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Abstract

This research presents an autonomous and computationally tractable method for scientific

process analysis, combining an iterative algorithmic search and a recognition technique to discover

multivariate linear and non-linear relations within experimental data series. These resultant data-

driven relations provide researchers with a potentially real-time insight into experimental process

phenomena and behavior.

This method enables the efficient search of a potentially infinite space of relations within large

data series to identify relations that accurately represent process phenomena. Proposed is a time

series transformation that encodes and compresses real-valued data into a well defined, discrete-

space of 13 primitive elements where comparative evaluation between variables is both plausible and

heuristically efficient. Additionally, this research develops and demonstrates binary discrete-space

operations which accurately parallel their numeric-space equivalents. These operations extend the

method's utility into trivariate relational analysis, and experimental evidence is offered supporting

the existence of traceable multivariate signatures of incremental order within the discrete-space

that can be exploited for higher dimensional analysis by means of an iterative best-n first search.
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DATA-DRIVEN PROCESS DISCOVERY:

A DISCRETE TIME ALGEBRA

FOR RELATIONAL SIGNAL ANALYSIS

I. Introduction

The term scientific discovery is generally associated with computational rather than more tra-

ditional philosophical approaches to science1 . Generally, the discovery process "combines aspects

of heuristic search in one or more problem spaces with the recognition of cues in a specific space"

[21]. Up to now, most of the Artificial Intelligence (Al) 'discovery' work has emphasized one of

two complementary goals 2: the application of Al techniques to advance physical science, or the

demonstration that automated search mechanisms can approximate human performance on scien-

tific and mathematical tasks [22]. This thesis favors the former goal, presenting a comprehensive,

autonomous method for signal analysis and relational scientific discovery. Specifically, this research

develops an efficient search and recognition capability, within the scope of process analysis3, to

identify algebraic relations between experimental time-series variables.

Within the context of scientific process analysis, discovery is the recognition of one or more

laws relating a set of observations. However, the computational discovery problem often requires

searching a potentially infinite relational-space to find one relation that accurately represents the

data. 'Real', noisy, erroneous, sizable, inconsistent, and/or incomplete time-series data further

complicates this potentially infinite relational search [11]. Consequently, efficiency applies signifi-

cantly to both search and recognition in terms of computational tractability. This research proposes

an autonomous method that is capable of efficiently managing the discovery problem and is com-

1 (Shrager & Langley 1990) provide a more thorough comparison of computational vs. philosophical science [11].
2
Valdez-Perez cited DENDRAL (Lindsey et al. 1993) and AM (Lenat 1982) as well-known respective examples.

3
Throughout this thesis, the term process encompasses any problem of the form of input -+ process -+ output.
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putationally tractable, to assist researchers in the areas of signal processing, experimental data

reduction, and relational process discovery.

Researchers leverage several concepts in limiting the search-space in any problem. Experience

in specific domains or familiarity with analogous experiments may allow parallels to pre-existing

laws as potential models, or may contribute to the efficient decomposition of complex problems.

Unfortunately, domain specific knowledge is often difficult to generalize across various scientific

domains. Literature, however, supports a notion that scientists tend to consider only a very lim-

ited number of functional relations to describe various processes [20]. Ideally, a tailorable search

optimizes both search-space-limiting advantages.

The mathematical field of time series analysis offers many rigorous techniques to extract

information from time series data. Unfortunately, the majority of these techniques either impose

unrealistic assumptions on 'real' data (ie. stationary, uniformly sampled, etc.), or cannot realistically

proceed in a non-exhaustive fashion. This research overcomes several of these application-limiting

assumptions, exploring relational discovery from a different perspective. Interestingly, precedents

exist for largely descriptive, qualitative discovery processes in fundamentally quantitative sciences

[6]. The autonomous discovery method developed herein parallels such precedents, transforming

real-valued series and operating over two qualitative measures.

To limit the potentially infinite relational search, this method transforms experimental time

series into a well defined, discrete-space where comparative evaluation is both possible and heuris-

tically efficient. The discrete-space monotonicity concavity (DMC) transform sequentially classifies

real-valued data points as one of seven primitive elements 4, each representing a unique result of

the cross-product of qualitative monotonicity and concavity. The encoded sequence of primitives,

or more specifically, the transitions within the encoded sequence represent an equivalence class

signature of the original time series. A transformed series is, therefore, represented as a sequence

4Hereafter referred to as primitives.
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of 'primitive intervals', compressing successive occurrences of the same primitives while maintain-

ing accurate respective durations. This interval compression often result in substantial spatial

compression for smooth signals, and simplifies relational evaluation to a temporal comparison of

overlapping primitive intervals across two series signatures.

The most significant aspect of this research is a template for mathematical operations inside

of the transform-space that accurately parallel their numeric-space equivalents. These operations

extend DMC into the areas of tailorable linear and non-linear trivariate analysis. Additionally,

experimental evidence supports the existence of traceable multivariate signatures of incremental

order within this space that can be exploited for higher dimensional analysis by means of a best-n

first type of search.

Chapter II begins by highlighting many important concepts from time series analysis and pre-

vious Al related discovery systems, providing some background for the development of the DMC

transform. Then, Chapter III defines DMC, illustrating efficient bivariate search and recognition.

These ideas are then expanded in Chapter IV with the addition of transform-space binary oper-

ations, allowing trivariate discovery within the previous bivariate scope. Chapter V documents

some experimental testing, and provides support for the premise of traceable signatures in multi-

variate relations. And lastly, Chapter VI outlines several future intentions as well as two postulated

additional areas for application of these techniques, while conclusions are derived in Chapter VII.
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11. Foundations of Relational Analysis

In the first chapter, scientific discovery was defined as the transition from a set of observations to one

or more laws relating those observations. This chapter serves to more fully define that discovery

problem, and to document previous efforts towards that end. Researchers in both mathematics

and Al have proposed solutions to this problem, basing their methods upon varying combinations

of search and recognition, simplifying assumptions, and domain-specific knowledge. A review of

these techniques will accomplish three objectives: first, outline several hazards inherent in the

problem; secondly, highlight specific weaknesses in the existing techniques; and lastly, provide

some background for the DMC transform and its application to relational discovery, developed in

subsequent chapters.

The following section refines the discovery problem, clarifying both the expected inputs and

the objective. Then, Section 2.2 considers several mathematical techniques for relational analysis,

while the last section highlights the lineage of relevant Al discovery systems.

2.1 Definition of the Problem

In terms of process analysis, discovery is the identification of relational laws within the context

of an observed system under recognizable stimulus. Numerically, process discovery equates to the

identification of a set of rational functions over the set of input variables which surjectively maps

specific combinations of inputs onto a set of outputs. Up to this point however, consideration has

not been given to the problem's domain of time series inputs. If measured time series are the

basis for characterizing observed systems throughout scientific research [23], then a more precise

definition is warranted.

A time series is a collection of discrete or quasi-continuous observations made sequentially in

time [4]. Two properties of time series data become very important in the context of relational

analysis. First, the implicit temporal ordering of successive observations allows the definition of
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before and after relations. These two relations apply throughout any independent series, but can

also generalize across multiple series in the same experiment. The second important property is

that successive observations are usually not independent, and therefore, a series of this type can be

exactly predicted (deterministic) or probabilistically predicted (stochastic) from past observations.

One significant hazard, when dealing with time series data, is failing to account for the

temporal separation of discrete observations. When collected at uniform intervals, an individual

or collection of time series can be characterized and analyzed based upon a single sampling rate.

However, this by no means implies that any two sensors provide information at the same sampling

rate. Likewise, the hardware responsible for collecting experimental "snapshots" can also induce

irregularities, bias, or be interrupted. As subsequent sections will point out, most of the statistical

techniques assume uniform sampling to their detriment.

In general, the four objectives of time series analysis are description, explanation, prediction,

and/or control [4]. Descriptive analysis provides characteristic information (mean, spectrum, etc.)

relative to individual time series. Explanatory analysis, on the other hand, generates information

that crosses multiple series such as correlation. Prediction attempts to compute expected future

observations based on the present state or values assuming either a deterministic or stochastic

system. Lastly, control focuses on directing resultant system values to some pre-defined goal.

These objectives are not wholly separate, but do serve to adequately classify most techniques.

2.2 Numerical Approaches

Introductory numerical analysis texts such as Mandel [15] and Chatfield [4] present a wide

variety of techniques to analyze time series data. In terms of the four previously stated objectives,

the process discovery problem is best categorized as explanatory analysis, attempting to recognize

relations across a set of time series variables. This section introduces some basic numerical concepts

as well as overviews of correlation-based, regression-based, and signature-based techniques applied
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to relational discovery. These techniques, all from the domain of mathematics, either lend notional

support to this research, or highlight areas of weakness that the subsequent discovery method

overcomes.

Data Preparation. Transformations, of a potentially limitless variety, seem an almost basic

tenant in most types of time series analysis. Generally, data transforms are applied either to recast

data into an acceptable form, to perform dimensional reduction, or to temper some undesirable

aspects in the data such as noise. In terms of recasting 'real' data, two primary objectives are sta-

bilizing the variance, or imposing specific distributions, both of which strongly relate to statistical

analysis [4]. Dimensional reduction, on the other hand, focuses on parsing out 'unnecessary' infor-

mation, while highlighting other details. Lastly, filtering techniques, which independently represent

another entire sphere of mathematics, are applied to smooth local fluctuations generally around an

assumed local mean.

Filtering techniques deserve specific attention in almost any context involving 'real' data.

Linear and non-linear filters represent parameterized transforms usually designed to produce output

emphasizing variations at particular frequencies, while minimizing other frequencies. Choosing the

appropriate filter often requires considerable experience, a knowledge of frequency aspects relative

to the analysis problem and of the measurement devices involved, and a comparative understanding

of the induced biases relative to specific filtering techniques [4, 9].

Of interest, relative to time series filtering, are the general equations given for common digital

filters. These equations, as in Garrett [9], assume uniform spacing between successive observations,

which is often an unrealistic assumption relative to experimental data. One author suggests that

low-pass filtering of non-uniformly sampled data produces a separable combination of the original

signal plus some additional bias [16]. Unfortunately, this separation requires a closed form equation

for the original signal, which is not available in most experimental processes, and which would

invalidate the need for data-driven relational discovery.
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This research does not comparatively evaluate or seek to advance any one specific filter over

another. It should be noted however, that low-pass filtering was used (interchangeably) with DMC

only to demonstrate the utility of smoothing techniques to assist relational analysis and discovery.

Statistical Correlation. Correlation coefficients, cross-correlation, and cross-spectrum are

three very common statistical measures that attempt to quantify the relational correspondence

between two or more variables. In all three cases, the basic mechanism compares the normalized

difference of each ith observation from the respective series means. A relational value is then

generated based on the similarity of the pattern of differences across the entire series. Regrettably,

all three statistical methods are limited in their application to experimental discovery.

Correlation coefficients are cross-products of the standardized deviations of two variables with

respect to their means. Three weaknesses, unfortunately, limit the application of these seemingly

ideal coefficients for relational discovery. First, the constituent equation for computing numerical

correlation assumes no missing values, and uniform spacing between successive points. Although

there are methods such as introducing time as an independent variable or interpolating missing

values, each increases the computational complexity, diminishing both the efficiency and reliability

of the technique. Secondly, if Yh represents an indexed time series variable, the covariance of Yt and

Yt+, can differ significantly, implying that temporal lead or lag within the process could potentially

mask an input to output relation. Lastly, correlation coefficients detect only linear relationships.

Assuming nonlinear relationships, recent work by Bassetti et al. have addressed this limitation by

using the logarithms of variables [2].

In terms of the other two techniques, cross-correlation computationally overcomes the second

previous limitation by computing the correlation coefficients between Yt and Yt+, for all 7-. In-

tuitively, cross-correlation is therefore n times more computationally intense than its predecessor.

Meanwhile, cross-spectrum adds another computational layer, applying Fourier analysis on top of

the results of cross-correlation.
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Unfortunately, the application of these statistical comparisons rapidly becomes too compu-

tationally time consuming to be of practical value for autonomous relational discovery.

Regression. A second possibility for mathematical process discovery is regression. Re-

gression attempts to accurately fit predefined functions of one or more independent variable(s)

to predict a single dependent variable. Often termed curve-fitting, the general approach involves

tuning the parameterized coefficients of some assumed equation. Given specific coefficients and

experimental values for the independent variables in question, a computational prediction of the

dependent variable can then be computed for comparative evaluation.

Regression is the primary mechanism of a recent function-finding algorithm applied to ex-

perimental discovery. Chapter I introduced the premise that scientists typically consider only a

very limited number of functional relations for describing a process. Citing historical records, one

researcher concluded that four general functional forms account for up to 70% of all hypothesized

bivariate scientific relations (e.g. y = kix) [20]. The E* algorithm combines regression over these

four forms and statistical evaluation to fully specify equations relating two experimental variables.

Testing on 217 scientific data sets1 , each containing a documented bivariate relation, demonstrated

the algorithm's remarkable resolution. Although E* only speculated a relation in 89 of the 217

cases, 75% of those were, in fact, correct. In comparison, other general discovery techniques often

speculate an approximately equal number of incorrect relation to those correctly identified [20].

The limitations of such regressive techniques are obvious. Similarly to correlation, E* only

considers an extremely limited set of relations. Broader relational discovery again becomes too

computationally intensive and time consuming. This thesis presents a method that automates the

discovery of potential bivariate or multivariate functional forms. Potentially, those forms could

then be injected into techniques such as E* to refine the resolution and solve for any coefficients.

'Schaffer's data sets are available via anonymous ftp to ics.uci.edu from the -/pub/machine-learning-databases
directory.
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Transformational Signatures. Another recent technique for relational discovery focuses on

classifying linear functions based on the products, labeled equation signatures, of various transfor-

mations [7]. This approach capitalizes on post-transform similarities. Three numeric transforms

(the power transforms, powers of logarithms, and exponentials of power transforms) are used to

effectively produce coefficient invariant signatures for several classes of linear equations.

Although this technique is currently limited to linear equations, the basic approach is pattern

recognition, and as such is only as powerful as the chosen set of features. In terms of pattern

recognition, the potential growth in the number of transforms to further resolve additional forms is

undefined, while the addition of any one transform may detrimentally affect any previous resolution.

The DMC transform is a single transform applied specifically to dimensionally reduce and

represent any given linear or non-linear time series. Combinational operations (addition, multipli-

cation, etc.) on this representation capture this method's real power for relational discovery.

2.3 Artificial Approaches

In addition to the mathematical approaches previously presented, a number of Al related

systems have been developed for empirical discovery. Of those, the sequence of BACON (Langley

et al. 1987) programs is generally credited as the foundation of Al related discovery systems, and

as the basic reference for problem solvability. The BACON project established the continuum from

data-driven to theory-driven discovery that is used for classification to this day [13]. Of interest,

in terms of this research, are those systems/methods which rely on the evaluation of 'real' data,

whether coupled with domain specific theory or not. This section highlights artificial data-driven

discovery as demonstrated by four significant systems, including BACON.

Gerwin's Model. One discovery effort, which actually predates BACON, cognitively as-

sesses the problem solving aspects of relational discovery. Spawning from cognitive science, Donald

Gerwin set out to model human relational problem solving under experimental conditions [10].
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In his experiments, test subjects were shown graphic plots of an unknown mathematical function

with some additional random error (noise), and a base set of mathematical functions from which

the unknown was related. Then, a subject was asked to specify a potential combination of base

functions, which were then plotted for comparison to the unknown function. Iterations were then

allowed to correct or improve any previous results.

Gerwin's work reasonably automated the basic processes employed by his test subjects. The

general conclusions to emerge from this research were that extracting relations from data involves

four aspects: pattern perception, classification, class specific resolution, and recycling, if necessary

[10].

Unfortunately in terms of Gerwin's model, scientific research is not constrained to relations

between artificial, single-variable signals. Chapter I cited some of the basic limitations of 'real'

data. Incomplete information and unmeasured variables stand as a major hurdle in terms of most

analysis. However, the conclusions of Gerwin's research are well taken, and all four are visible in

DMC and the method for multivariate relational discovery developed in the proceeding chapters.

BACON.4. As previously stated, the series BACON programs are the landmark for

artificially intelligent discovery. Langley cites the fourth version of the system as presenting the

most complete and coherent story [14]. Being completely data-driven, BACON's basic premise is

the search for 'constancy' in existing or subsequently created terms. Implementing the search for

constants are three simple heuristics. The first states that if all values of a particular variable

are nearly constant within a predefined threshold, then hypothesize that variable to be constant.

Secondly, if one variable increases as the value of another increases, then compute their ratio (X/Y)

for further examination. Lastly, if one variable increases as another decreases, then compute their

product (XY).

Although seemingly obscure, these simple heuristics implement a directed exploration based

on qualitative measures (similar to monotonicity). Drawing power from its ability to iteratively
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generate new bivariate terms [14], BACON demonstrates the ability to rediscover an impressive set

of fundamental laws from the basic physical sciences [11]. Comparisons with the regression-based

system of the previous section, however, demonstrate a general tendency for BACON to spuriously

presume an almost equal number of invalid relations as those it correctly discovered [20].

The discrete-space algebra developed in Chapter IV mimics BACON's ability to generate new

terms. Comparably, this ability is also regarded as the major contribution of this research.

IDS. The IDS system represents a major shift along the continuum for one of the original

BACON researchers. IDS specifically addresses three aspects of the discovery problem: taxonomy

formation, qualitative discovery, and quantitative discovery [18]. The basic premise uses data

to generate a coherent, qualitative, state-based model, retaining some numerical relations inside

specific states. IDS incorporates the discovery of bounded numerical relations, similar the BACON,

Abacus (Falkenhainer & Michalski 1986) and Fahrenheit (Zytkow et al. 1990), but adds a very

original dimension. IDS focuses on events, conditions, etc., which cause transitions within the

qualitative model, embedding relational information not only in the states, but along the transitions

as well.

IDS represents significant strides for discovery and modeling. The level of symbolic informa-

tion represented in the qualitative states made the IDS representation extremely readable. However,

IDS partially departs from the strictly autonomous approach, requiring certain levels of interac-

tion with human-experts. Additionally, model growth is extremely dependent on the ordering of

observations, which hindered the generality of its models [18].

The level of process modeling, accomplished by IDS, is currently beyond the scope of this

research. Other, very similar modeling techniques are found in the field of qualitative reasoning

(see Abrams [1]). This research potentially could function as a mechanism inside such systems for

autonomously discovering relational information.
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KEDS. Finally, highlighting one last area, the KEDS system pairs heuristic decomposition,

referred to as split and fit, with statistical regression. KEDS addresses an interesting domain

of problems in which different relationships can hold between variables in different parts of the

problem-space [19]. KEDS is a model-driven discovery system that uses mathematical relations to

partition experimental data. This task of partitioning the domain space is closely linked to the

expected relationships to be discovered [19]. Specifically, KEDS considers a set of parameterized

polynomial functions to be fit into each partition.

Such a domain of problems with variable relations almost necessitates decomposition, how-

ever, this class is not considered in the method developed in the proceeding chapters. The term

process, with regard to this thesis, is assumed to be a set of constant functions of potentially more

than one variable.
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III. Automating Bivariate Search and Recognition

In the previous chapter, the problem of relational discovery was formally defined and a number of

mathematical and Al related techniques were subsequently presented. The origins of the transform

that follows largely parallels some of the same foundational thinking as Devaney's equation signature

approach (Section 2.2), but incorporates vastly different, more BACON-like, mechanisms. The basic

hypothesis supporting this research can be stated as follows:

Premise 1 Given a time series data set representing a specific experiment, observed variables
(independently or in combinations) can be evaluated to identify and describe the algebraic form of
multivariate relations.

Chapter I introduced the basic representation as sequences of primitives, defined by the cross-

product of monotonicity and concavity, over corresponding temporal intervals. These primitive

intervals become the 'genetic sequence' or 'signature' for a given time series. These equivalence

class signatures can then be compared and later combined to identify relational similarities.

The first section of this chapter presents the rationale behind the pairing of monotonicity

and concavity to represent time series data. This rationale is followed by some basic time series

notation in Section 3.2 that is used throughout Chapters III and IV. Section 3.3 rigorously defines

the three components of the DMC transform, which dimensionally reduce and then compress

real-valued series into sequences of primitive intervals. Thereafter, Section 3.4 documents three

important properties (shift invariance, scale invariance, and negation) of the DMC transform. And

finally, the chapter concludes with the development of a method to efficiently accomplish bivariate

relational discovery.

3.1 Motivation for the Representation

The pairing of monotonicity and concavity to represent specific temporal intervals originated

from a presumption about human visual processing. Our natural ability to visually observe time

series waveforms, and subsequently identify patterns is astounding. The basic presumption is that
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the human brain synchronizes similar periodic behavior over equivalent intervals, irrespective of

scale. Figure 3.1 illustrates this notion with a real example from a materials processing technique

called pulsed laser deposition (PLD1 ).

300. ..
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100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
30 x101

300 . . .siC. .

Lowpass Filtered 200

Laser Energy 150
100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
si 
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Filtered Optical 0.4
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X 104

Figure 3.1 Visual Relationship Identification. Three actual time series signals from a
PLD experiment. Visibly, all three signals appear directly related. The first signal is
the input energy setting for the process laser. The second is the same signal passed
through a 3rd order low-pass digital Butterworth filter. The last signal is a similarly
filtered optical sensor measurement of the quantity of vaporized diamond-like carbon.
Therefore, in terms of process discovery, input laser energy can be hypothetically
related to the quantity of a target species inside of this process.

The experimentation conducted by Donald Gerwin during the development of his system for

scientific generalization (Section 2.3) lends some support to this presumption. In this case, a basic

speculation about the mechanism applied by Gerwin's test subjects to accomplish the necessary

relational matching has been made.

iThe PLD process is a materials engineering thin film growth technique which uses pulsed laser radiation to

vaporize materials and to deposit thin films in a vacuum chamber [5].
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One critical property in terms of describing the monotonicity and concavity within a discrete

time series is highlighted by Figure 3.1. This representation assumes smoothness between successive

sample points. Although the definitions of monotonicity and concavity presented in Section 3.3 are

insensitive to sampling rates, smooth, assumably continuous, functions allow the interpolation

any number of additional data points. Undersampling or overwhelming noise naturally impedes

relational discovery by compromising the accuracy of any representation.

In many instances, filtering input series appropriate to the observational sampling can effec-

tively reduce noise and induce smoothness. Specific to this representation, filtering step functional

inputs similar to "Laser Energy" in Figure 3.1 or signals containing high-frequency noise to produce

continuous renderings more efficiently represent the patterns of low-frequency change relative to

comparative relational evaluation. Ideally, any number of transformed renderings of experimental

series can be included as input to this method at the discretion of the researcher. Realistically,

however, each additional input increases the size of the search space, and consequently, the com-

putational time of any method.

3.2 Time Series Notation

Section 2.1 presented the basic concepts of a time series as a sequence of observations. This

section serves to formally specify the mathematical notation used for these concepts throughout

this and the next chapter.

First, consider that every discrete observation is measured at some specific instant in time,

and that any instant occurring after any other instant must be of greater value. In most cases,

each time series variable, or the entire set of experimental variables are paired with a sequence of

time-stamps relative to each observation. This pairing allows the following definition.
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Definition: The Finite Sequence of n Observation Sample Times

= (tl, t2, . .. , t,,) such that tj+j > tI (3.1)

Next, the formal specification of an observation builds on the previous definition of obser-

vation sample times. For purposes of this research, observations are simply an injective mapping,

represented as the result of a unique real-valued function, of observation sample times to elements

of the real numbers.

Definition: A Time Series Observation

ai = Fa(ti) for i= 1,2, ... ,n (3.2)

such that ai E R

Consequent to Equation 3.2, only one final notational definition remains.

Definition: A Time Series of Indexed, Observations

a= (a,, a2,.*.,a,) (3.3)

Throughout the remainder of this thesis, vectored lowercase letters imply an entire time series of

n observations, while lowercase letters with an associated subscript imply a specific real-valued

observation indexed by the subscript, which in turn is associated with a similarly indexed sample

time.

3.3 Definition of the DMC Transform

Fundamentally, the DMC transform is actually a series of three numeric transformations.

The first component is the qualification transform (QT), which computes the qualitative measures
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of monotonicity and concavity. QT transforms real-valued observations into a small set of integer

bivariates. Second is the encoding transform (FT). The ET transform encodes each bivariate

generated by the Q'T transform into the set of positive integers, effectively using one integer to

represent the previous pairing of two. The last component is the compression transform (CT),

which as the name implies, compresses intervals of repeated integers down to a single record. These

records contain the corresponding encoded integer, plus two time indexes denoting the initial and

terminal sample times.

Each of these component transforms will be rigorously defined in the next three sections.

Then, Section 3.3.4 abstracts to the collective DMC transform, presenting a unified summary and

illustration. Relative to the terminology introduced in Chapter I, the term primitive refers to the

discrete values produced by the qualification and encoding transforms specifically reference a unique

result of the cross-product of monotonicity and concavity. Additionally, the records generated by

the compression transformation implement the concept of a primitive interval.

3.3.1 The Qualification Transform. A monotonic sequence implies either consistently

increasing, or consistently decreasing in value. Initially, consider encoding a time series based solely

on monotonic segments (increasing, constant, or decreasing). Figure 3.2 illustrates the piecewise

monotonic encoding of the first 10,000 observations from the two filtered series of the PLD data

originally given in Figure 3.1. Such an encoding would seem adequate to capture the periodic

behavior assumed in the previous section. This example demonstrates not only a strong correlation

between the laser and emission signals after the transformation, but also illustrates the potentially

huge representational space savings of interval compression 2. However, the use of only monotonicity

2
Consider that each of the three signals depicted in Figure 3.1 are composed of 50,000 data points collected over

a five hour period. Their resultant 'monotonic' encodings reduce to 43, 23, and 25 records respectively. Assuming

32-bit floating point values for each of the observation, and 32-bit integers for each of the record fields, discrete-
space encoding reduces the required storage space from 600,000 byte to just 1092 bytes. However, spatial savings is

considerably more important in terms of efficient computational search.
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was considerably weaker in terms of realistic discrimination than the pairing of monotonicity and

concavity, which on average, only doubles the size of the reduced representation.

250 . ,

Lowpass Filtered 200
Laser Energy 150 , ,

100 I - , I I I J

0 5000 10000

D I D I D I D I D
Encodings:

D I D I D I D I D0.0 °I : . . .. . .,, , ,
0.0

Filtered Optical 0.4

Sensor Measurement
0.2-

5000 10000

Figure 3.2 Monotonic Encoding. An example demonstrating the piecewise encoding of two
strongly correlated segments from the original PLD data, introduced previously in
Figure 3.1.

The qualitative measure of concavity, which describes the curvature of a segment, was paired

with monotonicity, as described above, to enhance the representational 'signature' of any given time

series. The initial choice of monotonicity defines a certain number of functional equivalence classes.

The pairing of monotonicity and concavity effectively subdivides each of the monotonic equivalence

classes into a much larger number of unique 'signature' classes. This additional resolution serves

to improve accuracy during relational discovery, and to differentiate operational results, which are

developed in the next chapter.

In many respects, the monotonicity and concavity defined for this transform mirror basic dif-

ferencing techniques, which correspond to the discrete forms of the first and second derivatives, with

an underlying assumption of differentiability. Qualitative monotonicity, as previously illustrated, is
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characterized on the range of monotonically increasing, constant, or monotonically decreasing over

the domain of a series of real numbers. Qualitative concavity, on the other hand, is represented

as either convex 3 , constant, or concave4 over the same domain. Numerically, the respective ranges

are simply derived from the relational operations of greater than, less than, and equal to, as shown

in the following three equations.

Definition: The Qualification Transform

(Mi, Ci) = QT(ai) (3.4)

where Mi, Cie{+l, 0,-1 for each i=2,3, ... ,n-1

Definition: Qualitative Monotonicity

+1 if ai > ai-1

Mi 0 if ai = ai- 1  (3.5)

-1 if ai< ai-1

Definition: Qualitative Concavity

+1 if aia > ia-
ti+l-ti ti-ti-I

Ci 0 if a a ai-ai-, (3.6)ti+l-ti "ti-ti-1

-1 if ai+l ai< ai-ai-1
ti+l-ti ti-ti-1

Of note, if uniform sampling can be guaranteed across an entire time series, the denominator

in Equation 3.6 always reduces to one. This reduction can be leveraged for additional computational

efficiency by eliminating two unnecessary divisions.

3
Having the property that the chord joining any two points on its graph lies above the graph [3].

4
Having the property that the chord joining any two points on its graph lies below the graph [3].
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Although conceptually, it is easy to iterate the above definitions across an entire time series,

the specific notation is given by the following definition.

Definition: The Series Qualification Transform

(M, C) Q()

such that M = (M 2 , M3 , ... , M--.), (3.7)

and C = (C 2 , C3 , ... ,C-)

3.3.2 The Encoding Transform. Computationally, the cross product of monotonicity and

concavity would contain nine unique pairings. But given the domain and the relative meaning

inherent in each pairing, it does not make sense to consider constant values with a concavity other

than constant. Figure 3.3 illustrates the resultant set of seven primitives based upon the remaining

(monotonicity, concavity) pairings.

CONV CONST CONC

INC

CONST

DEC N[N

Figure 3.3 Representational Primitives.

For implementational simplicity, the encoding transform injectively maps the seven primitive

elements, each representing a unique bivariate tuple, into the set of integers. The integer values

3-8



contained within each primitive outlined in Figure 3.3 demonstrate one such encoding. In this case,

the specific encoding prefaces an expansion of the seven basic primitives in Chapter IV.

From the same standpoint used to define an observation, ST represents a simple function

mapping bivariate tuples into the positive integers, or at this point, the Natural numbers.

Definition: The Encoding Transform

A= ET(M, (3.8)

where Ai E Z+  given by

(Mi, C) (+1,+1) (+1,0) (+1,-1) (0,0) (-1,+1) (-1,0) (-1,-i)

A 9 8 7 6 5 4 3

The previous definition again represents the indexed notation for single tuple encoding. The

notation for encoding the entire series is given similarly to Equation 3.7.

Definition: The Series Encoding Transform

A=ST(M,C) (3.9)

such that A (A 2 , A 3 , ... , An-1)

3.3.3 The Compression Transform. Although unnecessary, compression is a simple pro-

cedure that can significantly reduce the number of iterations (i.e. CPU operations) required for

each subsequent operation, and during each evaluation. This compression defines primitive inter-

vals starting with the first primitive, and then adding a new record whenever the primitive value

changes, until the end of the sequence. The basic record denoting a specific primitive interval

contains the primitive in that region, an initial time index, and the terminal time index. Simply

considering that record as a 3-tuple, the definition for regional compressing to a single primitive

interval is as follows.
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Definition: The Compression Transform

if i = 2, or Ai #Ai-1;

and j =n-1, or Aj OAj+l; (3.10)

and Vkli<k j Ak=Ai;

then CT(Ai, ... , Aj) = (Ai, ti, tj)

Notationally, a compressed series of transformed values is denoted with a double dot, while

indexed records are given a single dot and an associated subscript.

Definition: The Series Compression Transform

Cj(A) = A = (Ai, A 2 , ... , A,+i) = ((A 2 , t 2 , ta), (Aa+i, ta+1, tb), .. ), (3.11)

where m equals the number of times the primitive value changes.

3.3.4 Summarizing DMC. The previous three sections presented the low level components

to abstractly define the DMC transform. Collectively, the sequences of primitive intervals generated

from a transformed experimental data set represent the discrete-space, equivalence class signatures

of the original time series variables. Figure 3.4 illustrates the entire transformation over a small

interval of one of the PLD data series originally illustrated in Figure 3.1.

The DMC transform makes two significant contributions to autonomous data-driven discov-

ery. First, the transformation effectively classifies real-valued signals into a discrete-space of func-

tional equivalence classes, which the next section distinguish as shift and scale invariant. These

equivalence classes can then be compared for relational proximity. Secondly, the compressibility of

an equivalence class signature often significantly reduces the computational explosion (i.e. process-

ing time) of generic relational search. Additionally, Chapter IV enhances these two contributions by

developing and demonstrating the operations of equivalence class signature addition and signature

multiplication, along with a template for the development of other operations.
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Figure 3.4 Primitive Interval Encoding. The complete transformation from 4,000 real-
valued observation, to 4,000 qualitative bivariate primitives, to 4,000 encoded primi-
tives, to 7 primitive intervals.

3.4 Properties of the Transform

The DMC transform defined in the previous sections has three very important properties

(shift invariance, scale invariance, and the operation of negation) with respect to the original search

problem. The first and second properties eliminate two infinite degrees of freedom, while the last,

which is actually a unary operation, provides a more precise definition of the operation, and also

saves mathematical computations. These properties will each be treated in turn.

3.4.1 Shift Invariance. With respect to any given time series5 , the property of shift

invariance implies insensitivity to any unilateral or bilateral translations (i.e. in arithmetic mean,

in time, or in both mean and time). Each of these translations will be notationally addressed

separately, with the understanding that they may be repeated and/or combined in any order.

5 By nature, a time series is a two dimensional construct, with a presumed temporal axis.
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Theorem 1 (Arithmetic Shift Invariance) Let c denote any real-valued constant, and 1 denote
the constant ones series (iv. 1 = (1, 1, ... , 1)). Then, arithmetic shift invariance is given as

Qy(& + cl) = Qy(a + c) = Qy(a) (3.12)

Theorem 2 (Temporal Shift Invariance) Let 7- denote any positive or negative time-based offset,
such that t+ rli t'. Then, temporal shift invariance is given as

Q;( W) = Qyr(a) (3.13)

The formal proof of this property requires the definition of the transform-space operation of

addition (Section 4.2.1) and is given in Appendix B. Informally, monotonicity and concavity are

based upon the differences between neighboring points. The addition of a constant value to the

mean, and/or offsetting the specific starting time do not affect these differences however great or

small the constant.

3.4.2 Scale Invariance. In contrast to shift invariance, the property of scale invariance

implies insensitivity to any change in ratio between the original series and a product of the original

series, where that product can be modeled as the result of a scalar multiplication by a positive

constant. In terms of analysis, this property is reasonable only along the non-temporal axis of any

time series.

Theorem 3 (Scale Invariance) Let c denote any positive real-valued constant. Then, scale in-
variance is given as

QT(c ) = Q¥(6) Vc > 0 (3.14)

The formal proof of this property requires the definition of the transform-space operation of

multiplication (Section 4.2.2) and is also given in Appendix B. Informally, any positive change in

ratio of the differences that define monotonicity and concavity will not change the aspect of those

differences.

3.4.3 Discrete-Space Negation. The basic operation of negation on a time series in real-

space is not precisely defined. A plausible definition could be scalar multiplication by a negative
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real-valued constant. Unfortunately, this fails to address how to handle associated arithmetic shifts

as previously discussed in Section 3.4.1. If the mean value of a time series is not zero, scalar

multiplication by a negative constant also has the side affect of negating that mean value. In

discrete-space however, the mean value is irrelevant, so simple scalar multiplication combined with

the transformation becomes both an adequate and precise definition for negation.

Theorem 4 (Negation) Let c denote any negative real-valued constant. Then, negation is given
by

QY7cd) = -iQy(d) Vc < 0 (3.15)

given by the following mapping function:

(Mi, C) (+1,+1) (+1,0) (+1,-i) (0,0) (-1,+1) (-1,0) (-1,-i)

-(Mi, Ci) (-1,-1) (-1,0) (-1,+1) (0,0) (+1,-i) (+1,0) (+1,+1)

3.5 Bivariate Relational Discovery

The relatively simple mechanisms presented in Sections 3.3 and 3.4 already provide the foun-

dation for a method capable of bivariate relational discovery. A bivariate relation maps a single

hypothetical (user-defined) or actual time series variable onto another single process variable (e.g.

y = cix, or y = x + cl). What remains is the method for the efficient search and then evaluation

of candidate relations.

At this point, it is important to point out that scientific analysis focuses on any and all

accurate relations, not just the first or most obvious. For that reason, this bivariate search method

pairs every input series with each independent process output. The search also considers the

negative image of each input paired with each output. Consequently, bivariate search is classified

as exhaustive, but with the reasonable expectation that the space of bivariate relations is small

when compared to the combinatorial space of higher order relations. However, further analytical

development in subsequent chapters reveals one benefit of such a bivariate search. In the subsequent
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chapters, the space of bivariate relations is completely spanned during the first iteration of this

method for multivariate analysis.

Relational evaluation can now be addressed. In essence, evaluation involves the computation

of equivalence class proximity. The basic technique traverses the temporal range of two experi-

mental series comparing the 'primitive' signatures of one to the other. On compressed intervals,

this proximity computation involves calculating specific regions of overlap and performing a single

primitive comparison over that entire region. The overlapping duration can then be credited as

matching or as failing to match. Therefore, in the simple bivariate case, the relational figure of

merit (FOM) is defined as the sum of the durations across regions of overlap where both the mono-

tonicity and concavity of both series are equivalent. Notationally, the concept is easier to consider

on uncompressed series of primitives.

Definition: Uncompressed Bivariate Figure of Merit

n-1
Ex(Aji, Bi)(ti - tiX)

FOM(A, B) i= -2 (3.16)
tn-1 - tl

1 if Ai=B
where x(Ai, 8i) { O othewis

0 otherwise

In terms of the FOM calculation on compressed signatures, a procedure better defines the

computation.

3-14



Definition: Compressed Bivariate Figure of Merit Procedure

I=2
m11
m 2 - 1
FOMHit, = 0

WHILE I < (n - 1) DO
IF Am-.Term < Bm2..Term THEN

IF Am 1 .Prim = B,2 .Prim THEN
FOMHit tA,.Term - ti-i

l ml -t 1
I = Ar .Init

ELSE
IF Am-.Prim = Lm,.Prim THEN

FOMHit = tL3m 2 .Term - tI

m2 - m 2 + 1

I = BM2 .In"t
END

END
FOM(A, ) = FOMHit,/(t,-i - ti)

where A and B are two sequences of primitive intervals, and
mi and m2 are respective indexes to the current record in each sequence.

Additionally, either computation for the figure of merit demonstrates the following four prop-

erties (given in compressed notation).

1. 0 < FOM(A, B) :_ I VA and ,3 3. FOM(A, 13) FOM(3, A)

2. FOM(A,A)=1 VA 4. ifFOM(, B)< lthen A

Finally, bivariate data-driven discovery can be modeled as the combination of the DMC

transform, an exhaustive pairing of experimental variables, the evaluational computation of each

FOM, and a final resultant sort. Figure 3.5 illustrates the basic discovery method. Optional filtering

has been included for the reasons discussed in Section 3.1, along with optional regression to solve

for coefficients in promising candidate relations.

Experimental results for bivariate relational discovery are given in Chapter V in conjunction

with the results from higher order relational searches. But first, Chapter IV comprehensively

expands this foundation to support multivariate relational discovery.
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Figure 3.5 Bivariate Relational Discovery.
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IV. Algebraic Expansion into the Multivariate

Chapter III laid the foundations for both efficient bivariate search and recognition, and a basic

applicational methodology. This chapter enhances that foundation, by developing and demon-

strating binary operations defined within DMC transform-space that parallel their numeric-space

equivalents. These operations extend the method's utility into trivariate relational analysis, and

experimental evidence is offered in Chapter V supporting the existence of traceable multivariate sig-

natures of incremental order within the discrete-space that can be exploited for higher dimensional

analysis by means of an iterative best-n first type of search.

The first section defines the notion of binary discrete-space operations, to include a discussion

the potential results and the necessary extensions to the basic set of primitives in support of such

operations. Section 4.2 develops the computational tables for both addition and multiplication

of functional equivalence classes, consequently allowing the relational consideration of addition,

subtraction, multiplication and division. Then, Section 4.3 combines these operations with the

ideas of the preceding chapters into a strategic method for multivariate search and recognition,

defining the mechanisms utilized in the next chapter for experimentation.

4.1 Definition of Discrete-Space Operations

The basic premise of a binary operation combines a pair of values, according to predefined

rules, to produce a resultant third value related to the previous two by the operation performed.

Addition and multiplication are two classic examples of mathematical binary operations, and both

are developed in Section 4.2.

4.1.1 A Template for Discrete-Space Operations. With the assumption of smoothness be-

tween sample points, precise operational results are computable in numeric-space along the entire

length of any two time series in question. In DMC transform-space however, combining two tem-

poral regions is not necessarily guaranteed to produce only one resultant region. In several cases,
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specific to a given operation, the combination of two overlapping regions results in a sequence

of regions within the original overlap. In these cases, the one correct sequence of primitives and

their relative durations within the overlap are dependent on the scaled, real values of the original

series. However, the dimensional reduction performed by DMC discards the actual observational

values, and any associated scales have yet to be regressed. Therefore, operations within DMC

transform-space do not necessarily allow for the precise computation of a complete operational

result.

Operations on many pairings in discrete-space result in computationally well defined mono-

tonicity and concavity, while other combinations are partially defined in either monotonicity or

concavity. At present 1 , the remaining unresolvable combinations are left as undefined results, pro-

viding little or no useful information relative to the original task of relational discovery. Together,

the well and partially defined operational results form a partial equivalence class signature, which

can still be used for relational evaluation.

Equation 3.4 defined a set of three potential symbol-values for both monotonicity and concav-

ity. To support partially and undefined operational results and maintain algebraic closure, another

symbol is required to represent an unspecified series of the original three symbols. For that reason,

the symbol 'u' has been added to the original set of {+1, 0, -1} as defined below.

Definition: DMC Transform-Space Operational Template

< GenericOp> [ A4, Bj ] = (M 1,C) (4.1)

such that: M7 G {+1, 0,-1, u} A CR C {+1, 0,-1, u}

'Chapter VI proposes two possible improvements directly related to currently undefined and/or partially defined

resultant regions.
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With the following three classifications for operational results:

(i) "Well Defined" r MR E {i+1, 0, -11 A CR E {+1, 0, -1},

(ii) "Partially Defined" (MR E {+1, 0, -1 A (CR = u)) or

(4.2)

((MRz = u) A CR C {+1, 0, -1}),

(iii) "Undefined" (MRz = u) A (CR = u)

The concession allowing for undefined operational results highlights one potential shortcoming

in this technique. As a minimum requirement, signals must now be sufficiently long and of sufficient

variability in terms of the basic primitives such that an operational result contains enough informa-

tion for adequate resolution. This idea parallels the conclusion drawn by Milosavljevi6 concerning

mutual information for jointly encoding DNA sequences [17]. In most cases, the amount of tempo-

ral data collected for scientific analysis of a process, given abilities to sample into the megahertz, is

assumably adequate. Likewise, the majority of present day scientific research is not constrained to

simple linear observations. Many techniques exist for manipulating exclusively linear data, almost

to the point of being uninteresting. The significance of this method lies in its ability to discover

linear and non-linear multivariate relations in predominantly non-linear series.

4.1.2 Updating the Bivariate Representation. The addition of undefined and partially

defined operational results also mandates expanding the set of seven basic primitives from the

previous chapter. The new cross product of monotonicity and concavity, including the 'unknown'

symbol, produces sixteen primitives. Because Chapter III ruled out constants with a concavity

other than constant, the pairing of monotonic constant with an unknown concavity can similarly

be removed. Figure 4.1 illustrates the resultant set of thirteen primitives.

In terms of the three components to the DMC transform, the Q transform remains unchanged

relative to this new set of primitives. The computation of monotonicity and concavity from real-

values is always well defined. The encoding transformation can likewise remain unchanged because
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Figure 4.1 Enhanced Representational Primitives.

QT is providing no additional information. However, the specification of positive-integer encoding

values for the new terms is given as follows.

Addendum to Equation 3.8: Encoding for Partially and Undefined Operation Results

(M i , C i) (u 0) (u , -t1) ( -t-l,u ) . . . ( 1, u ) (u ,- 1) (u , u )

A 12 11 10 . . . 2 1 0

And finally, the C transform also remains unchanged. The equality test for compression realistically

applies to all integers from -oo to +oo.

As with the transforms, the properties of shift and scale invariance remain adequate. However,

negation requires some expansion to support the new encoding values defined above.

Addendum to Equation 3.15: Partially Defined and Undefined Operational Result Negation

(Mi, Ci) (u,0) (u,+l) (-t-lu) . . . (-1,u) (u-1) (u,u)

- (Mj, Ci) (u,0) (u,- 1) (1, u) .. (+ 1, u) (u,+l) (u, u)
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Two applications of the previously defined operational template (addition and multiplication)

are developed in the next section. However, an important point to consider is that these two

operations are just examples of binary relations. This template allows for the definition of any

binary operation. Relative to data-driven discovery, this ability to include or exclude operations

demonstrates an aspect of analytical control that opens up many domains outside of materials

processing for which this method was conceived.

4.2 The Operations of Addition and Multiplication

Originally, graphical experimentation was used to develop operational solutions within the set

of primitive pairings. The resultant tables demonstrated promising evaluational results, however,

experimental incompleteness produced several errors, and considerably more undefined regions than

was desirable. The realization that monotonicity and concavity, as defined in Section 3.3, mirror

basic differencing techniques, provided a considerably more complete and accurate mechanism for

generating accurate operational results.

Computational differencing equates to the discrete forms of the first and second derivatives,

with an underlying assumption of smoothness and differentiability. Therefore, the application

of real-valued derivatives paired with the four symbols previously defined for monotonicity and

concavity, allows for the reasonable computation of a resultant symbolic value, and the generation

of operational tables.

4.2.1 Addition in Transform-Space. The symbolic addition of transformed signals, effec-

tively seeks to combine two equivalence class signatures and produce a new signature, representing

the class containing the transformed numerical result of the operation. The resultant signature

defined by addition, must therefore, represent the set of all possible additions of the original two

real-valued signals, invariant specifically to shifts and positive scales of the original two signals.

Although conceptually difficult, consider that the resultant signature of any operation also repre-
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sent both original signals. Consequently, the definition of a resultant equivalence class becomes a

mathematical process of solving for the commonality between the two input signatures.

To solve for discrete-space addition, consider the first and second derivatives of binary addi-

tion.

Given: The First and Second Derivatives of Added Functions

dd d_

dtdt dt
__( + b) = -a +-b

d 2  d2  d 2- - a+ b) = _jb

The terms of the first derivative represent numeric values, however these values reveal piecewise

monotonicity. Sequences of positive values indicate a monotonically increasing interval. Conversely,

sequences of negative values indicate a monotonically decreasing interval. Similarly, the terms of

the second derivative reveal piecewise concavity, with positive intervals indicating a convex region,

and negative intervals indicating a concave region.

Some basic properties of real-valued addition allow the substitution of DMC transform-space

symbols computationally into both terms of the first and second derivatives for addition. The

first property guarantees that the addition of two positive numbers or a positive number and zero

always results in a positive number. Similarly, the addition of a negative number to any other

negative number or zero consistently results in a negative number. In terms of signature addition,

the only unresolvable combinations add a positive and a negative number, or any symbol plus an

unknown. The 'symbolic' calculations are given in Appendix A, but the results for monotonicity

and concavity are separately summarized in Table 4.1.

The operation of DMC transform-space addition demonstrates three significant algebraic

properties. First, the addition of the symbol u allows addition to remain operationally closed

for monotonicity, concavity, and the combined operation of transform-space addition. Secondly,
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Monotonicity Concavity
Mi Ci

M C
+ -1 0 +1 u + -1 0 +1 u
-1 -1 -1 u u -1 -1 -1 u u

Mj 0 -1 0 +1 u Cj 0 -1 0 +1 u
+1 u +1 +1 u +1 u +1 +1 u

U u U U U U U U U U

Table 4.1 DMC Transform-Space Addition

constant monotonicity and concavity define respective unique identities for addition. Thirdly, it

can be shown that transform-space addition is associative (i.e., a+(b+c) = (a+b)+c). Appendix A

exhaustively proves associativity under addition. Closure, associativity, and symbolic identity allow

DMC transform-space addition to be classified as a 'groupoid' in terms of an abstract algebra. What

can not be shown are unique symbolic inverses, which would allow this operation to be classified

as a 'group' [12].

4.2.2 Multiplication in Discrete-Space. Similar to addition, multiplication seeks to com-

bine two equivalence class signatures to produce a new resultant signature. And likewise, solving

for the commonality between two input signatures is most effectively accomplished using the first

and second derivatives of binary real-valued multiplication.

Given: The First and Second Derivatives of Multiplied Functions

d 2  d c1 2 d& '(d-) d2
_(-*b -a(- -b + I-

dt2  /j dt ] dt / dt2 J

These derivatives imply that any solution to the operation of multiplication in discrete-space

requires the real values, a and b, that are not maintained by DMC. However, the property of shift

invariance (Section 3.4.1) justifies the assumption that any time series can be positively shifted until
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Monotonicity

Mi

* -1 0 +1 U

-1 -1 -1 U U
Mj 0 -1 0 +1 Ui

+1 U +1 +1 U
U U U U U

Concavity

(Mi, Cj)
C
* -1,-i -1,0 -1,+1 0,0 +1,-i +1,0 +1,+1 u

-1,-i U U U -1 -1 -1 U U
-1,0 u +1 +1 0 -1 -1 u u

-1,+ u +1 +1 +1 U U U U
Mj, Cj 0,0 -1 0 +1 0 -1 0 +1 u

+1,-1 -1 -1 U -1 U U U U
+1,0 -1 -1 U 0 U +1 +1 U
+1,+1 U U U +1 U +1 +1 U

U U U U U U U U

Table 4.2 Discrete-Space Multiplication

all observational values are greater than zero, without affecting the accuracy of the representation

or the operation. This assumption allows the symbolic reduction of the previous derivatives, as

shown below, such that monotonicity and concavity can be computed inside the discrete-space.

Given: The Reduced Derivatives of Multiplied Functions

d A d

d(A /*Bi) dAi ld idt ( t)( )+( ) (d
dt2(Ai * 3i) -2A (+1) + 2 dA Bi + (+1) Bi

dt2dt 2 /) kd (i dt2

Notice however, that unlike symbolic addition, the computation of multiplicative concavity

requires the inclusion of the associated monotonic terms. The complete symbolic solution for

multiplication is again given in Appendix A, with the results summarized in Table 4.2.
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Section 3.3.1 first commented that encoding monotonicity alone was representationally and

resolutionally weaker than the pairing of monotonicity and concavity. A comparison of the mono-

tonic operational results from Tables 4.1 and 4.2 illustrates the lack of any resolution between

DMC transform-space addition and multiplication. The inclusion of concavity allows at least some

discrimination between these two basic operations.

Referring back to abstract algebra, multiplicative monotonicity can be similarly classified as

a 'groupoid' using the same reasoning as was applied to addition. The same classification can

not be independently made relative to multiplicative concavity. However, considered as a pair,

monotonicity and concavity demonstrate closure, associativity 2, and a unique identity. Therefore,

transform-space multiplication may still be referenced as an algebraic 'groupoid'.

4.3 Strategy for Multivariate Search and Recognition

Section 3.5 illustrated the basic outline for transform-space relational discovery. This section

expands that outline, first enhancing the figure of merit to include partially defined operational

results for trivariate analysis, and then adding guided iterative search for multivariate analysis.

4.3.1 Trivariate Relational Discovery. Given the algebraic expansions developed in the

previous two sections, trivariate analysis simplifies to a mere expansion to the original bivariate

methodology illustrated in Figure 3.5. A trivariate relation maps a combination of two hypothetical

or actual time series variables onto another single process variable (e.g. z = c1x + C2y + c3 , or

z = cl (x * y)). What now remains is the expansion of search and evaluation.

Trivariate search can be approached from one of two ways. The first selectively combines

independent variables, possibly based on their bivariate figures of merit, for later evaluation. The

second exhaustively combines all possible pairings, similar to the bivariate search. In the interest

2
The exhaustive proof of associativity has not been included as part of Appendix A due to the extremely large

number of possible combinations.
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of discovering all possible relations, the later has been chosen given its general computational

tractability, its breadth of search, and a lack of conclusive evidence for significant bivariate FOMs

that highlight all of the terms involved in a higher order relation. As was previously stated, the two

operations defined in Sections 4.2.1 and 4.2.2 allow the consideration of transform-space addition,

subtraction multiplication and division.

Combined with the bivariate pairing, the resultant exhaustive trivariate search considers the

following possible combinations.

A A+B A*B A/B -iA/B

-A - A+-B A*-B A/- B -A/-B

A*-A A+--B -iA*B B/A -iB/A

A/-A B+A iA*iB B/-A -B/-A

-iA/A

The first column is repeated for every independent time series variable. The remainder are repeated

for each unique combination of two independent variables. The exhaustive size of this search-space

is O(n 2), with n representing the number of independent time series variables3 .

With respect to actually implementing the four transform-space operations (+, -, *, /), ad-

dition and multiplication are very straight forward. Subtraction, on the other hand, is simply the

addition of a variable plus the negation of another, while division is accomplished by multiplying

the relational divisor by the result for later comparison against the dividend (i.e. Ai/lBi = Ci is

computed as Ai = Bi * Ci).

Another important point to consider is the distribution and collection of negations within the

transform-space. Relative to addition, discrete-space negation parallels its numeric-space equivalent

(i.e. -(A + P) = A + - B = - - B) However, relative to multiplication, discrete-space negation

3
The actual dimension of the search-space is 5n + 16 n,! - 8n

2 
-

(n-2)*2!
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is slightly different than its numeric-space equivalent. Negatively scaling the product of two time

series variables in numeric-space effectively inverts the result of the multiplication. In discrete-

space, this same operation requires taking the product of the negative signatures of both variables

(i.e. -1(a * ) = -'(A * B) = (-.4) * (- B)). This difference becomes apparent when considering the

sorted results of speculated relations.

In terms of evaluation, equation 3.16 defined the original figure of merit over monotonicity

and concavity before u was added as a symbol. The inclusion of partially defined results divides an

expanded FOM calculation into two parts. Partially defined regions allow for a valid range of the

seven original primitives, and therefore require specific range versus equality checking. Therefore,

the FOM can now be expressed as the sum of well-defined equality plus valid partially defined

ranged-equality.

Definition: Uncompressed Multivariate Figure of Merit

n-I n-i
EXWD(Ai, Bi)(ti - 4- 1 )+ EXPD(Ai, Bi)(ti -i-i)

FOM(A, ) i=2 i=2 (4.3)
2(-n-1 -ti)

I if A = B
where XWD(Ai, Bi) { 1 otherwis

10 otherwise

1 ifAi.M=Bi.M A (Ai.CVBi.C)=u

and XPD (Ai, 8i) if Ai.C =Bi.C A (Ai.M V Bi.M) = u

0 otherwise

Having defined the necessary expansions to bivariate search and recognition, an example of

the resultant method for trivariate relational discovery can be considered. Figure 4.2 illustrates

an example of additive trivariate relational discovery. Illustrationally, uncompressed signatures
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visually maintain the periodicity of the original waveform, and are therefore preferable in terms of

display.

Numeric Addition
7 ( = -i 12 Encoded Signature (C

107. .12

10

12 44

4Time Series a 2

0 1000 2000 380 4820 10 280 00 4822
02.

82 12 Encoded Si nature A2 r (Al FOM )1)

7801

4D - 440 6
Time Series b r

0 2 20-0-00
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Figure 4.2sfrm Sialteealaino hymbolic, s ignature ddition. Thre relvle tim seisPb n

produces a figure of merit equal to one, indicating a perfectly correlated candidate
relation.

To highlight the relational evaluation in the previous example, Figure 4.3 enlarges the overlay

of the symbolic operational signature over the encoded mathematical result from Figure 4.2. Plainly,

well defined operational results overlap within the range of the seven original primitives, while

partial results fall above and below the encoded mathematical variable. The matching of negative

partially defined monotonicity and convex (positive) partially defined concavity have been outlined

to illustrate both the value of partial definitions, and the actual range checking that is required in
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terms of the FOM. Notice also that in terms of this example, approximately 25% of the resultant

signature remains completely undefined. However, this percentage varies dramatically depending

on the encoded variables and the operation performed.

Overlay (A+B) on (a + 6)] --- (FOM =1)
(U, 0) 12

(+l,u) 10 ':::: :::::(+1-)

(+1,0) 8-

(0,0) 6-

(-1,0) 4-

(A1,,u) 2,,,,

(u,-1 -

(,) 1000 2000 3000 4000

Figure 4.3 Overlay of a Symbolic Partial Signature on an Encoded Mathematical Re-
sult.

As one final example before considering a further expansion, Figure 4.4 illustrates coefficient

invariance relative to operational results. The addition of a scalar coefficient to the example pre-

sented in Figure 4.2 can greatly affect the resultant waveform, and consequently, the resultant

encoding. However, overlay of the symbolic operational signature produces equivalent results, ef-

fectively isolating scale-dependent intervals inside of partially or undefined regions of the signature.
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Numeric Addition
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245 8 8
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0 1000 20D0 300 400 0 1000 2030 3500 4100 0 1000 210 3000 4000

Figure 4.4 Demostration of Coefficient Signature Additon. This figure is a continuation

of Figure 4.2.

4.3.2 Expansion to Multivariate Relational Discovery. The previous section outlines the

basic application of DMC for bi/trivariate relational discovery. This section proposes extending

that method, based upon experimental results presented in Chapter V, into even higher order anal-

ysis. Because exhaustive multivariate relational analysis would, of course, become computationally

intractable, higher order analysis is carried out via the injection of highly correlated lower order

signatures into successive iterations of combination and evaluation.

The functional premise of this iterative approach forwards the operational signatures of a

lower order relational terms for further combination. For example, if the relation to be discovered

is A+B+C = X, then forwarding either A+B, A+C, or B+C allows for the subsequent combination

of the remaining term, and the potential discovery of X. Similar to the BACON system (reference
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Section 2.3), forwarded signatures are simply considered additional variables for combination and

evaluation.

In terms of relation evaluation, combinational progression from forwarded results towards

higher order relations is guaranteed to produce a FOM of equal or greater value than the forwarded

lower order term, relative to any associate operation. The inherent hazard is that each combination

will compound the previous loss in resolution due to the increasing number of unsolvable intervals.

Figure 4.5 expands the previous methodology (Figure 3.5) to support iteration, and signature

forwarding. An additional component representing algebraic knowledge has been included to pre-

vent unproductive cycling between successive iterations of the search. However, some additional

efficiency is possible by integrating this knowledge to prune prior to generating combination which

undo previous combinations.

This model for multivariate analysis requires the addition of two configurational parameters

to the system. The first defined the number of operational signatures to be forwarded between

successive iterations. The second simply defines the number of iterations to be processed. Hard-

coding the number of iterations is a current limitation of this method. Ideally, the system should

either continue searching as long as time permits, or should have some way of recognizing when to

stop iterating.

Figure 4.5 completes the DMC transform-space methodology for multivariate relational dis-

covery. The next chapter present the initial experimental results of this method.
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Figure 4.5 Multivariate Relational Discovery.
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V. Experimental Results

This chapter documents the initial testing of this method for multivariate relational discovery, as

illustrated in Figure 4.5. The first section explains the experimental setup used for testing. Then,

Section 5.2 annotates the results of several artificial bivariate, trivariate, and multivariate tests.

5.1 Test Setup

As previously stated, the basic methodology for multivariate analysis has been applied to

a number of artificial experiments. Prototyping, data generation and testing were exclusively

conducted in MATLAB 1 for the Macintosh, version 4.2c.1, on a Power Macintosh 7100/80. The

average execution time, without signature compression, for five iterations, given nine initial time

series, and forwarding five candidates per iteration, was six hours.

The methodology presented in Section 4.3.2 was implemented with one significant regrettable

exception. Instead of forwarding the operational signature as discussed in Chapter IV, the best-n

candidates were numerically computed with normalized real-values, encoded, and then returned

to the signature comparator. This decision was originally based on early operational tables and a

focus on the large percentages of undefined regions generated in operational results. Normalization

attempted to counter the effects of very large values overriding the relational contributions of very

small values, but in essence, this decision arbitrarily fixed time-series scale factors and relational

coefficients.

The effects of this decision degrade multivariate relational discovery, and are highlighted in

Section 5.2. Subsequent to this decision, the operational resolution for addition and multiplication

was significantly improved by the application of the first and second derivatives, as developed in

Chapter IV. This improvement, coupled with some additional consideration given in Chapter VI,

1MATLAB is a registered trademark of The Math Works, Inc.
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should more strongly support the application of this method to multivariate analysis as presented

in Section 4.3.2.

In term of the artificial time series data, 9 sequences of 10,000 normally distributed, random

observations were generated inside of MATLAB. The absolute value was then taken to combine the

random variation above the original mean. Lastly, each series was filtered with a 3rd order low-pass

digital Butterworth filter.

Series 1 Series 2 Series 3

85 82. 85

80.
80 80

78

75 - 76 75,

701 746 70
0 5000 10000 0 5000 10000 0 5000 10000

Series 4 Series 5 86 Series 6

84 85-
85 82

82
80

80 80 78

78 N 76

76 - 75- 74
0 5000 10000 0 5000 10000 0 5000 10000

Series 7 Series 8 Series 9

84
85 85

82

80 80 80

78

75 
75

76

701 70cL 74
0 5000 10000 0 5000 10000 0 5000 10000

Figure 5.1 Randomly Generated Experimental Time Series.
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The resultant artificial series are shown in Figure 5.1. The time series generation process

attempts to eliminate any accidental dependencies between the experimental variables, so that

only induced experimental relations would be evaluated during testing.

All nine of these experimental time series were provided as input to the prototype system.

One additional hard-coded mathematical combination of those nine was then defined for 'relational

discovery'. Case specific definition and results of this testing are provided in the next section.

5.2 Annotated Results

Section 3.5 presented the initial methodology for bivariate relational discovery, and expressed

that the space of bivariate relations would be fully traversed in the first iteration of multivariate

analysis. The following table documents seven experiments with artificial bivariate relations.

Artificial Bivariate Relational Testing

input scale forward/ final sorted total relations other of> FOM by iteration

series factor iterations position considered 1 2 3 4 5

3 1 5/5 1 6613 48 98 156 226 270

5 -1 5/5 1 6613 48 98 156 225 275

3 -1/3 5/3 1 2813 48 98 156

7 1/15 5/3 1 2813 48 98 156

9 -256 5/4 1 4513 48 98 156 226

2 6001 5/4 1 4513 48 98 156 226

4 -1/6 5/5 1 6613 48 98 156 226 275

The first column of the preceding table indicates which of the previously illustrated nine time

series is to be discovered, while the second column represent a specific scalar multiple applied to

that series. The third column documents the configurational parameters for the system (i.e. the

number of relation the forward during each iteration, and the number of iterations to process) used
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during each test. The next columns identify the line number containing the correct hard-coded

relation inside the sorted list of processed relations, followed by the total number of relations that

were evaluated during the entire experiment. The last five columns indicated the growth in number

of other processed relations with figures of merit greater than or equal to the correct experimental

relation by processing iteration.

The first table documents DMC's remarkable ability to discover noise-free bivariate relations,

however, it also indicates that the system also speculates an increasing number of spurious relations

as the number of iterations increases. This effect represents one current resolutional side-effect of

the two discrete-space operations. Currently, operational combinations of any variable with a

correctly identified bivariate term, produces a resultant signature of equal or potentially greater

FOM. These operational combination justify the regular pattern of growth indicated in the last five

columns of the bivariate test results.

It is hoped that some of the potential resolutional enhancements discussed in the next chapter

will correct this side-effect. Currently, this side effect seems to diminish in higher order relations.

The next two tables similarly present the results for additive and multiplicative trivariate

relational discovery. In all eighteen of the following tests, five iterations evaluate 6,613 candidate

relations. The total number of well and partially defined operational results have been included for

each experimental relation, to illustrate the current resolutional decay after one operation.

As expected, trivariate relations discovery demonstrates equally remarkable performance.

Additionally, the previous side-effect appear substantially diminished in all but the fourth additive

case. However, in that fourth test, a very large scale was applied to one time series variable, while

the other was divided by two. The large difference in scaling actually hides the second variable such

that the first matched independently as a simple bivariate relation. In this one case the position of

the correct relation was coincidentally linked to the side-effect previously discussed.
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Artificial (Additive) Trivariate Relational Testing

input scale forward/ final sorted total well def total partially other of

relation factors iterations position (% correct) (% correct) _ FOM

6+9 1 1 5/5 1 5761 (100%) 4101 (100%) 34

7-4 1 1 5/5 1 2851 (100) 4640 (100) 11

3-5 27 14 5/5 1 3671 (100) 4555 (100) 15

1+4 14000 1/2 5/5 4 1129 (100) 4629 (100) 270

7-6 1/7 1/18 5/5 1 4703 (100) 4381 (100) 11

9-2 164 17 5/5 1 2558 (100) 5534 (100) 17

2+8 1 2470 5/9 1 3217 (100) 4522 (100) 197

Artificial (Multiplicative) Trivariate Relational Testing

input scale forward/ final sorted total well def total partially other of

relation factors iterations position (% correct) (% correct) > FOM

6*3 1 1 5/5 1 1932 (100%) 5157 (100%) 26

7*1 1 1 5/5 1 1243 (100) 4608 (100) 17

8*9 1/17 7 5/5 2 1925 (100) 5476 (100) 12

6*2 601 38 5/5 2 1034 (100) 6212 (100) 17

4/9 1/2 13 5/5 3 237 (100) 2164 (100) 12

5/2 1024 6 5/5 1 906 (100) 3400 (100) 8

1/7 1 1 5/9 3 355 (100) 3556 (100) 18

8/6 70 1/21 5/5 1 276 (100) 4415 (100) 2

3*1 1 -1 5/5 41 756 (99.21) 4949 (100) 40

5*2 1 -1 5/5 7 2338 (99.96) 5355 (100) 7

9*4 -1 -1 5/9 2 722 (100) 4919 (100) 8
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Also of note, the last three multiplicative trivariate tests demonstrated the negative-numeric

to negated-signature relations that was introduced in Section 4.3.1. The resultant notation for the

three discovered relations was (- 1 * - 3), (--2 * --5), and (4 * 9) respectively.

The last three tables document several tests attempting higher order relational discovery.

Recognizing the previously stated deficiency in forwarding operational results, these tables focus

on highlighting the emergent positions and relative figures of merit of potentially traceable lower

order terms. Notationally, the positions of all lower order terms are relative to the 613 combinations

of the first iteration. 'Failure' generally indicates that the search had not yet forwarded necessary

lower order terms.

In terms of the additive and multiplicative tests, forwarding any one of the lower order terms

allows the evaluation of the four-variable relations. Of particular interest, is the fourth additive

test, which was at least successfully processed the correct multivariate relation. In this case, the

multivariate figure of merit actually decreased from the forward lower order term. This decrease is

directly related to the arbitrary fixing of time-series scale factors and relational coefficients. Such

a decrease is mirrored in the first two multiplicative four-variable tests.

Artificial (Additive) Four-Variable Relational Testing

input scale iter final other of 1st, 2 ,d
, 

3rd lower-order

relation factors found pos % FOM > FOM (2 nd iter pos) % FOM

3+5+1 1 1 1 2 7 99.81% 7 (2) 92.62% (26) 77.63% (70) 66.44%

4+2+7 1 1 1 2 36 98.39 35 (2) 92.82 (8) 85.73 (45) 70.0

2-9-4 11 1 301 failed n/a n/a n/a (38) 97.55 (39) 97.51 (410) 28.78

6-8+1 1/16 7 23 2 770 88.26 769 (1) 100 (56) 83.02 (263) 40.63

6-2-9 1 1 1 failed n/a n/a n/a (11) 71.66 (26) 69.34 (33) 65.05
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Artificial (Multiplicative) Four-Variable Relational Testing

input scale iter final other of 1 st, 2 ,d, 3 rd lower-order

relation factor found pos % FOM > FOM (2 ,d iter pos) % FOM

4*5*8 1 2 498 76.81% 498 (2) 87.46% (32) 65.13% (38) 63.04%

1*2*3 7 2 844 80.0 843 (5) 94.69 (54) 70.85 (68) 65.49

7*9/6 1 2 67 94.21 66 (3) 87.66 (143) 55.39 (280) 40.03

2/6/5 3 failed n/a n/a n/a (81) 58.86 (161) 47.95 (579) 10.15

8*7/1 1 failed n/a n/a n/a (6) 90.53 (31) 83.19 (69) 70.55

Artificial (Mixed) Four-Variable Relational Testing

input scale iter I", 2,d, 3 d lower-order

relation factors found ( 2 nd iter pos) % FOM

(7+1)/4 1 failed (14) 84.63% (18) 83.30% (77) 67.30%

3*(5+1) 1 failed (4) 96.33 (11) 85.13 (168) 52.74

4/(5-9) 1 failed (593) 0.96
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VI. For Future Consideration

The previous chapter documented a number of implementational deficiencies within the current

system. This chapter documents several enhancements that are currently considered for future

implementation.

6.1 Continuing Discrete-Space Search

Section 4.3 introduces the desire to iterate exclusively inside of DMC's discrete-space, pref-

acing experiment support in Chapter V. As experimentally demonstrated, numerically computing

intermediate binary combinations for iterational forwarding arbitrarily fixes scale factors and re-

lational coefficients, consequently biasing forwarded results and obfuscating the multivariate sig-

natures that the method is attempting to pursue. Operations in discrete-space require no such

assumptions of scale, and consequently do not induce a bias in terms of successive operations.

Any ability to continue 'operating' inside of the discrete-space is currently limited by the res-

olution of operational results, and the concession allowing partially defined and undefined regions.

If, for example, each operation over two completely defined series produced only a 50% well de-

fined operational result, then accurate evaluation becomes proportional to the number of variables

potentially involved.

Therefore, resolution management is the key to this operational shortcoming. The next section

presents three enhancements that address improving DMC resolution in terms of this analytical

method. However, any resolutional enhancement must be carefully evaluated to avoid potentially

'resolving' away the incremental multivariate signatures used to guide higher order search.

6.2 Addressing Better Resolution

Chapter IV introduced the rationale for and some of the associated problems with less

than"well defined" operational results in terms of higher dimensional analysis. Unfortunately,
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ambiguous regions hinder accurate resolution both inside the iterative search, and also in terms

of evaluating the results produced from this method. The necessity for efficient evaluation was

stressed in Chapter I, even above that of efficient search. This section presents three potential

enhancements considered for future implementation.

Improving the Figure of Merit. Ambiguous regions are currently overlooked in the figure

of merit equation used for evaluation. Partially defined matches are weighted equally to complete

matches, and undefined resultants are not considered at all. In the author's opinion, any penalty

assessed solely on operationally undefined or partially defined regions would adversely affects this

method in terms of those operations. Such a penalty would imply that some pairings are more

significant than others, which is not the case. On the other-hand, alternate figures of merit, such

as separating monotonic correlations from that of concavity might demonstrate that certain deriva-

tives are more important relative to relational discovery than others. Another possibility would

evaluate incrementally along the derivative orders. Such an incremental evaluation would com-

pute the monotonic correlation separately, and then consider monotonicity and concavity jointly,

and so on. These alternatives represent just two possibilities that may improve evaluation within

current operational resolutions. Additionally, these two alternatives foreshadow the next potential

enhancement.

Adding Higher Order Derivatives. The DMC representation as described in Chapters III

and IV incorporates aspects of the first and then the second order derivatives, consequent to their

visual significance. Although higher order derivatives potentially lose simple visual significance,

successive orders may hold yet undiscovered relational significance. In such a case, consideration

of the additional complexity must be weighed against the potential resolutional improvement. The

addition of such terms might substantially increase the number of partially defined and undefined

operational pairings, as well as decrease processing speed. However, higher order terms may also
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increase the representational and more importantly, operational resolutions such that multivariate

analysis exclusively in discrete-space becomes realistically possible.

Inserting Sequences into Undefined Regions. As explained in Chapter IV, the operational

combination of two temporal regions is not necessarily guaranteed to produce only one resultant

region. This fact underpins the currently undefined and partially defined regions hindering contin-

ued operational search inside discrete-space. What has yet to be addressed are potential limits on

the number of valid sequences generated in such regions. In terms of any partially defined region,

there is only one degree of freedom. Intuition suggests that many such partially defined regions will

change at most once, with respect to that degree of freedom, given smooth waveforms. Is it then

equally valid in the case of some undefined resultants, to suggest that within those regions each of

the two degrees of freedom will change at most once? In either case, the temporal instant of these

inflections would not be computable in discrete-space, but such insight might allow the number of

potential sequences within a region to be quantified for conditional evaluation.

For example, the addition of an (increasing, concave) segment with a (decreasing, concave)

segment results in a concave segment with undefined monotonicity (see. Table 4.2.1). The first

term's rate of change is increasing, while the second term's rate of change is decreasing. Therefore,

it is reasonable to assume that if the rate of change of the second initially exceeded the first, but

then the first term's rate overtakes the second, then the first will continue to dominate from that

instant. Reasonably, the set of possible sequences within the region of overlap given this pairing and

operation could be reduced to [(dec,conc) ; (dec,conc),(inc,conc) ; (inc,conc)]. This reduction would

allow the actual region temporally equivalent to the region of overlap to be conditionally evaluated

against the three possible resultants. Then, matching cases would lend additional support to the

relation being evaluated, while non-matchable cases might tend to invalidate the relation.
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6.3 Residual Analysis

Often, it is not feasible or cost effective to measure all of the desired variables for any given

process. Additionally, unknown or unrecognized variables may exist that have yet to be considered.

Such 'unknowns' often represent critical pieces of information, necessary for understanding the

dynamics of a process. Therefore, any classification even of the form of an unmeasured or unknown

variable may be of enormous value.

This method has demonstrated the ability to discovery relations between measured inputs and

outputs. It would seem possible, however, given the combinational algebra described in Chapter IV,

to at least partially compute an unmeasured quantity at least in form. In such cases, simple linear

components, or possibly speculated forms that fit into multiple relations might provide cues to the

existence of other variables. Conceivably, any such technique would be limited to speculating a

single form representing a possible set of unknown variables.

Additionally, if regression is applied to solve for the coefficients of a relational form discovered

using DMC, then the residual of that fit may contain interesting information. In the case of the PLD

example shown in Figure 3.1, fitting the filtered laser energy signal to the spectral measurement

reveals a simple linear component, possibly representing decay. Patternistic residual analysis is

an additional major research problem [20], however, this discovery method may allow for a simple

solution. Time allowing, residual signals could be injected into a second pass of this method,

allowing residual relational discovery to proceed simply from the larger set.

6.4 Neural Considerations

Neural networks have demonstrated remarkable potential for learning and time series predic-

tion. Although currently unprecedented, neural architectures exist that may be adaptable to this

more explanatory time series problem. Combining relevant theories for the extraction of coherent

rules from the distributed information contained in a network's relative weights, with one or more
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appropriately structured networks, might produce a relational discovery system of equal or greater

efficiency than the previous method. Additionally, it is conceivable that a neural approach that

processed the transformed information presented in this research, could more efficiently search the

problem space.

6.5 Beyond Discovery

Outside of this method for relational discovery, the techniques developed in Chapters III and IV

could be applied to many other processing areas. Trivially, these techniques could be combined

with a library of template patterns such as sine, square, etc., for signal identification and periodic

characterization. Along those same lines, signal addition or multiplication by similarly templated

noise could then be matched against actual data conceivably to characterize signal noise. However,

the second application is not so trivial.

The major difficulty for symptom-based fault detection is knowledge acquisition [8]. Symptom-

model-based approaches to fault detection combine heuristic symptoms with system inputs to

monitor and recognize faults within a process. Currently, DMC is designed strictly for post-

processing. But, assuming sufficient improvement to support real-time operation, this method

could autonomously generate heuristic relations through simple monitoring. These relations could

then be tracked, and if violated, simply raise the potential faulting conditions. However, significant

testing and considerable improvements are necessary before any such application could be realized.
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VIL Conclusions

Various authors have downplayed the potential contributions of exclusively data-driven approaches

to relational discovery. It has been suggested that purely data-driven discovery is often impossible,

and in any case much more difficult than is often assumed [4]. Another argument suggests that

this type of discovery does not entail most of the activities involved in empirical research, such as

experimental design, or hypothesis testing and theory revision [3]. Granting that these discovery

methods will not replace a research scientist, hopefully, the DMC transform and its associated

method for relational discovery have restated the conclusions originally drawn from BACON, that

automated data-driven discovery is both plausible and computationally tractable.

This thesis presents a new approach to signal analysis and relational process discovery. Chap-

ters III and IV develop several autonomous mechanisms which implement Gerwin's four aspects

for extracting relations from data (i.e. pattern perception, classification, class specific resolution,

and recycling, if necessary). This method also extends beyond simple linear or bivariate relations

to address the larger issue of multivariate linear and non-linear relational discovery from primarily

non-linear 'real' data.

Algorithmic DMC encoding and compression of time series signals offers substantial repre-

sentational contributions to data-driven relational discovery. DMC's representational properties

of shift and scale invariance eliminate two infinite degrees of freedom. Likewise, the reduction of

continuous time series values to 13 discrete primitives greatly simplifies comparitive evaluation.

The foremost contribution, however, is the ability to 'algebraically' and associatively combine

discrete-space signatures to produce new signatures representative of all the possible combinations

of the orignal signals via specific operations. This ability combined with appearantly traceable

lower order signatures provides substantial potential for computationally tractable, autonomous,

multivariate relational discovery.
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The future considerations presented in Chapter VI represent significant, achievable improve-

ments to the foundations demonstrated by this research. These improvement should also serve

to correct the problems noted during experimental testing, and it is the intent of this author to

continue developing DMC, specifically attempting to produce a low speed real-time system capable

of actual process monitoring and fault detection.

The basic premise for operationally combining compressed data signatures offers a significant

contribution to artificial discovery, while the fundamental idea may be applicable to other areas.

Combination of this technique with others, such as Schaffer's E* algorithm, may demonstrate a

much greater resolutional ability to discover and model experimental processes. Given the ever

increasing volume of collected data, techniques such as DMC will be increasingly called upon to

efficiently reduce 'real' data down to accurate relations.
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Appendix A. DMC Transform-Space Operational Solutions

A. 1 Transform-Space Addition

The following table 'symbolically' computes the operational results for addition. Because the

first and second derivatives for addition, as shown below, are identical, the resultant tables for

monotonicity and concavity are also identical. Therefore, only the monotonic half of the computa-

tions are given.

d d d - +-(A+ 13) -A + dt -
dt dt dt - MA B

d 2  d2  d2dr(A + B) = -A + -8 - -A+C
d12-Tj2  dt 2  _0+B

Symbolic Computation of Monotonicity

(and Concavity) Under Addition

Mi Mj i + M~j Result MA.4j M Mi + A4j Result

+1 +1 (+1) + (+1) +1 -1 +1 (-1) + (+1) u

+1 0 (+1) + (0) +1 -1 0 (-) + (0) -1

+1 -1 (+1) + (-1) u -1 -1 (-1) + (-1) -1

+1 u (+1) + (u) u -1 U (-1) + (u) U

0 +1 (0) + (+1) +1 u +1 (u) + (+1) u

0 0 (0) + (0) 0 u 0 () + (0) U

0 -1 (0) + (-1) -1 u -1 (u) + (-1) u

0 u (0) + (u) u u u (u) + (u) U

Secondly, the following table exhaustively proves additive associativity. Again, only one table

is given to demonstrate associativity for both monotonicity and concavity.
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Additive Associativity Proof

M i  Aj A4k .',"i+j MA'j+k Mi+k A,(i+j)+k .Ai+(j+k) .A(i+k)+j

+1 +1 +1 +1 +1 +1 +1 +1 +1
0 0 0 0 0 0 0 0 0

-1 -1 -1 -1 -1 -1 -1 -1 -1
U U U U U U U U U

+1 +1 0 +1 +i +1 +1 +1 +1
+1 +1 -1 +1 U u u u U
+1 +1 u +1 u u u u u
0 0 +1 0 +1 +1 +1 +1 +1

0 0 -1 0 -1 -1 -1 -1 -1
0 0 u 0 u u u u u

-1 -1 +1 -1 U u u u U
-1 -1 0 -1 -1 -1 -1 -1 -1
-1 -1 u -1 U u u u U

u U +1 u U u u u u

u u 0 U u U u U U

u U -1 U u U U U u

+1 0 -1 +1 U -1 U u u
+1 0 u +1 U u u u U

+1 -1 u U U u u U U

0 -1 U -1 U u U U U

A.2 Transform-Space Multiplication

The following tables 'symbolically' compute the operational results for multiplication. The

reduced first and second derivatives, as justified in Section 4.2.2, are shown below. In this case the

properties of numeric addition used in the previous operations must be combined with some numeric

properties of multiplication. The two important properties are: the multiplication of any positive

and negative number always results in a negative number, and secondly, the multiplication of any

two negative numbers always results in a positive number. The computations for monotonicity and

concavity are given in turn.

d (A * )d(dA) (±1) + (+1) (dB)

dt2  *B) d+2 A (41) 2(d A) (dB) + (±1) (213)
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Symbolic Computation of Monotonicity

Under Multiplication

Mi Mj (Mi)(+l) + (+I)(Mj) Result A4 Aj (Mi)(+I) + (+l)(Aj) Result

+1 +1 (+1)(+1) + (+1)(+1) -1 +1 (-1)(+1) + (+1)(+1)

= (+1) + (±1) +1 = (-1) + (+1) u

+1 0 (+1)(+1) + (W1)(0) -1 0 (-1)(+1) + (+1)(0)

= ±) + (0) +1 = 0) + (0) -1

+1 -1 (+1)(+1) + (+1)(-1) -1 -1 (-1)(+1) + (+1)(-1)

= (±1) + (-1) u (-1) + (-1) -1

+1 u (+1)(+1) + (+l)(u) -1 u (-i)(+i) + (+l)(u)
= (+ 1) + Wu U= (- 1) + (U) u

0 +1 (0)(+1) + (+1)(+1) u +1 (u)(+1) + (+1)(+1)
= (0) + (+1) +1 = (u) + (+1) u

0 0 (0)(+1) + (+1)(0) u 0 (u)(+1) + (+1)(0)

= (0) + (0) 0 = (U)+ (0) U
0 -1 (0)(+1) + (+1)(-1) u -1 (u)(+i) + (+I1)(-1)

= (0) + (-1) -1 = (U) + (-1)
0 u (0)(+1) + (+1)(u) u u (u)(+1) + (+1)(u)

(0) + (U) u = (u) + (u) U

Symbolic Computation of Concavity

Under Multiplication

(A,4i, Ci) (A/j, Cj) (Ci)(+l) + 2(A4j)(Aj) + (+1)(Cj) Result

- + 2(-1)(-1) + (+)(-1)

-(-1) + (+1) + (-1) u
(-1,-1) (-1, 0) (-1)(+1) + 2(-1)(-1) + (+1)(0)

(-1) + (+1) + (0) -
(-1,-i) (+1,-i) (-1)(±1) + 2(-1)(-1) + (+1)(+1)

- (-1) + (+1) + (+1) u
(1,- 1) (0, 0) (-1)(+1) + 2(-1)(0) + (+1)(0)

=-- (- 1) + (0) + (0) -

(1-) (+1,-i) (-i)(+1) + 2 (-1)(+1) + (+ 1) (-1)

= (-1) + (-1) + (-1) u(-1,-1) (+1, 0) (1) (+1) + 2(-1)(+1) + (+1)(0)

= (-1) + (-1) + (0) -
(-1,-i) (+1,+1) (-1)(+1) + 2(-1)(+1) + (+1)(+1)

= (- 1) + (- 1) + (+ 1) u

( -1,1) __,U) (-1)(+ 1) + 2(-1)(--) + (+ l)(u)

= (- 1) + (_) + (U) u
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Symbolic Computation of Concavity Con't

(A4i, Ci) (Mj, Cj) (Ci)(+1) + 2(Mi)(A4j) + (+1)(Cj) Result
(-1, 0) (-1,-1) (0)(+l) + 2(-1)(-1) + (41)(-1)

= (0) + (+1) + (-1) u
(-1, 0) (-1, 0) (0)(±1) + 2(-1)(-1) + (I1)(0)

= (0) + (+1) + (0) +1

(-1, 0) (-1,+1) (0)(+1) + 2(-1)(-1) + (±1)(±1)
= (0) + (0) + () +1

(-1, 0) (0, 0) (0)(±1) + 2(-1)(0) + (±1)(0)
= (0) + (0) + (0) 0

(-1, 0) (+1,-i) (0)(±1) + 2(-1)(+1) + (+1)(-1)
= (0) + (- 1) + (-1) -1

(-1, 0) (+1, 0) (0)(+1) + 2(-1)(+1) + (+1)(0)
= (0) + (-1) + (0) -1

(-1, 0) (+1,1) (0)(-41) + 2(-1)(+1) + (41)(41)
= (0) + (-1) + (+1)

(-1, 0) (, u) (0)(+1) + 2(-1)(--) + (+1)(u)
-(0) + (__) + (u) u

(-1,1) (1,-1 (41(41)+ 2(-1)(-1) + (+1)(-1)
-(+1) + (+1) + (-1) U

(-1,+1) (-1, 0) (+1)(+1) + 2(-1)(-1) + (+1)(0)

- (+1) + (+1) + (0) +1
(-1,+1) (0,0) (+1)(+1) + 2(-1)(-1) + (41)(41)

- (1) + (01) + (0) +1

-(+ 1) + (- 1) + (- 1)+
(-1,+1) (0, 0) (1)(1) + 2(-1)(0) + (41)(0)

- (+1) + (0) + (0) +1
(-1,1) (1,-1 (+1(41)+ 2(-1)(41) + (+1)(-1)

-(+1) + (-1) + (-1) u
(-1,+1) (+1, u) (+1)(+1) + 2(-1)(+1) + (+1)(0)

= (+1) + (-1) + (0) u
(01,+0) (1,-i) ()(±1) + 2(-1)(+1) + (+1)(1)

= (1) + (-1) + (1) u

(01,0) (-1, U) (01)(+1) + 2(-1)(--) + (+l)(u)

= (+1) + (-) + (U)0
(0, 0) (-1,-1) (0)(41) + 2(0)(-1) + (+1)(-1)

= (0) + (0) + (-1) +1
(0, 0) (-1, 0) (0)(+1) + 2(0)(-1) + (+I1)(0)

= (0) + (0) + (0) 0
(0, 0) (-1,-i) (0)(±1) + 2(0)(-1) + (±1)(-1)

= (0) + (0) + (-1) -1
(0, 0) (0, 0) (0)(1) + 2(0)(0) + (41)(0)

= (0) + (0) + (0) 0
(0, 0) (+1,-1) (0)(±1) + 2(0)(+1) + (+1)(-1)

= (0) + (0) + (-1) +1
(0, 0) (+1, O) (0)(+1) + 2(0)(+1) + (+1)(0)

= (0) + (0) + (0) 0
(0, 0) (+1,41) (0)(41) + 2(0)(41) + (41)(41)

= (0) + (0) + (+41) +41
(0, 0) (_,U) (0)(41) + 2(0)(--) + (+l)(u)

= (0) + (0) + (U)
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Symbolic Computation of Concavity Con't

(.A4 j, Cj) (.A't, Cj) (Cj)(-i1) -+ 2(.A1j)QY1) + (+1)(Cj) Result

(+1,-i) (-1,-i) (-1)(±1) + 2(±1)(-1) + (±1)(-1)

(+ 1,-i1) (-1, 0) (1) (-I1) + 2 (±1) (- 1) + (± 1) (0)

- (- 1) + (- 1) + (+1)
(+ 1,-i1) (01,+0) (1) (+1) + 2 (+1)(1) + (+ 1) (O )

=(- 1) + (0) + (0 ) -1
(+1,-i) (+,-i) (-1)(±1) + 2(+)(0) + (+1)(0)

- (- 1) + (+1) + (-)
(+1,-i) (+1, 0) (1) (+1) +} 2 (±1) (±1) + (± 1) (-0)

= (- 1) + (± 1) + (0 ) U
(+1,-i) (±1,±0) (1) (+1) + 2 (±1) (±1) + (± 1)(01)

-(-1) + (+) + (+) U

= (- 1) + (+ 1) + (+ ) ____

(+1,0) (1,-) (0I)(±1) + 2(±1)(--) + (±1)(1)

(+1, 0) (-1, 0) (0)(±1) + 2(±1)(-1) +i (±1)(0I)
= (0) + (- 1) + (0 ) -1

(+1, 0) (01, 0) (0) (+ 1) + 2 (+1) (-0) + (± 1) (0)
= (0)+ (-O)+ (0) 0

(+1, 0) (+1,-i) (0)(±1) + 2(+1)(+1) + (+)(-1)
= (0) + (+ 1) +i (- 1) U

(+1, 0) (+, 0) (0)(+1) + 2(±1)(01) + (±1)(0)
= (0) + (+) + (0) 01

(+1, 0) (±1,+1) (0) (±1) + 2 (+1) (+1) + (± 1) (-1)

(+1, 0) (+, 0) (0) (+ 1) + 2 (+1) () + (+) ()
=(0) + (+ 1) + (0) +U

-(+0) + (-) + (-1) +1
(+1,+0) (-,U) (0)(±1) + 2(+1)(--) + (+)(0)

=(±1) + (-) + () U

(±1,±1) (1,+ 1) (±1)(±1) + 2(+1)(-1) + (±1)(±1)

(+1'+1) (01, 0) (+ 1) (±1) + 2 (±1) (-O) + (+ 1) (0)

= (+±1) + (0 ) + (0) +1

=-(+ 1) + (±1 + (- 1) U

(±1±1I) (0-, 0) (+1)(+1) +I 2(+l)(+0) + (+1)(0)

(+1+) (+1,+0) (± 1) (±1) + 2 (+1) (+1) + (± 1)(+1)
= (+1) + (+ 1) + (+1) +1I

(+1,+1) (,U) (+1)(+1) + 2(+l)() + (+l)(u)

=(0ti + (--) + (U) U
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Appendix B. Proofs Associated with the DMC Transform

Proof of Arithmetic Shift Invariance

The proof of arithmetic shift invariance relies upon the definition of transform space addition

(see Section 4.2.1). Specifically, the addition of any DMC time series signature and an encoded

constant results in the identical time series signature. This type of addition defines the unique

additive identity for DMC-space addition. Therefore, the proof simplifies as follows.

Qy(d + ci) =Qyf(a + c)

QT(Y ) + Qy(5) Definition of Additive Identity

Q 07)

Proof of Scale Invariance

The proof of scale invariance relies upon the definition of transform space multiplication

(see Section 4.2.2). Similarly to addition, the multiplication of any DMC time series signature

and an encoded constant results in the identical time series signature. This type of multiplication

defines the unique multiplicative identity for DMC-space multiplication. Therefore, the proof again

simplifies as follows.

Q- (ca)

Qy(cl) * Qy(d) Definition of Multiplicative Identity

QT(a-
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