,
Command and Control Systems, Management Information Systems",
Software Technology Support Center, 1994.

[DAF95] Department of the Air Force. "Requirements Engineering and Design
Technology Report", Software Technology Support Center, 1995.

[Dav95] Davis, Alan M. "Tracing: A Simple Necessity Neglected," IEEE Software,
12: 6-7 (September 1995).

[Des95] Dessert, Donald M., Colonel, USAF, Test Director and others. "C-17
Initial Operational Test and Evaluation (IOT&E) Final Report." HQ
AFOTEC, Kirtland AFB, NM. 27 October 1995.

[DoD94] Department of Defense. Software Development and Documentation.
MIL-STD-498. Washington: DoD, 5 December 1994.

[DoD96a] Department of Defense. Defense Acquisition Program Procedures.
DoDI 5000.2. Washington: DoD, 15 March 1996.

[DoD96b] Department of Defense. Regulation, Subject: Mandatory Procedures for
Major Defense Acquisition Programs (MDAPs) and Major Automated
Information System (MAIS) Acquisition Programs. DoDR 5000.2-R.
Washington: DoD, 15 March 1996.

[Ens96] Enslow, Greg. Technical Sales Representative, Microsoft Developer Tool
Sales Team, Microsoft, Bellevue WA. Telephone interview. 31 July, 1996.

[Est96] Estes, Nelson. Avionics Integrated Product Team Member, C-17 System
Program Office, Wright-Patterson AFB, OH. Personal interview. 30
September, 1996.

[Eva88] Evans, Patricia A. and others. "An Instrument for Measuring Effectiveness
of Information Systems," Computers & Industrial Engineering, 14: 227-
236 (1988).

[Gil85] Gillis, P. D. "Refining Computer-Based Invention Through Computer-
Aided Evaluation and 'State-of-the-Art' Tutorial Design," Journal of
Educational Technology Systems, 13: 315-323 (1984-1985).

[Gla92] Glass, Robert L. Building Quality Software. Englewood Cliffs, New
Jersey: Prentice-Hall, 1992.

162

[Hed96] Hedstrom, Margaret. Software Developer (former Software Quality
Engineering Group member), IBM Software Solutions at Research
Triangle Park, IBM, Raleigh NC. Telephone interview. 31 July, 1996.

[Het88] Hetzel, William C. The Complete Guide to Software Testing. Wellesley,
Massachusetts: QED Information Sciences, Inc., 1988.

[Hua95] Huarng, Adam S. "A Comparative Study of Systems Development
Effectiveness," Journal of Computer Information Systems, 35: 42-49
(Summer 1995).

[Hum89] Humphrey, Watts S. Managing the Software Process. Reading,
Massachusetts: Addison-Wesley, 1989.

[IEE86] Institute of Electrical and Electronics Engineers. IEEE Standard for
Software Verification and Validation Plans. ANSIIIEEE Std 1012-1986.
New York: IEEE, 1986.

[IEE90] Institute of Electrical and Electronics Engineers. IEEE Standard Glossary
of Software Engineering Terminology. ANSI/IEEE Std 610.12-1990. New
York: IEEE, 1991.

[ISO91] International Organization for Standardization, International
Electrotechnical Commission. Information Technology - Software
Product Evaluation - Quality Characteristics and Guidelines for their
Use. ISO/IEC 9126. Switzerland: ISO/IEC, December 1991.

[Kit89] Kitfield, James. "Is Software DoD's Achilles' Heel?", Military Forum, 28-
35 (July 1989).

[Lew92] Lewis, Robert 0. Independent Verification and Validation: A Life Cycle
Engineering Process for Quality Software. New York: John Wiley &
Sons, Inc., 1992.

[Lin93] Lindstrom, David R. "Five Ways to Destroy a Development Project,"
IEEE Software, 10: 55-58 (September 1993).

[Lo94] Lo, Hong K., and others. "Evaluation Framework for IVHS," Journal of
Transportation Engineering, 120: 447-460 (May-Jun 1994).

[Loc96a] Lockheed Corporation. "Computer Program Development Specification
for the Operating System Utilities of the C- 17A Core Integrated
Processor." Prepared by Lockheed Martin Control Systems. Contract No.
F33657-95-D-2026. Document No. DEV355A5326. 10 April 1996.

163

[Loc96b] Lockheed Corporation. "Computer Program Product Specification for the
C-17A Core Integrated Processor Operating System Utilities." Prepared by
Sanders, a Lockheed Company. Contract No. F33657-95-D-2026.
Document No. 6387531. 24 July 1996.

[Loc96c] Lockheed Corporation. "Computer Program Test Plan for the
Operating System Utilities of the Core Integrated Processor." Prepared by
Lockheed Martin Control Systems. Contract No. F33657-95-D-2026.
Document No. DEV355A5330. 16 February 1996.

[McD96] McDonnell Douglas Corporation. "Prime Item Development Specification
For the C-17A Computer, Digital CP-2343/AYQ-18." Contract No.
F33657-95-R-2026. 19 July 1996.

[MIL94] Department of Defense. Software Development and Documentation. MIL-
STD-498. Washington: DoD, 5 December 1994.

[Mur8 1] Murch, W.G. "Operational Test and Evaluation of Software," Proceedings
of the IEEE 1981 National Aerospace and Electronics Conference, 3:
1390-1398 (1981).

[Nie96] Nieto, Gerald. Manager of Project Management Support, Applications
Division, Lockheed Martin, Sunnyvale CA. Telephone interview. 13
August, 1996.

[Oiv93] Oivo, Markuu. "Incremental Resource Estimation with Real-Time
Feedback from Measurement," Microprocessing and Microprogramming,
38: 281-289 (1993).

[PRC94] PRC, Inc. Software Effectiveness Methodology Study Task Report of
Concept Options (Final). Contract F29601-89-C-0071. Albuquerque NM:
PRC, 21 January 1994.

[Pre92] Pressman, Roger S. Software Engineering: A Practitioner's Approach.
New York: McGraw-Hill, 1992.

[Pre93] Pressman, Roger S. A Manager's Guide to Software Engineering. New
York: McGraw-Hill, 1993.

[Pro95] Proposed Thesis Topic Outline. Topic: Software Effectiveness. Sponsor:
Air Force Operational Evaluation Center (AFOTEC), Kirtland AFB, NM.
POC: Mr. Jeff Wiltse, 1 November 1995.

164

[Rad94] Radford, Donald W. "Volume Fraction Effects in Ultra-Lightweight
Composite Materials for EMI Shielding," Journal of Advanced Materials,
26: 45-53 (Oct 1994).

[Ran92] Random House Webster's College Dictionary. New York: Random House,
Inc., 1992.

[Ros94] Ross, Jeffrey, Vic Basili, and Mike Berry. "Establishing Measurement for
Software Quality Improvement," IFIP Transactions A: Computer Science
and Technology. A-54: 319-329 (1994).

[Sca94] Scavo, Frank. "Software Validation for Pharmaceutical and Medical
Device Manufacturers," Proceedings of the 37th International Conference
- American Production and Inventory Control Society. 676-681 (1994).

[Sch95] Schwab, A. J., B. W. Johnson, and J. B. Dugan. "Analysis Techniques for
Real-Time, Fault-Tolerant, VLSI Processing Arrays," Annual Reliability
and Maintainability Symposium 1995 Proceedings. 137-143 (1995).

[Sco95] Scott, Judy E. "The Measurement of Information Systems Effectiveness:
Evaluating a Measurement Instrument," Database for Advances in
Information Systems, 26: 43-59 (February 1995).

[Sei69] Seiler, Karl III. Introduction to Systems Cost-Effectiveness. New York:
John Wiley & Sons, Inc., 1969.

[She90] Shepperd, M. "Early Life-cycle Metrics and Software Quality Models,"
Information and Software Technology, 32: 311-316 (1990).

[Sta9l] Stanko, Joseph J. A Standardized Software Reliability Measurement
Methodology. MS thesis, AFIT/GCE/ENG/91-09. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1991.

[Tyl91] Tyler, William. "An Overview of MIL-STD-1553B Part I," Avionics, 3:
38-43 (March 1991).

[Vu96] Vu, John. Senior Principal Scientist, Software Engineering Research and
Technology Division, Boeing, Seattle WA. Telephone interview. 5
August, 1996.

[Wal89] Wallace, Dolores R. and Roger U. Fujii. "Software Verification and
Validation: An Overview," IEEE Software, 6:10-17 (May 1989).

165

[Wal9] Wallmueller, Ernest. "Software Quality Management," Microprocessing
and Microprogramming, 32: 609-616 (1991).

[War87] Warthman, James L. Software Quality Measurement Demonstration
Project (I). Technical report RADC-TR-87-247. Rome Air Development
Center, New York: Rome Laboratory, December, 1987.

[Wat94] Watkins, Robert and Mark Neal. "Why and How of Requirements
Tracing," IEEE Software, 11: 104-106 (July 1994).

[We193] Welzel, Dieter and Hans-Ludwig Hausen. "A Metric-based Software
Evaluation Method," Software Testing, Verification and Reliability, 3:
181-194 (September - December 1993).

[Zan92] Zane, Thomas and Connell G. Frazer. "The Extent to Which Software
Developers Validate Their Claims," Journal of Research on Computing in
Education, 24: 410-419 (Spring 1992).

166

Vita

Captain Timothy 3. Schalick

might next to McGuire AFB, where his father was

stationed in the Air Force). Tim graduated from Vineland High School in June of 1980,

Lincoln Technical Institute in September of 198 1, and cnlisted in the United States Air

Force in July of 1983. After completing basic training at Lackland AFB, Texas, and

computer operator training at Keesler AFB, Mississippi, Tim was stationed for his first

assignment at McGuire AFB, New Jcrsey. Tim married Mary Gore in June of 1985 and

the following month they left for Tim's new. assignment to the 2114th Communications

Squadron at Misawa AB, Japan. In September of 1988, Tim was accepted to the Airman

Education and Commissioning Program and attended Arizona State University to

complete hiq Bachelor of Science Degree in Computer Science.

Tim graduated magna cum laude in December of 1991, attended Officer Training

School at Lakk1and AFB. and was commissioned a Second Lieutenant on June 3. 1992.

After returning to Keesler AFB to complete Basic Communication-Computer Officer

Training. L Schalick was assigned to the Air Force Operational Test and Evaluation

Center (AFOTEC) at Kirtland AFB, New Mexico. In May of 1995, Lt Schalick entered

the Air Force Institute of Technology (AFIT) at Wright-Patterson AFB, Ohio, to purste a

Master of Science Degree in Computer Systems (emphasis on Software Engineering).

Upon graduation from AFIT in December of 1996, Captain Schalick was assigned to Air

Combat Command's Computer Support Squadron at Langley AFB, Virginia,

167

Appendix A: Acronyms and Abbreviations

AFI Air Force Instruction

AFOTEC Air Force Operational Test and Evaluation Center

AFOTECI AFOTEC Instruction

AFOTECP AFOTEC Pamphlet

AFOTEC/SAS AFOTEC's Software Analysis Team

AF/TE Air Force Test and Evaluation

AS Application Software

BC Bus Controller

BIT Built-In Test

CIP Core Integrated Processor

COI Critical Operational Issue

CPDS Computer Program Development Specification

CPPS Computer Program Product Specification

CPTP1 Computer Program Test Plan

CPTPr Computer Program Test Procedures

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DID Data Item Description

DoD Department of Defense

DoDR DoD Regulation

168

DT&E Developmental Test and Evaluation

EMI Electromagnetic Interference

HLD High-Level Design

IVHS Intelligent-Vehicle Highway Systems

LLD Low-Level Design

OT&E Operational Test and Evaluation

MIBIT Maintenance Initiated BIT

MCPT 1553 Mode Code Processing Test

MOE Measure of Effectiveness

MON Bus Monitor

MOP Measure of Performance

MRGT 1553 Register Test

MRXT 1553 Multiple Receive Test

N/A Not Applicable

OLBT 1553 Off-Line Loopback Test

ORD Operational Requirements Document

OSU Operating System Utilities

PIDS Prime Item Development Specification

POBIT Power-On BIT

RAPT 1553 RT Address Parity Test

RRPT 1553 Receiver RAM Pattern Test

RT Remote Terminal

169

RTAT 1553 RT Address Test

RT/MON Remote Terminal/Bus Monitor

SDD Software Design Description

SETA Software Effectivness Traceability Approach

SPO System Program Office

SPS Software Product Specification

SQA Software Quality Assurance

SRS Software Requirements Specification

SSDD System/Subsystem Design Description

SSS System/Subsystem Specification

STD Software Test Description

STP Software Test Plan

V&V Verification and Validation

170

Appendix B: Selected Code from 1553 Data Bus Software

1553 Data Bus Driver, CDIOpen

--*** (U) SUBPROGRAM NAME: CDIOpen

--*** (U) EFFECTS: 1553 driver open routine.

The Application Software will call this procedure at

start-up to receive a file descriptor which will then be

used in subsequent read, write and ioctl calls to

reference the appropriate 1553 mission bus.

--*** (U) EXCEPTIONS PROPAGATED: No propagated exceptions are explicitly

raised in this unit.

-- *** (U) USAGE CONSTRAINTS: This routine is not to be called directly by

the AS. It is accessed via the VxWorks 10

System.

-- *** (U) UNDESIRED EVENTS: None

procedure CDIOpen (Bus : in Character := 'x';

Fd : out CDIFileDescriptorType;

Result : out CDI StatusType) is

Status : CDIStatusType := Success; -- Local status

LocalFd : CDIFileDescriptorType := 0; -- Local file descriptor

-- Local constants

DevOneChar : constant Character := '1'; -- Dev #1 character value

DevTwoChar : constant Character := '2'; -- Dev #2 character value

DevOne-Fd : constant : 1; -- Dev #1 Fd value

Dev TwoFd : constant := 2; -- Dev #2 Fd value

InvalidFd : constant := 3; -- Invalid Fd value

begin

case Bus is

when DevOneChar => LocalFd := DevOneFd;

when DevTwoChar => LocalFd := DevTwoFd;

when others => LocalFd : InvalidFd;

end case;

-- Error check (Invalid Fd or already opened)

if (LocalFd < 1) OR (LocalFd > Max Num Devs) OR

(Driver.Devs(LocalFd).Created = False) OR

(Driver.Devs(LocalFd).Opened = True) then

LocalFd := DevOneFd;

Status := Failure;

-- Set VxWorks error number

else

Driver.Devs(LocalFd).Opened : True;

171

Driver.Devs (LocalFd) .Mode Idle;

Driver.Devs (LocalEd) .BC.Frame-Started False;

Driver.Devs(Local-Ed) .BC.FrameDone False;

Driver.Devs (Local-Ed) .RT.RecvIndex =RT-Recv-Index-Type' First;

end if;

if (Status = Success) then

Driver. Driver-Status. CDIDOK-Flag True;

else

Driver. Driver-Status .CDI..OK-Flag =False;

end if;

Ed :=LocalEd;

Result :=Status;

exception

when others =>

-Set VxWorks error number

Result Failure;

end CDI_Dpen;

172

1553 Data Bus Driver, CDIClose

-- *** (U) SUBPROGRAM NAME: CDI_Close

-- *** (U) EFFECTS: 1553 driver close routine.

The Application Software will call this procedure to

delete or remove a file descriptor received from a call

to CDIOPEN.

-- *** (U) EXCEPTIONS PROPAGATED: No propagated exceptions are explicitly

raised in this unit.

--*** (U) USAGE CONSTRAINTS: This routine is not to be called directly by

the AS. It is accessed via the VxWorks 10

System.

Doesn't affect current message frame, frame

is allowed to complete.

--*** (U) UNDESIRED EVENTS: None

function CDIClose (Fd : in CDI_FileDescriptorType)

return CDI_StatusType is

Status : CDIStatusType := Success; -- Local status

begin

-- Error check (Invalid Fd or not opened)

if (Fd < 1) OR (Fd > MaxNumDevs) OR

(Driver.Devs(Fd).Opened = False) then

Status := Failure;

-- Set VxWorks error number

else

Driver.Devs(Fd).Opened := False; -- Close device

Driver.Devs(Fd).Mode := Idle; -- Change to idle mode

Driver.Devs(Fd).BC.ActiveStack : Alpha; -- Stack to known condition

end if;

if (Status = Success) then

Driver.DriverStatus.CDI-OK Flag := True;

else

Driver.DriverStatus.CDI OK Flag : False;

end if;

return Status;

exception

when others =>

-- Set VxWorks error number

return Failure;

end CDI_Close;

173

1553 Data Bus Driver, CDIRead

-- *** (U) SUBPROGRAM NAME: CDI_Read

- (U) EFFECTS: 1553 driver read routine.

The Application Software will call this procedure to

receive a Message Data Block from the Driver.

-- *** (U) EXCEPTIONS PROPAGATED: No propagated exceptions are explicitly

raised in this unit.

-- *** (U) USAGE CONSTRAINTS: This routine is not to be called directly by

the AS. It is accessed via the VxWorks 10

* System.

-*** (U) UNDESIRED EVENTS: None

procedure CDIRead (Fd - in CDIFileDescriptorType;

MessageDataBlock : in CDIMessageBlockAccessType;

Max-Bytes - in Integer;

NumBytes : out Integer;

Result : out CDIStatusType) is

Status CDIStatusType : Success; -- Local status

Done : Boolean := False; -- Loop completed indicator

Index : Integer :1 1; -- Loop counter

begin

-- Error check (Invalid Fd or not opened)

if (Fd < 1) OR (Fd > MaxNum_Devs) OR (MaxBytes < 1) OR

(Driver.Devs(Fd).Opened = False) then

Status := Failure;

-- Set VxWorks error number

else

case Driver.Devs(Fd).Mode is

when Idle =>

-- Set VxWorks error number (CDIRead InvalidModeError)

Status := Failure;

when BC =>

if (Driver.Devs(Fd).BC.FrameDone False) then

Status := Failure;

-- Set VxWorks error number

else

-- Copy saved data block to 'MessageDataBlock'

-- Select previous stack for read (Not active or inactive)

-- For all messages in block

-- Check size of message against space remaining in 'Max-Bytes'

-- If space and stack entries still remain then read msg data

174

-- Copy time tag and error information for message

-- Check for last message in block

-- Compute 'NumBytes'

null;

end if;

when RT =>

-- Copy all data since last read up to Max-Bytes

MessageDataBlock.CDIDataHeader :=

Driver. Devs(Fd).RT.RecvData.CDIData Header;

while (NOT Done) loop

if ((CDIDataHeaderType'Size +

CDIMessageDataType'Size * Index) > MaxBytes) OR

(Index >= Driver.Devs(Fd).RT.Recv Index) then

Done := True;

end if;

if (NOT Done) then

MessageDataBlock.CDI MessageData(Index)

Driver. Devs(Fd).RT.RecvData.CDIMessageData(Index);

end if;

Index := Index + 1;

end loop;

-- Compute current number of messages

MessageDataBlock.CDIDataHeader.CDIMessage-Count

Driver.Devs(Fd).RT.RecvIndex - 1;

-- Reset number of messages

Driver.Devs(Fd).RT.RecvIndex := RT_RecvIndexType'First;

-- Reset device time tag register

-- Reset device stack pointer to start of stack

-- Reset current command/data pointers

Driver.Devs(Fd).RT.StackPtr := RTStackIndexType'First;

-- Compute 'NumBytes'

when MON =>

-- Swap to inactive from active stack (comm and data ptrs)

-- Copy data from inactive stack to MessageDataBlock

-- Copy time tag and status info to MessageDataBlock

Set MessageDataBlock header info

-- Reset device time tag register

-- Compute 'NumBytes'

null;

when RTMT =>

-- RT Portion

-- Copy all data since last read up to MaxoBytes

MessageDataBlock.CDIDataHeader :=

Driver. Devs(Fd).RT.Recv Data. CDIData Header;

while (NOT Done) loop

if ((CDIDataHeaderType'Size +

175

CDI-MessageData-Type'Size * Index) > Max-Bytes) OR

(Index >= Driver.Devs(Fd).RT.Recv Index) then

Done := True;

end if;

if (NOT Done) then

Message Data Block.CDI Message Data(Index)

Driver.Devs(Fd).RT.RecvData.CDIMessageData(Index);

end if;

Index := Index + 1;

end loop;

-- Compute current number of messages

MessageDataBlock.CDIDataHeader.CDIMessageCount :

Driver.Devs(Fd).RT.RecvIndex - 1;

-- Reset number of messages

Driver.Devs(Fd).RT.RecvIndex := RTRecvIndexType'First;

-- Reset device time tag register

-- Reset device stack pointer to start of stack

Reset current command/data pointers

Driver.Devs(Fd).RT.Stack_Ptr := RTStackIndexType'First;

-- MON portion

-- Swap to inactive from active MON stack (comm and data ptrs)

-- Copy data from inactive MON stack to MessageDataBlock

-- Copy time tag and status info to MessageDataBlock

-- Set MessageDataBlock header info

Reset device time tag register

-- Compute 'NumBytes'

end case;

end if;

if (Status = Success) then

Driver.DriverStatus.CDI-OK-Flag True;

else

Driver.Driver_Status.CDI-OK Flag False;

end if;

Result := Status;

exception

when others =>

-- Set VxWorks error number

Result := Failure;

end CDIRead;

176

177

1553 Data Bus Driver, CDIWrite

- (U) SUBPROGRAM NAME: CDIWrite

-- *** (U) EFFECTS: 1553 driver write routine.

The Application Software will call this procedure to

- -*** give a Message Data Block to the Driver.

(U) EXCEPTIONS PROPAGATED: No propagated exceptions are explicitly

raised in this unit.

-- ** (U) USAGE CONSTRAINTS: This routine is not to be called directly by

the AS. It is accessed via the VxWorks ID

System.

-- *** (U) UNDESIRED EVENTS: None

procedure CDIWrite (Fd : in CDIFileDescriptorType;

MessageDataBlock : in CDIMessageBlockAccessType;

NumBytes - out Integer;

Result : out CDIStatusType) is

Status : CDIStatusType := Success; -- Local status

begin

-- Error check (Invalid Fd or not opened)

if (Fd < 1) OR (Fd > MaxNumDevs) OR

(Driver.Devs(Fd).Opened = False) then

Status := Failure;

-- Set VxWorks error number

else

case Driver.Devs(Fd).Mode is

when Idle => -- Idle

-- Set VxWorks error number (CDI WriteInvalid_Mode)

null;

when BC => -- Bus controller

-- Save a copy of 'MessageDataBlock'

-- Clear flags for new block

Driver.Devs(Fd).BC.DataReady := True;

Select the inactive stack (Not active or previous stack)

-- For all messages

-- Check message size against remaining space

-- If space and stack entries still remain then write msg data

-- If a hook routine desired enable EOM interrupts

-- Check for last message

-- Compute 'Num_Bytes'

178

when RT => -- Remote terminal

-- Save write data

Driver.Devs(Fd).RT.TransData : Message-Data-Block.all;

-- Set all Tx lookup table pointers to zero

-- Set all Driver.Devs(Fd).RT.TransCount) to zero

-- For all messages

-- If a Tx message

-- if Driver.Devs(Fd).RT.Trans_Count(SA) = 0

-- Copy data to buffer and set Tx lookup table ptr

-- Increment Trans-Count

-- if Driver.Devs(Fd).RT.Trans_Count(SA) = 1

-- Copy data to 2nd buffer

-- Increment TransCount

-- if hook routine requested

-- Set Driver.Devs(Fd).RT.HookReq(SA+RT Buf_Size)

-- else if a Rx message and a hook routine requested

Set Driver.Devs(Fd).RT.HookReq(SA) to true

-- Set all Driver.Devs(Fd).RT.TransCount) at one to zero

-- Set all TransCount() greater than one to one

when MON => -- Monitor

-- Copy any hook related messages to Hook-Data in Driver

-- Clear selective monitor lookup table

-- For all messages in 'MessageDataBlock'

-- Enable monitoring for this message

null;

when RT MT => -- Remote terminal/Monitor

-- Save write data

Driver.Devs(Fd).RT.TransData := MessageData-Block.all;

Clear MON selective monitor lookup table

Set all Tx lookup table pointers to zero

-- Set all Driver.Devs(Fd).RT.Trans_Count) to zero

-- For all messages

-- If an RT Tx message

-- Copy message into Driver.Devs(Fd) .RT.TransData

-- if Driver.Devs(Fd).RT.Trans_Count(SA) = 0

-- Copy data to buffer and set Tx lookup table ptr

-- Increment Trans-Count

-- if Driver.Devs(Fd).RT.Trans_Count(SA) = 1

-- Copy data to 2nd buffer

-- Increment TransCount

-- if hook routine requested

-- Set Driver.Devs(Fd).RT.HookReq(SA+RT-Buf-Size)

-- else if an RT Rx message and a hook routine requested

-- Set Driver.Devs(Fd).RT.HookReq(SA) to true

-- else it is a MON message

-- Copy any hook related messages to HookData in Driver

-- Enable monitoring for this message

179

-- Set all Driver.Devs(Fd).RT.TransCount) at one to zero

-- Set all TransCount) greater than one to one

end case;

end if;

if (Status = Success) then

Driver.DriverStatus.CDI-OK-Flag True;

else

Driver. DriverStatus.CDI-OK-Flag = False;

end if;

Result := Status;

exception

when others =>

-- Set VxWorks error numbers

Result := Failure;

end CDIWrite;

180

POBIT Utility, RRPT
/* **##

NAME: RRPT
-- TITLE: 1553 Receiver RAM Pattern Test Module
-- DESCRIPTION:

-- The purpose of the 1553 Receiver RAM Pattern Test Module
-- (RRPT) is to thoroughly test the entire 1553 Receiver RAM

-- address space (for both chipsets) for address, data,
-- coupling or bit stuck-at faults.

-- INPUTS:

-- PARAMETERS:

-- None

-- GLOBAL:

-- None

-- LOCAL:

None

-- OUTPUTS:

-- PARAMETERS:

-- failure - PASS or FAIL status of test

-- GLOBAL:

-- None

-- LOCAL:

-- None

-- REVISION HISTORY

-- Ver Date Prgrm PCR # Title

-- 1.1 3-6-96 J. Daly Created

-- CM CONTROL
-- - 3-29-96 J.Daly STN-035 Initial Transfer to PSL

--##

RESTRICTED RIGHTS LEGEND
Contract No. F33657-95-D-2026
Contractor Name: Sanders A Lockheed Martin Company
Contractor Address: 65 Spitbrook Road, Nashua, NH 03061-0868

The Governments rights to use, modify, reproduce, release,
- perform, display, or disclose this software are restricted by
- paragraph (b) (3) of the Rights in Noncommercial Computer Software
and Noncommercial Computer Software Documentation clause
contained in the above identified contract. Any reproduction of

computer software or portions thereof marked with this legend
must also reproduce the markings. Any person, other than the
Government, who has been provided access to such software must
promptly notify the above named Contractor.

--*** CONFIGURATION CONTROL #: 6387668

- FILE NAME: RRPT.c

--*** ABBREVIATION: RRPT

-- ** ASSUMPTIONS: None

-- ** USAGE CONSTRAINTS: Executed by IOP only.

181

#include "RRPT.h"

* external function declarations
*/

extern void bzero(); /* write zeros to memory */

int RRPT

void

int failure = 0; /* no failures to start out *I
volatile unsigned short int *rcvr one start; /* rcvr 1 start address */
volatile unsigned short int *rcvr two start; /* rcvr 2 start address */
volatile unsigned short int *rcvr one end; /* rcvr 1 end address */
volatile unsigned short int *rcvrtwoend; /* rcvr 2 end address */
volatile unsigned short int *ptr one; /* ptr to current address 1
volatile unsigned short int *ptr-two; /* ptr to current address 2
1*

* set address pointers to recevier SRAM addresses
*=

rcvr_one-start = (volatile unsigned short int *)RECEIVER_1_SRAM ADDR;
rcvr two start = (volatile unsigned short int *)RECEIVER_2_SRAMADDR;

rcvr one end = (volatile unsigned short int *) (rcvr_onestart +
RECEIVERSRAMSIZE - 1);

rcvr-two-end = (volatile unsigned short int *)(rcvr-two-start +
RECEIVERSRAMSIZE - 1);

/*

* The RRPT module shall test the 1553 receiver RAM for both chipsets
* according to the following:
* a) Test the entire 1553 message space external RAM.
* b) Test that each bit of each RAM location can be set and reset.
* c) Verify that adjacent bits in a RAM location are not coupled during
* write activities.

d) Verify that a write/read activity of a given RAM location does not
affect data in other RAM locations.

* e) Verify that each RAM location is uniquely addressable.
=/

* Use a well-known memory array test algorithm (M-ATS, K-H algorithm)
* to test 1553 SRAM for address and data stuck-at faults and bit
* couplings. e.g:
* if read value != written value then
* increment failure

* NOTE: test both areas at the same time
*/

/*

* pass 1
*/

for (ptrone = rcvronestart + 1, ptrtwo = rcvrtwostart + 1;
ptr-one <= rcvr-oneend; ptrone++, ptr-two++)

*ptrone = PATTERN ONE;
*ptr-two = PATTERNONE;

*rcvrone-start = PATTERN TWO;
*rcvrtwostart = PATTERNTWO;

/*

* pass 2
*/

for (ptrone = rcvronestart + 1, ptr-two = rcvr twostart + 1;
ptr-one <= rcvr-oneend; ptrone++, ptrtwo++)

182

if ((*ptr one != PATTERN-ONE) 1I (*ptr_two 1: PATTERNONE))

failure++; /* increment failure count */
break; /* discontinue testing */

*ptr-one = PATTERN TWO;

*ptr-two = PATTERN TWO;

/*

pass 3
*/

if (!failure)

for (ptrone = rcvr_onestart, ptr-two = rcvrtwostart;
ptrone <= rcvrone_end - 1; ptrone++, ptrtwo++)

if ((*ptr one != PATTERN TWO) 11 (*ptr two PATTERN TWO))

failure++; /* increment failure count */
break; /* discontinue testing */

*ptr-one = PATTERN-ONE;

*ptr-two = PATTERN ONE;

/*

* verify end is still Oxaaaa
*/

if (!failure)
{

if ((*rcvr-one-end != PATTERN TWO (*rcvr-two-end = PATTERNTWO))

failure++; /* increment failure count /
break; /* discontinue testing */

* verify start is still 0x5555

if (!failure)

if ((*rcvrtwostart != PATTERN ONE 11 (*rcvr two-start = PATTERN ONE)

failure++; /* increment failure count */

bzero(rcvr-one start,RECEIVERSRAMSIZE - 1); /* restore to original state */
bzero(rcvr-twostart,RECEIVERSRAMSIZE - 1); /* restore to original state */

return failure;

183

MIBIT Utility, Run_1553_TestGroup

(U) SUBPROGRAM NAME: Run_1553_Test Group

- (U) EFFECTS: Performs Initiated and Maintenance Built-In-Test of the

1553 Test Group.

(U) EXCEPTIONS PROPAGATED: Exceptions are propagated to the calling

unit.

-- *** (U) USAGE CONSTRAINTS: Internal procedure. Executed by IOP only.

- (U) UNDESIRED EVENTS: None

procedure Run_1553_TestGroup (FataeError : out Boolean;
Result : Out MIBITStatus Type) is

Status : MIBITStatusType := Fail; -- Test status indicator

Done : Boolean := False; -- Loop complete boolean

Fatal : Boolean := False; -- Flag for fatal error

TestCount : TestCount 1553 Type := TestCount_1553_Type'First;

PassCount : TestCount1553Type := TestCount1553_Type'First;

begin

-- Cycle through all bit test modules in 1553 Test Group:

-- RTAT, MRGT, OLBT, MRXT, MCPT, RAPT

while (not Done) loop

-- Check discrete input for abort signal

-- execute soft reset on abort

Done := True;

-- Initialize status so tests can fall through if statement on failure

Status := Fail;

-- Do appropriate test

case TestGroup_1553_Type'Val (Test_Count) is

when RTAT => -- 1553 RT Address Test

if (Common BIT RTAT = Pass) then

Status : Pass;

end if;

when MRGT => -- 1553 Register Test

if (CommonBIT MRGT = Pass) then

Status : Pass;

end if;

when OLBT => -- 1553 Offline Loopback Test

if (CommonBITOLBT = Pass) then

Status := Pass;
end if;

when MRXT => -- 1553 Multiple Buffer Receive Mode Test

if (CommonBITMRXT = Pass) then

Status : Pass;

end if;

when MCPT => -- 1553 Mode Code Processing Test

if (CommonBITMCPT = Pass) then
Status : Pass;

end if;

when RAPT => -- RT Address Parity Test

if (Common BIT RAPT = Pass) then

Status := Pass;
end if;

end case;
TestCount := TestCount + 1; -- Count test just performed

184

if (Status = Pass) then
PassCount := Pass-Count + 1;

end if;

if (Test-Count = MIBITComputerCount) then

Done := True;
end if;

end loop;

if (PassCount = MIBIT_1553_Count) then
Status Pass;

else
Status Fail;

end if;
FatalError Fatal;
Result Status;

end Run_1553_TestGroup;

185

CommonBIT Utility, CommonBITOLBT
--

-*** (U) SUBPROGRAM NAME: CommonBITOLBT

-- *** (U) EFFECTS: 1553 Offline Loopback Test Module
The 1553 Offline Loopback Test Module verfies the basic
operation of the 1553 chipsets for each bus.

-- *** (U) EXCEPTIONS PROPAGATED: No propagated exceptions are explicitly
raised in this unit.

-- ** (U) USAGE CONSTRAINTS: IOP Only

Works in off-line loopback mode

- (U) UNDESIRED EVENTS: None

function CommonBIT OLBT return Common BitStatusType is

Status : CommonBITStatusType := Fail;
begin

-- For each 1553 chipset and valid pass count
-- Initialize and write a 1553 message
-- Alter the BC Control Word of the message to do offline self-test

-- Send the message

-- If message OK

-- Increment pass count

-- If pass count equals number of chipsets
Status := Pass;

-- Else, generate Fault Record for NVM
return Status;

exception
when others =>

-- Generate Fault Record for NVM
return Fail;

end Common BIT OLBT;

186

CommonBIT Utility, CommonBITMCPT

--*** (U) SUBPROGRAM NAME: CommonBITMCPT

--*** (U) EFFECTS: 1553 Mode Code Processing Test Module

The 1553 Mode Code Processing Test Module verifies that

both 1553 chipsets have the ability to send, receive
and process mode codes.

- (U) EXCEPTIONS PROPAGATED: No propagated exceptions are explicitly

raised in this unit.

-- ** (U) USAGE CONSTRAINTS: IOP only

Works in off-line loopback mode

--*** (U) UNDESIRED EVENTS: None

function CommonBITMCPT return Common BitStatusType is
Status : CommonBIT StatusType := Fail;

begin
For each 1553 chipset and valid pass count
-- Test a valid mode code

-- If OK

-- Test an invalid mode code

-- If OK

-- Increment pass count

-- If pass count equals number of chipsets
Status := Pass;

-- Else, generate Fault Record for NVM

return Status;
exception

when others =>
-- Generate Fault Record for NVM
return Fail;

end CommonBITMCPT;

187

CommonBIT Utility, CommonBITRAPT

-- *** (U) SUBPROGRAM NAME: CommonBITRAPT

-- *** (U) EFFECTS: 1553 RT Address Parity Test Module
The 1553 RT Address Parity Test Module verifies that the

RT register parity is valid for each mission bus.

-*** (U) EXCEPTIONS PROPAGATED: No propagated exceptions are explicitly
raised in this unit.

-- ** (U) USAGE CONSTRAINTS: IOP only

-- *** (U) UNDESIRED EVENTS: None

function CommonBITRAPT return CommonBit-StatusType is

Status : Common BITStatusType := Fail;
begin

For each 1553 chipset and valid pass count
-- If RAPT Error) for chipset is still set to false then

Count number of bits in RT address set in 1553 config register 5
-- If number of bits + RT address parity is odd then

-- Increment pass count

-- Else

-- Set RAPTError) to True for this chipset
-- If pass count equals number of chipsets

Status := Pass;
-- Else, generate Fault record for NVM
return Status;

exception
when others =>

-- Generate Fault Record for NVM
Set VxWorks Error Number (RAPT Ada Exception)

return Fail;
end Common_BITRAPT;

188

REPORT DForm Approved

DOCUMENTATION PAGE No. 0704-0188
Po'.ic er- 0, o.'.en ;-r t,5 2,:sci.ece 'of information rs estimated to average 1 hour per response, induding the time for reviewing instructions, searching exrstng data sources,
ontrering and -".r-rain '.9 the oata neec-J, and comoieting and revewirg the ,:oiection of Irformation Send comments regarding this burden estimate or any other aspect of this
- 1e

.
r -- 'f '.'''r'3':A

n
, 5uNuegstlons for reducing n s ourden. t NVasnington Headauarters Services, Directorate for information Operations and Reports, 1215 Jefferson

*garis Hir,cav, Suite 2C4. Ai.ngton. j0 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1996 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN APPROACH TO EVALUATE SOFTWARE EFFECTIVENESS

6. AUTHOR(S)
Timothy J. Schalick, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER

2750 P Street AFIT/GCS/ENG/96D-24
WPAFB, OH 45433-7126

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

HQ AFOTEC/SAS AGENCY REPORT NUMBER

ATTN: Jeff Wiltse
8500 Gibson Blvd SE
Kirtland AFB, NM 87117-5558

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The Air Force Operational Test and Evaluation Center (AFOTEC) is tasked with the evaluation of operational
effectiveness of new systems for the Air Force. Currently, the software analysis team within AFOTEC has no
methodology to directly address the effectiveness of the software portion of these new systems.

This research develops a working definition for software effectiveness, then outlines an approach to evaluate
software effectiveness-- the Software Effectiveness Traceability Approach (SETA). Effectiveness is defined as the
degree to which the software requirements are satisfied and is therefore application-independent.

With SETA, requirements satisfaction is measured by the "degree of traceability" throughout the software
development effort. A degree of traceability is determined for specific pairs of software life-cycle phases, such as the
traceability from software requirements to high-level design and low-level design to code. The degrees of traceability are
combined for an overall software effectiveness value.

It is shown that SETA can be implemented in a simplified database, and basic database operations are described
to retrieve traceability information and quantify the software's effectiveness.

SETA is demonstrated using actual software development data from a small software component of the avionics
subsystem of the C-17, the Air Force's newest transport aircraft.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Effectiveness, Requirements Traceability, Software Development, 204
Software Quality, Software Engineering. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-18
298-102

GENERAL INSTRUCTiONS FOR COMPLETING SF 293

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filing in each b!ock of the form follow. It is important to stay within the lines to met
optical scanning requirements.
Block 1. A_,g (Leave blank). Block 12a. Distribution/Availabilitv Statement.

Blnc 1., tae te blmkl e____fit___
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. I limitation5 or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If S e e o n Technical
applicable, enter inclusive report dates (e.g. 10 Statmentso cDocuments."
Jun 87-30 Jun 88). DOE See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On DOD - Leaveblank.
classified documents enter the title classification DOE LEnte blank.in paenthses.DOE - Enter DOE distribution categoriesin parentheses. I

from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include program Reports.
element number(s), project number(s), task" NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.
following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 wo rds) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block G. Author(s. Name(s) of person(s) Block 14. Subject Terms. Keywords o' phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block I5. Number of Pages. Enter the total

nurnber of pages.
Block7. Performin Organization Names)Land
Addresse(es). ef-explanatory. Clock 16. Price Code. Enter appropriate price

Block 8. Performing Organization Re.port code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report. Blocks 17.- 19. Security Ciassifications. Self-

explanatory. Enter U.S. Security Classification in
Block 9. Sponsoring/Monitorinq Agency Name.s accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sp..nsorinq/Monitorina Agency bottom of the page.
RaeportNumber. (If known)..

Block 11. Su oIementr Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with... - Trans. of...; To be abstract. Enter either U.L (unlimited) or SAR (same
published in...: When a report is revised, include as report). An entry in this block is necessary if

statement whether the'n W report supersedes the abstract is to be ,imited. If blank, the abstract
or supplemnents the older report. is assumedto be unlimited.

U.S.GPO:1 993-0-336-043 Standard Form 298 Back (Rev. 2-89)

	An Approach to Evaluate Software Effectiveness
	Recommended Citation

	tmp.1691168704.pdf.kPVYD

