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Notation

Scalars, Vectors, Matrices

Scalars are denoted by lower case letters in italic type. Vectors are denoted by lower

case letters in boldface type. The n-dimensional vector x is made up of components xi for

i = 1,..., n. Matrices are denoted by upper case letters in boldface type, as in the matrix

H, made up of elements ttij (ith row, jth column).

Miscellaneous Notation

(.) - estimated value

(.)T - transpose

E{.} - expected value

Ii jj-norm

Af(a, b) - normally distributed with mean a and covariance b

R x - x dimensional space of all real numbers

Common Symbols

ai ith denominator coefficient

bi :ith numerator coefficient

Ak real component of kth frequency response measurement

Bk imaginary component of kth frequency response measurement

H regression matrix

m number of measurements

Mk magnitude of kth frequency response measurement

MkdB magnitude, in decibels, of kth frequency response measurement

n order of the system

xiii



p factor of ten for increasing the original noise level

R linear regression equation error covariance (noise covariance) matrix

(O)k - on kth frequency response measurement

(O)AB - for phasor measurements

(e)dBO - for dB magnitude and degree phase measurements
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(O)k - from phasor noise to equation error

(*)dBo - from magnitude/phase noise to phasor noise
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v measurement noise

e linear regression equation error

0 parameter vector
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(O)GMV - Generalized Minimum Variance
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Abstract

Sensor noise is an unavoidable fact of life when it comes to measurements on phys-

ical systems, as is the case in feedback control. Therefore, it must be properly addressed

during dynamic system identification. In this work, a novel approach is developed toward

the treatment of measurement noise in dynamical systems. This approach hinges on proper

stochastic modeling, and it can be adapted easily to many different scenarios, where it

yields consistently good parameter estimates. The Generalized Minimum Variance algo-

rithm developed and used in this work is based on the theory behind the minimum variance

identification process, and the estimate produced is a fixed point of a mapping based on the

minimum variance solution. Additionally, the algorithm yields an accurate prediction of the

estimation error. This algorithm is applied to many different noise models associated with

three basic identification problems. First, continuous-time systems are identified using fre-

quency domain measurements. Next, a discrete-time plant is identified using discrete-time

measurements. Finally, the physical parameters of a continuous-time plant are identified

using sampled measurements of the continuous-time input and output. Validation of the

estimates is performed correctly, and the results are compared with other, more common,

identification algorithms. The Generalized Minimum Variance results are generally better

than those of the other methods.

xvi



COUNTERING THE EFFECTS OF MEASUREMENT NOISE DURING THE

IDENTIFICATION OF DYNAMICAL SYSTEMS

L Introduction

System identification entails an empirical, data driven approach to modeling dynam-

ical systems. The goal of system identification is to determine the parameters of an unknown

plant using measurements of the inputs to, and outputs from, the plant. A well-known, but

often conveniently ignored, physical reality is that measurement entails uncertainty, and the

measurements of the outputs, and possibly the inputs, will be corrupted by an unmeasure-

able disturbance, viz., measurement noise. One should also not lose sight of the purpose

of system identification, which can either be used for merely determining the parameter

values of interest, or more often, assuming an accurate plant model, for the purpose of de-

signing a control law for controlling the physical plant. Furthermore, there are two realms

of system identification. The first case is a one shot, initial identification of an unchanging,

but unknown, plant (e.g., for control system design). The other situation is the ongoing

system identification of a possibly time varying plant, in which case one refers to adaptive

or reconfigurable control, depending on whether the plant's parameters vary slowly or are

subject to possibly abrupt change. The latter is of most interest in controls.

In principle, there are two points of view concerning uncertainty and the control

of an unknown, or time varying, plant. One is to rely on the benefits of feedback and

design a robust feedback control system that is valid for all possible configurations, and

the other is to design an adaptive control system that changes its control based on the

continuously identified configuration. While (deterministic) robust control can be used to

guarantee a level of performance and disturbance rejection, it often leads to high gain con-

trollers which limit performance by saturating the actuators. Moreover, the achieved level

of performance for a specific plant realization is oftentimes mediocre. This can be alleviated
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through adaptive control, where less gain is required, viz., hard actuator saturations will

be better accommodated. In addition, superior control performance will be achieved. The

need for robust control is not totally eliminated, because the process of system identification

is far from perfect. However, online system identification reduces the level of uncertainty,

so performance gains can be realized through the use of both robust and adaptive control.

Indeed, the adaptive/reconfigurable control approach is most tempting in feedback control,

where no new instrumentation and/or actuators beyond those already available for robust

control are required. Obviously, the adaptive/reconfigurable control compensator will be

nonlinear, as opposed to the linear compensators/controllers that are synthesized in the

current linear robust control paradigms. Bearing in mind that modern compensators are,

in fact, algorithms, and in view of the ever increasing affordable computer power, the com-

plexity of nonlinear control systems is no longer a restraint, and the adaptive/reconfigurable

paradigm is increasingly becoming a viable proposition.

1.1 A Survey of the Literature

System identification is a broad, and hence a very diverse field, for it lies at the heart

of the empirical approach to mathematical modeling. For example, a recent issue of Auto-

matica was devoted entirely to system identification. However, as the editor states [9], there

was a distinct lack of papers on the "application of parameter and system identification".

Indeed, only two of the seventeen papers even remotely qualify. This strongly suggests that

system identification is still in the process of development. Two major themes present in the

current literature are the identification of time varying parameters and the identification of

continuous-time models using discrete-time observations. References [21] and [34], respec-

tively, are survey papers that address the current status of these two important lines of

research. Additionally, there are many recent papers that propose new methods of dealing

with the current difficulties.

1-2



In Ref. [5] the authors attempt to identify the physical parameters of a building, mod-

eled by a second-order thermal network, for the purpose of temperature control. Derivatives

and integrals of measured variables are used to calculate the recursive least squares estimate

of combinations of the physical variables. There is no real validation performed, because the

actual parameters are unknown. The data is taken from a real building, and the calculated

estimates are believed to be accurate because they are "close" to those estimated in previous

work using the same building. As will be pointed out in the sequel, establishing a "correct"

validation paradigm in system identification is a crucial element of system identification

and is a major theme of this research.

In Ref. [27], continuous-time parameters are once again estimated, but here the

observables are passed through a modulating function before being given to the identification

algorithm, viz., the input-output pair is filtered. Careful input-output filtering will reduce

the effects of measurement noise, and it can result in better estimates. Unfortunately the

method requires human intervention for the design and tuning of the filter. Here, the user is

required to choose the "modulating frequency index." The estimation algorithm is correctly

validated by running a simulation with known parameters and measurement noise, and the

estimated parameters are compared to the known parameters.

Another proposed method of identifying continuous-time parameters is to relate the

fractional decomposition of the continuous-time system to several z-transform polynomials

[29]. Weighted least squares is used to identify the z-transform parameters, and these

are converted back to the continuous-time parameter and initial condition estimates. The

continuous-time model identification method uses filtering on the input-output data pair

to estimate the models. A continuous-time formulation of an ARMAX (dynamic) model is

proposed and either recursive least squares or maximum likelihood is used for estimation.

The model is validated by comparing the Bode plots and step and impulse responses of the

actual and estimated system.
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Turning to the time-varying problem, in Ref. [23] weighted least squares is used to

examine the nonasymptotic properties of finite memory identification as it relates to time-

varying parameters. This work is based on an ARX (static) model (which is not adequate

for dynamic system identification), and it discusses both forgetting factors and moving

window estimation.

An improvement to the ad hoc forgetting factor approach is proposed in Ref. [31].

In this work, an online estimation of the equation error covariance matrix is performed

and this estimate is used in the recursive estimation of discrete-time parameters subject to

jumps.

The authors of Ref. [35] are aware of the problems associated with weighted recursive

least squares for time-varying parameter estimation, and they propose a new algorithm

based on a different parameter model. Rather than model the parameter as a constant,

they model it as locally changing, and estimate the characteristics of the model. The

proposed algorithm contains a pair of user-chosen tuning parameters that allow it to out-

perform the variable forgetting factor recursive least squares algorithm when applied to a

discrete-time ARX model.

Model order determination is also a subject of interest, and the authors of Ref. [24]

suggest an innovative method of estimating the system order in conjunction with the pa-

rameters. They augment and rearrange the parameter vector and regression matrix before

performing an LDLT factorization of the augmented regression matrix, in which the L

matrix contains the parameter estimates for all chosen model orders, and D gives the in-

formation on which model order is most correct. Once again, the assumptions made are

consistent with an ARX model.

In Ref. [18], the author discusses various methods of parameter estimation, including

maximum likelihood estimation, extended Kalman filters, and linear regression as they apply

to the identification of correct models for high performance aircraft. Attention is given to

determination of proper inputs, correct model order, and model validation.
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Measurement of state derivatives are used in Ref. [6] to convert portions of the

parameter identification into a "static" process. However low pass filters, with user chosen

roll-off frequencies, are used elsewhere in discretization equations for additional estimation.

These estimates are then used in an adaptive control law for spacecraft tracking.

1.2 Shortcomings of the Current Identification Paradigm

There are at least three primary methods of identification. Maximum Likelihood

Estimation (MLE), which is not considered in this research, is a sound method based on

optimization. It does, however, suffer from the process of transcribing a difficult prob-

lem into an "equivalent" optimization problem, which requires determination of the global

minimum. System identification is one area where the global minimum is a requirement,

because any local minima, even those close in value to the global minimum, simply produce

incorrect parameter estimates. Unfortunately, global optimization is a difficult problem in

applied mathematics.

Another classical route to linear system parameter identification entails the estima-

tion of the state of an augmented and nonlinear dynamical system, turning system identifi-

cation into a nonlinear filtering problem. Hence, it would appear that system identification

is in the realm of the Extended Kalman Filter (EKF)[25]. In Extended Kalman Filtering,

a linearization is employed. However, when the state estimation error becomes large, this

linearization-based approach loses validity and the estimation algorithm fails. One then

refers euphemistically to EKF "divergence." In addition, the emphasis in Kalman Filter-

ing is on recursive algorithms, and very often, the complete measurement time history is

used. While the recursive approach to estimation is most compatible with using an ever

expanding data set, the latter has the deleterious effect of precluding the estimation of

time-varying parameters, and in particular, the parameters subject to jumps, as is the case

in systems subject to possible failures. Moreover, EKF's must be initialized. When no prior

information about the system's states and parameters is available, and the filter is initial-
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ized accordingly, it might take a long time for the erroneous information to be "washed

out." Furthermore, proper identification requires a data window of minimal physical (tem-

poral) length. Estimates produced using windows shorter than this minimal length, even

though high sampling rates can produce many data points, are useless. In conclusion, this

identification method suffers from the well known deficiencies of EKF's.

Therefore, in the control community, linear regression-based approaches to the iden-

tification of linear system parameters are sought. These are also referred to as "linear

prediction" algorithms. Here, the linear structure of the dynamics is directly exploited and

the system parameters only (without the states) are estimated. This main line of research

in system identification is based on the statistical method of linear regression. This prag-

matic approach to system identification is also the subject of this research. The interest in

regression-based system identification arises from the relatively easier (compared to MLE)

computational burden and its relatively reduced sensitivity to, or possibly no need for, an

initial parameter guess. The latter holds the promise of autonomous operation, without the

need for human intervention, also known as "tuning".

The main theory behind regression-based identification is least squares. There are

many variations on this theme: weighted least squares, generalized least squares, instru-

mental variables, minimum variance, etc. Each suffers from its own difficulties when the

estimation problem is not properly formulated. Unfortunately, there is a glaring weakness

in the whole of system identification today: the lack of proper treatment of measurement

noise. Least Squares (LS), which is widely used in statistics, is a sound method as long as

the assumptions upon which it is based are met. Unfortunately, as will be discussed in the

sequel, the identification of dynamic systems with measurement noise negates an important

noncorrelation assumption in LS.

The problem is further aggravated by the lack of proper treatment of dynamical

system identification with measurement noise in some of the most cited textbooks. When

regression based identification is discussed in Refs. [12], [14], and [20], measurement noise
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is barely mentioned as the discussion moves from least squares theory to dynamical system

identification. Unfortunately, the presence of measurement noise in dynamical systems

produces a correlation that biases the LS estimate. The LS variations mentioned above were

formulated to address the correlation problem, and it could be assumed that measurement

noise is just lumped together with other correlated noises. However, this is not a judicious

course of action, because measurement noise introduces a specific correlation that can be

modeled and successfully addressed.

Another misplaced emphasis in the literature is on recursive estimation. The benefits

of this methodology are somewhat exaggerated. It is true that the ongoing estimation of

a parameter vector could possibly be accomplished faster, and with decreased memory

requirements, with a recursive method, but care must be taken in the application of such

methods. In recursive estimation, an initial guess is required as to the value of the parameter

and the confidence in the guess. If there is no a priori knowledge of the parameter, typically

a random guess is made, and the confidence in it is set very low. This may seem like

a proper thing to do, but poor initial guesses can take a long time to wash out of the

recursively calculated estimate. Another fallacy of the recursive methods is that one obtains

an estimate after the first measurement, but this estimate is, in fact, meaningless. A

certain number of measurements, determined by a minimal physical identification interval, is

required to obtain a valid estimate, and that number does not decrease when using recursive

methods. In fact, it could increase because of the poor initial guess. At the same time, the

recursive formulation of an identification algorithm oftentimes obscures important aspects

of its operation. This aspect of useful estimates will also be addressed in the proposed

research.

The identification of time-varying parameters is often based on recursive estimation.

The fact that the parameters vary will produce an incorrect estimate as time progresses.

This is because the method of recursion, by its nature, remembers all the information. An

ad hoc method of "losing" the initial information is to introduce a forgetting factor into
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the recursion. If it is true that the parameter is varying, a better method of estimation

would be a moving identification window. The latter method is more amenable to analysis,

and the window length can be more directly determined based on information about the

physical parameter's drift.

There are two methods of continuous-time system parameter identification [34]. One

is to estimate the parameters of a discretized (in time) system using well-known regression

techniques, and then convert the discrete-time system back into a continuous-time system

using a (bilinear) transformation. A problem arises here, which is addressed in the disserta-

tion, concerning the behavior of the sampled input signal. After all, the continuous physical

plant is subject to a continuous input signal, whereas only its sampled values are available

to the identification algorithm. The other method of continuous-time system identification

entails modeling the continuous parameters directly and then generating certain "measures"

from the discretely observed input and output that can be related to the parameters in a

regression-based manner. A troublesome aspect of this method is the generation of these

"measures." It requires human intervention to select certain parameters involved. Gener-

ating measures is equivalent to "properly" filtering the input/output pair. A truly rigorous

treatment of the continuous-time case, with continuous-time measurements, resides in the

realm of the difficult mathematical theory of nonlinear filtering.

1.3 Research Objectives

One of the main themes of this dissertation is that system identification is not merely

an algorithm which can be universally and blindly applied with no prior knowledge. Thus,

the main tenant of this work is that system identification is, in fact, a process where the

following factors play a major role:

1. The recognition that measurement noise is ubiquitous in physical systems

2. The availability of prior information about the possible system order and parameter

values and confidence bounds on the latter
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3. Relevant dynamics and the bandwidth of interest

4. The presence of parasitic dynamics, both high and low frequency

5. The way in which these parasitic dynamics interact with the dynamics of interest

6. Excitation issues, including:

* Physical duration of the identification interval T

* Sampling rate 1/AT or number of measurements m = T/AT

* The number of identified parameters must be small as compared to m (use lower

order models if possible)

e Signal to Noise Ratio (SNR)

* Frequency content of the input signal

The main thrust of this research is to develop a "correct" and comprehensive system

identification paradigm which addresses the items above. To this end, proper stochastic

modeling of the measurement noise is of paramount importance. Initially, the theory of

minimum variance estimation is applied in an innovative way, based on the correct noise

model, and examined in the face of input and output measurement noise. Further subjects

of interest are the application of this concept to:

1. Phasor-based system identification of continuous-time systems

2. Static identification of continuous-time systems

3. Time domain identification of discrete-time systems

Although the estimation is performed with discrete, noise-corrupted measurements, the

primary goal of this research is to identify the physical parameters of a plant. For that, the

continuous-time model is required.

Moreover, in this work, the emphasis is on system identification under the following

restrictions:
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* Small sample: Proof of asymptotic results (as m --* oo) is quite useless. For one thing,

the noise is then washed out. Furthermore, in practice, the small sample identification

horizon is typically too short for the asymptotic results to have any bearing on the

problem.

* Real time operation: The purpose of the proposed identification is for adaptive control.

Therefore, regression-based system identification, which can be adapted to online

operation, is used, rather than maximum likelihood estimation.

* Autonomous operation: Identification will, ideally, be performed without human in-

tervention and tuning.

* Measurement noise: It is understood that this is a reality of physical system identifi-

cation.

The primary consequence of the restrictions above is that the number of identified parame-

ters must be kept small. It is impossible to identify large numbers of parameters accurately

with a small sample and significant measurement noise.

Finally, above and beyond the system identification algorithm development work,

attention is given to the validation process, especially in the realistic case where one operates

on real data.

1.4 Methodology

To achieve these objectives, a novel system identification algorithm is developed and

used in this work. Here, the algorithm is coined Generalized Minimum Variance (GMV),

because of similarities to the Generalized Least Squares algorithm, and the use of Mini-

mum Variance estimation in the solution. Introduced in this work is the concept that the

parameter estimate provided by the GMV algorithm is a fixed point of a nonlinear map-

ping derived from Minimum Variance estimation. The existence of a fixed point is proven,
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and the convergence properties of the algorithm are examined for difficult identification

problems with low signal-to-noise ratios.

The novel GMV algorithm was first used in Ref. [4] for determining the optimal

inputs for the identification of discrete-time plants with output measurement noise only.

This noise scenario is examined in this work, and expanded to include input measurement

noise as well.

In addition to the discrete-time identification problem, the GMV algorithm is applied

to the frequency domain identification of a continuous-time plant, using three different

noise scenarios. Also examined in this work is the identification of the parameters of a

physical system using samples of the continuous-time inputs and output. In each case, the

performance of the GMV algorithm is examined under decreasing signal-to-noise ratios.

Careful and well-documented tests are performed, and the results are compared to several,

more common, system identification algorithms.

1.5 Organization of the Dissertation

Chapter II focuses on the idea of linear regression (or linear prediction) for system

identification. The basic theory of Least Squares is discussed, along with the introduction

of correlated equation error. The latter is a result of measurement error incurred during

work with dynamical systems, and is revealed by proper modeling of the measurement

process. Proper treatment of the equation error correlation is then developed, and the

theory behind Minimum Variance identification is applied to the problem. This leads to

the GMV algorithm.

Chapter III contains the application of the GMV algorithm to the identification of

continuous-time transfer functions using frequency domain measurements. Several different

measurement models are considered. These include a basic, but unlikely, model used for

comparison purposes, and a realistic measurement model that reflects the capabilities of
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current frequency analyzers. The GMV identification results are compared to the results of

other more common identification methods.

Chapter IV is a short discussion of the effects of unmodeled dynamics on the fre-

quency domain-based identification method. For example, current flight control system

design is often performed on low order models, when in fact the true plant contains both

unmodeled low and high order dynamics.

Chapter V contains the application of the GMV algorithm to the identification of

discrete-time dynamical systems using discrete-time measurements. The assumption here is

that the plant is being controlled with a zero-order hold, so the continuous-time parameters

can be obtained simply by performing an inverse zero-order hold transformation. The

GMV algorithm results are compared at each step to those of alternative, more common,

identification schemes. The effects of initial transients, input and output noise, and sampling

rate are all investigated here.

Chapter VI is a discussion of the identification of a continuous-time system's physical

parameters using sampled measurements of the system's input and output. This work is

based on a competition that originated in Italy. The basic dynamical system being identified

is based on the thermal characteristics of buildings, but it is basically modeled as a simple

second-order electrical circuit.

Finally, chapter VII is a summary and discussion of the results of the research. This

is a rich field of work, and this research should only be a beginning.
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H. Linear Regression

In the system identification paradigm, there is an observable Z, that is related to an

unknown, but desired, parameter vector 0 = [01 ... O"]T. If 0 is constant, and that relation

is linear, then a number of observations (m) can be taken

Zk = Hk 01+ Hk202 + - -' -+HknO i = 1,2,...,m (2.1)

where (2.1) is referred to as a regression function [14]. These observations can then be

arranged in a matrix form linear regression

SZ, Hil H 12  Hln

Z2 H21  Ht22  "'"H.

z = HO, where z Z and H H

Zm H.i H.2 ... Hmn

Here H is referred to as the regression matrix. There are many methods to estimate 0 based

on the observations, and most are related to Least Squares (LS).

2.1 Least Squares and Weighted Least Squares

The estimation method of least squares was originated by Gauss in the early 19th

century, when he used it to predict the orbits of planets. Since then, it has become a

commonly used tool in parameter estimation. Its popularity among engineers stems from the

fact that it is easier to understand than some other methods, such as maximum likelihood,

and that it does not require a knowledge of mathematical statistics [14]. "Deterministic"

optimization approaches abound. Also, for certain problems that are formulated properly,

the least squares method yields estimates which are consistent, unbiased, and efficient.

If there was no uncertainty in the observations (Zk and Hki obtainable), only m = n

linearly independent observations would be needed to calculate the parameters uniquely.

However, "all our measurements and observations are nothing more than approximations
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to the truth [10]," so there is uncertainty present, and this requires one to make m > n

observations. At the very least, there is uncertainty about the Zk's, i.e., one can obtain an

uncertain Zk = Zk + Vk. Therefore,

Zk = Hk101 + Hk202 + "" + HknOn + Vk

which implies that

z=HO+4E where E=[V1...Vm] T and Z=[Z1...Zm] T

In least squares theory, the objective is to find the estimate 0 which minimizes the square

of the equation error vector e(0) = z - HO, i.e., [14]
0 LS =argmJnE(0)Te(0) (HTH)-1 HTz (2.2)

0

A basic assumption in the above formulation is that the uncertainty in each of the

observations is the same. If it is not, then a weighting matrix W can be introduced to

weight each observation differently, and the Weighted Least Squares (WLS) estimate is

then given by

OWLS= argmin (O)TWE(o) =HTWH) HTWZ (2.3)
0

If some prior knowledge of c exists, specifically that e is a stationary random vector with

E[E] = 0 and E[EcT] = R, where E[.] denotes statistical expectation, then

=MV = (HTR-H) - ' HTR - lz (2.4)

is the minimum Best Linear Unbiased Estimate (BLUE) [12], or the estimate which has

the minimum variance out of all linear unbiased estimates. Therefore, it is referred to as

the Minimum Variance (MV) estimate. For the special case when the Vk, k = 1,...,

are identically distributed and independent (i.i.d.) with variance U2, the covariance of the

estimation error is a scaled identity matrix (R = o2I), and the estimate OMV = OLS.

Alternatively, if one assumes that vi are i.i.d. and Gaussian, then OMV is the maximum

likelihood estimate of 0 [12].
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The primary drawback of LS estimation is the requirement that R = a2 I. If it is not,

as in the case when measurement noise is present and dynamical systems are considered,

i.e., the traditional control situation, then OLS will be biased. The WLS method eliminates

the bias, but R is often not known in practice. One of the main thrusts in this research is

the correct modeling of R, yielding parameter estimates with smaller bias.

2.2 Correlation Caused by Dynamical Systems

In this work, the primary interest lies in the identification of dynamical systems, and

in this type of problem, not only are the Zk's unobtainable, but also the Hki's. Now, the

obtainable quantity is hki = HkE + Wki, and the pertinent equation is

Zk = hklO1 + hk202 ± "-" ± hknOn ± Vk - Wk101 - Wk202 -... Wkn- n (2.5)

Here, r [El ... Em]T where Ek = Vk - Z= 0iWk. It is known that, as m --* co, the least

squares estimate converges as [12]

OLS - 0 + E[HHT]- E[HTE] (2.6)

If H and c are uncorrelated, then E[HTE] = HTE[e] = HTO - 0, but for the system given

in Eq. (2.5), the kth element of E[HTE] is given by

EE hik vk--E1:Oj wkj

i =1 j4=1

Even if E[wkiwkj] = 6,Ui2 , substituting for hik above yields

E [ (Hik + Wik) Vk - 1 jWkj - m 2 k 0
j=l

and this correlation causes the LS-based estimate to be biased. Hence, when measurement

noise-corrupted dynamical models are used, it is important to recognize the correlation

inherent in the linear regression's equation error. It is therefore wise to estimate using a

method which incorporates and models the equation error covariance information.
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2.3 Dealing with Correlation

There are several methods in the literature today that were developed to overcome

the correlation introduced by the dynamical model, thereby reducing the bias in the LS

estimate. The two mentioned here are the Generalized Least Squares (GLS) and the In-

strumental Variable (IV) methods. However, these methods do not specifically address the

particular correlation introduced by measurement noise in dynamical systems.

2.3.1 Generalized Minimum Variance. To address the issue of measurement noise

properly, the following procedure is offered. The available information can be arranged in

a linear regression equation given by

z = HO +,E E = T(O)v, v = A R(OR), R, > 0 (2.7)

To use insight gained from the minimum variance identification method, it is necessary to

obtain the equation error covariance R, where

R = E[cE T] = TRVTT (2.8)

Unfortunately, R is not known a priori, because in addition to the dependence on the

given sensor's measurement error o,, it is a function of the (as yet unknown) coefficients

of the system's transfer function, i.e., R = R(O). Two related, but different, estimates

can be derived from this minimum variance based approach. First, one could minimize the

associated cost function to obtain the estimate:

0 = argminnE(O)T 4E(O) = (z - HO)T R-l(0) (z - HO) (2.9)

0

Because of the dependence of R on 0, this leads to a complicated numerical search for

a global minimum. In global nonlinear searches such as this, the appearance of local minima

is virtually guaranteed as the noise levels increase. There is a problem with local minima

in system identification problems that tends not to be a problem in other minimization

problems. While a local minimum in a general minimization problem probably produces a
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solution with a lower cost, which may be acceptable as a solution, the local minimum in

a system identification problem can be very far from the required global minimum and is

probably incorrect. Additionally, in general problems, a local minimum with a cost that is

very close to the global minimum cost probably produces an acceptable solution. However,

the fact that the cost at a local minimum in a system identification problem is close to

the global minimum cost has no bearing on the "closeness" of the estimate to the correct

solution. It most likely results in a completely different, and incorrect, estimate. Therefore,

only the global minimum is an acceptable solution in system identification.

In an attempt to avoid this complication, Eq. (2.4) is used to obtain the second

possible derivation of the estimate. The Generalized Minimum Variance (GMV) estimate

is given by the point OGMV such that

6GMV = (HTR-1(OGMv)H)-1 ITR -l(OGMV)z (2.10)

There are many different ways of searching for fixed points like OGMV, but the following

simple iterative algorithm has been effective in finding the correct fixed point for signal-to-

noise ratios approaching 0 dB. This algorithm is motivated by the iteration for fixed points

of contraction mappings, for which the existence of a fixed point is guaranteed [1].

Step 1 - Set i = 0 and calculate an initial parameter estimate using LS.

0j =_ = (IITH)- HTZ

Step 2 - Calculate R(0) using Eq. (2.8).

Step 3 - Calculate 0i+1 via Eq. (2.4).

0i+1 = (HTR-1(0)H)-1 HTR - (0 i )z

Step 4 - If 101+1 - 0211 is less than some acceptable value, proceed to step 5. Otherwise,

increment i and return to step 2.

Step 5 - Set bGMV = Oi+-1.
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Step 6 - The error covariance of the estimate OGMV is then given by

(HTR-1(bGMV)H) -1 (2.11)

A fixed point for Eq. (2.10) does exist, at least for the problems of linear dynamical

systems, as is shown in Section 3.3. Also, the algorithm has converged within the numerical

limits of Matlab for all problems examined thus far. The number of iterations required is

quite small for small noise levels, but does increase as the noise level increases.

Problems do arise as the noise levels increase, as is common in system identification

problems at low signal-to-noise ratios. In this work, it is common for one other fixed point

to appear at higher noise levels, and possible methods of dealing with this are discussed in

Sections 3.6.3 and 5.4. However, the other methods of identification used for comparison in

this work tend to suffer at these noise levels as well.

2.3.2 Other Methods of Correlation Compensation. There are many methods of

compensating for correlated measurement noise, as discussed in [30], but the two used for

comparison in this work are the Instrumental Variable (IV) method and the Generalized

Least Squares (GLS) method. These two methods, or variations thereof, are common in

the literature. One problem with each of them is that the derivation tends to be specific to

the given problem, so the particular method must be discussed in context, as is done in the

sequel.

Briefly put, however, the IV method uses the fact that the Zk's and Hki's are actually

functions of some fixed, but unknown 0. During the IV identification method, the current

estimate is used to produce a set of estimated -ki's which are then used in an iterative

scheme where
T \-: T

0i+j = (H(06) H) H(0) z

Similarly, the GLS method exploits the form of E in Eq. (2.7). The contents of the

z and H matrices are filtered through some form of T - 1 , and the LS estimate is calculated

using these filtered results. The filtering tends to "whiten" the problem, reducing the
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correlation and causing the LS formulation to be more correct. This is also an iterative

procedure, as T is a function of 0, so the contents of z and H must be re-filtered at each

step.

2.4 Conclusions

The correlation introduced by dynamical systems and measurement noise effectively

eliminates the LS estimate as a valid result. Some method of dealing with this correlation

must be found in order to obtain an accurate estimate. There are many current methods of

dealing with the correlation, but none seem to specifically address the particular correlation

introduced by measurement noise.

The stochastic modeling and GMV identification concept described in this chapter

are not limited to time-domain dynamical systems. They can also be applied to any problem

where certain measurements are correlated with one another. An example of this is the

frequency domain identification of a continuous-time plant, which is discussed in the next

chapter.
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III. Phasor-Based Identification of a Continuous-Time Dynamical System

In this chapter, a phasor approach to system identification is discussed, viz., the

experimental data consists of a finite number of sensor noise corrupted point frequency

response measurements of the unknown plant.

The proposed identification paradigm is in line with currently available instrumen-

tation, e.g., frequency analyzers [33]. Gaussian measurement noise statistics are assumed.

The emphasis here is on a stochastic analysis of the identification problem in the frequency

domain. Parameter estimation algorithms are developed and validated in simulations which

include measurement noise. Careful modeling of the stochastic estimation problem renders

an efficient system identification algorithm.

Moreover, the proposed system identification algorithm yields an identified model

and an estimate of the model uncertainty. The error is expressed in terms of the uncertainty

of the coefficients of the plant's transfer function, the latter being easily transformable

into an expression of uncertainty about the physical parameters of the plant. In other

words, the proposed system identification algorithm directly yields an identified model and

its structured uncertainty, as opposed to plant uncertainty gauged with the Hc norm.

Furthermore, the H, estimation error can be calculated using optimization methods, while

Kharitonov [17] type results can be invoked to ascertain robust stability. Obviously, the

measurement error is somewhat indicative of the H,, estimation error.

The phasor approach is developed in Section 3.1. A stochastic analysis of the sys-

tem identification problem with measurement noise is performed in Section 3.2. Section 3.3

contains a proof that at least one fixed point exists for this formulation. Section 3.4 ex-

plains how to calculate a needed covariance matrix for different assumptions about the

measurement model. A brief discussion of the other algorithms being compared is con-

tained in Section 3.5. Sections 3.6 contains the results of applying the GMV algorithm to

a second-order system, as well as the comparisons to the other algorithms. The system

used is representative of the short period dynamics of an aircraft. The performance of the
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different system identification algorithms is briefly discussed in Section 3.7, and concluding

remarks are made in Section 3.8.

3.1 The Frequency Domain Based Phasor Approach

Consider the stable frequency domain transfer function, where the order of the nu-

merator and denominator are known:

T y(s) blS' - 1 + b2 s n - 2 + + bn-lS + bn (3.1)
u(s) s n - as n -1 - a . an-is - an

Here, the parameters a, ... an and b, ... bn are unknown, the a, ... an coefficients are neg-

ative for a stable system, and the bl ... bq-1 coefficients equal zero when the order of the

numerator is q less than the order of the denominator. If these parameters are equal to zero,

it should be taken into account when the problem is developed. If one attempts to blindly

identify all the parameters, assuming that the zero value parameters will just identify to

zero, the results will suffer.

By applying an input to this system of the form

Uk(t) = Cos(Wkt)

and waiting for steady-state to be achieved, the steady-state output is

Yk(t) = (Ak + jBk)cos(wkt)

The following is a fundamental result of linear system theory.

Ak ±jBk bl(jWk) n - 1 +" -- bi(jWk) n - i + -±- - b7 -(jwk) + bn (3.2)
(jwk)n - al(jwk)nI - ... - ai(jW _ -i .. . - an-(jiWk) - an

Hence, a linear equation in the 2n ai and bi coefficients is obtained

n n

(Ak + jBk)(jWk)n n E ai(Ak + j Bk)(jWk)n-i + Z bi(iwk)n-i
j=1 i=1

which yields
n n

(Ak + jBk) = >(Ak + jBk)(jWk)-ai + E(wk)-'bi
i=1 i=1
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Through algebraic manipulations, one obtains the linear system:

al

n n•

Wk PL 34 ~ 4 1 _4~~ a7 -Bk
lk k Wk WOk Wk Wk [k

Bk A -Bk A [AkJ
Wk L"W Wk k k k k

(3.3)

As can be seen, each sinusoidal test input produces two equations in the 2n un-

knowns. Therefore, n distinct sinusoids are needed to produce the 2n equations required

for the determination of the parameter vector 0 - [a, ... a, b, ... bn]T E R?2n.

3.2 Measurement Noise

In reality, no physical measurements can be made without some sort of measurement

noise present, so the true Ak and Bk are not available. Rather, there is the noise corrupted

Akn and Bk., where the measured quantities are

Akn = Ak + VAi, VA = Ar(O, a')

Bkm = Bk + VBk , VB = Af(O, " )

Here, the random variables VAk and VB, are the measurement noises in the kth experiment,

k =1, 2,..., m. Therefore in reality, Eq. (3.3) is

(Aki -- Ak) (Bk --vBI) -(Akin -VAk) 1 0 1 1 - (Bkm -
Wkc W 2I T-(k VBk)

(Bkw-VB) -(Akm-VA) -(Bk -VBk) "".• 0 - 1 0 .(Ak A)

Wkc Wkc W"3c U3 km y

(3.4)

This equation can now be written as a regression function with

Zk -3[Akm
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n n

Akin Bk, -Ak -Bk Ak. 0 - .

H2 W- W 'kk" W k 0 0

Bkm -Akm -Bkm Akm Bkm - k W

Wk k Wk 1k k--' k k

a, a 2 ... an bl b2 "" bn]

n

- Ak a- ' a2 + v 3 a3 + Bka4 A.5 VBk

fk = k h k h k (3.5)
VBk al VA a2 VB a3 =Tv (3.6

Lay +-- Lf -3 a-4 + - B--, •a5• V
Wk + W 4 +k wk  , k

k k kv

-+-- VAk,

= 1 J ± vk.. Wk Wk Wk ~ TkVk (3.6)

Additionally, more than the minimal ni sinusoidal test signals will be needed to overcome the

measurement noise effects and obtain an accurate estimate. Hence, m ( _ n) measurements

are taken, and the measurement information is arrayed in a linear regression as follows

ZlH 1  TlVl

2 H 2  T2 v 2

= 0+

Zm Hm Tm vm
2mxl 2m×2n 2mxl

This is now in a linear regression form as in Eq. (2.7), where the Gaussian random

vector e is the equation error resulting from the measurement noise. The critical mea-

surement noise covariance matrix R is analytically determined by calculating the expec-

tation E {sT}. If the measurement noise is uncorrelated from e eien To eriment
taton c TI Ifth mesurmet niseisuncrreatd fomexperiment to experiment

(E {vkvT} = 0, k j), then R is reduced to a block diagonal matrix of the form

R, 0 0

0 R 2  "- 0R=

0 0 ... Rm
2m32m
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where the 2 x 2 Rk submatrix (k = 1, 2, ..., m) is of the form

Rk = E {EkEk} = E TkvkvkT T

_ 21

= TkRABT
T where RAB = A AB

OTAB 0
4B

Note that

R ... 0
m m

H'RH = HT'R-IHk, R-Iz = RlZk
k=1 k=1

0 ... R 1

so

6GMV = HTRkl(bGMV)Hk z H Rk 1(OGMV)Zk (3.7)
k=1 Hk=1

PGMV = T GMV k

3.3 Existence of Fixed Point

The primary problem in solving for the GMV estimate is that R is a nonlinear

function of 0. Therefore, define f : R" --+ 2n,

f(0) = [HTR-I(O)H] - 1 HTR - (O)z (3.8)

and use an iteration to search for a fixed point in RZ2" where 0 = f(O). In searching for

a fixed point, it would be nice to know that a fixed point actually exists. If it could be

determined that f(0) is a continuous, bounded function, then it would be easy to show that

at least one fixed point exists.

3.3.1 Singularities and Continuity. The first step in showing that f(0) is bounded

is to show that it is a continuous function, or that it has only removable singularities. To do

this, first return to the equation error noise vector in Eq. (3.6). Because sums, products, and

inverses of rational functions are rational functions, and Tk is a matrix of rational functions
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in the parameters, then f(0) is a rational function. Therefore, f(0) is continuous everywhere

it is defined. However, f(0) is not defined everywhere, but has singularities where R is not

invertible. Since RAB is, by definition, positive definite, the singularities occur when the

determinant of any particular Tk matrix evaluates to zero. Since the transformation matrix

Tk is affine in the denominator parameters, it can be written as

0 1 00 1 0
Tk= + Wk a,- a+ -k a2 + h a3 +'

1 0 101 0 0 1

7Wk

= Ao + E Ajkaj (3.9)
j=1

From Eq. (3.6), it can be seen that T always has the form

-b a

This implies that det(T) = a' + b2, and the only way that this can be zero is if a and b

are zero, i.e., T = 0. For the case n = 1, it is impossible for Tk to equal 0. For n = 2,

the only way Tk can equal 0 is if a, = 0 and a2 = -wk. This leads to m distinct singular

points of f(0); one for each measurement frequency. For n = 3, if a 2  -w2 and a3 =Wa,

then Tk = 0. This implies that there are m distinct lines of singularities in 0 space, or

m distinct singular manifolds of dimension 1. For general n, the dimension of the singular

manifolds is n - 2.

To get an idea of the nature of these singularities, an n = 2 case is considered. Three

measurements (w = 1, 2, 10) are taken of a second-order plant, and f(0) is plotted along the

path a, = 0. The results in Fig. 3.1 appear to show that the singularities are removable.

Indeed, this seems to be the case for higher dimension problems as well. If f(0) is evaluated

at 0 + E, where 0 is a singular point and e is some small vector, the results are close for any

E, implying that the singularity is removable as well. For the singularity to be removable,

the following limit must exist.

lim f(0)

3-6



0

-0.5
-11

-2

-2.5

-30 -5 0 5 10
a2

Figure 3.1. f(O) for al 0

Insight can now be gained by looking at the physical nature of the problem. The

singularities occur when Tk = 0, which implies that r = 0 in Eq. (3.6), i.e., there is no

uncertainty in that measurement. For n = 2, this would mean zk = HkO, and a solution

can be found by simple least squares, i.e.,

lim fs(0) = [HTHk -1 T (3.10)

Unfortunately, this formulation is only valid for n < 2, because for n > 2, HTR71 Hk only
_ k k Hol

has rank 2 and is therefore not invertible.

However, one can expand on the notion of a noiseless measurement, and use the

Kalman filter update equations to add an additional measurement to a previous estimate.

For n = 2 and n = 3, it is readily apparent that only one Tk can be equal to 0 for a given

experiment. For n = 2, the singularities are points corresponding to a2 = -Wk, and since

two measurements cannot be taken at the same frequency, the points cannot be repeated.

For n = 3, the individual singularity lines lie in the plane a2 = -wk, and again, since no two

measurements can be taken at the same frequency, the singularity lines cannot intersect. It

is suspected that this is the case for higher n as well.
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This implies that there is only one "noiseless measurement" at any given point. In

other words, only one term in each of the summations is undefined at any given singular

point:

HTR..lHk and HTR-lzk
k k k k

These terms are not defined because Tk = 0, causing Rk = 0. Taking the Kalman filter-

ing approach, let the pre-update covariance and estimate be the covariance and estimate

calculated by using all the terms except the kth one.

---- H k R-'Hk and 0=PZ HTR -'zk

kk k k k

Then following the formulation in Ref. [14], it can be shown that in any neighborhood

around the singularity,

f(O) = HTR'Hk H TR-zk

[P-, ± T4R'H] -1 [P-16 + HTR'zk]

= - P4 (Rk ± HkPHT HkP] [P-16 + 4 ~ -1]

PP-l6 - PH T (R + HkPH4) HkPP-O

+PHTR'zk - PH T (Rk + HkPHT) -HpHTR'lZk

S10 - P+ (R ± HpT) - 1 HkIO

10 - -1T

PH [R' + HPH) H PRj]
PHT (R k + H kPHT) ' HRl 1l

PH T (Rk + HkPH) H)

--P (R E -+ H PHT) - 1 [RR + HPHTI R - 1 - H PHTR - 1]-1T -k + -1HT1

-PH T (R + H P H
T 1) HO + P HT (Rk + HkP H ) -Iz

+ PHT (Rk H P ) (Zk - Hk6)

3-8



Therefore, define g(O) to be

g(O) = 0 + PHk (H]PH7 + Rk) - 1 (Zj - Hk0)

As can be seen, g(O) does not have a singularity when Rk = 0, and for any given k

singularity, f(O) = g(O) in a deleted neighborhood around that singularity. But g(O)

is defined and continuous on the entire neighborhood, so extending f(O) by filling in its

singularities with g(O) results in a continuous function that is defined and continuous on

the whole of R2" .

3.3.2 Boundedness. It is now necessary to show that f(O) is a bounded function.

To show boundedness for a continuous function, one can show that the limit as 0 grows

unboundedly exists and is bounded. First, define

' {h E- 2 :11 h 1}

0=ah where hE- andaERZ (3.11)

Now for any h, look at the limit of f(ah) as a approaches infinity. Provided that the limits

exist,

lim a2) f(O) 2  HTR-H lim a2 HT R-

k a k=1 I k=1

-11 k=1

This reduces the problem to finding the limit of Rk/a 2 as a approaches infinity, which is a

significantly simpler problem, since

Rk . Tk\ 1. T
lim - lim - RAB im-

0 -+0 a 2 -4oa/--+0 -+o aJ

But here,
n

Tk = Ao + a Z Ajkhj
j=1

so

lim - = l ( -+ Ajkh) = Ajkh
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which leads to

n--OO a2= Ajkhj RAB Ajkhj - Rk.
j~~ j---1

and

lim f(0) = HR-1Hk - T R zk fZ(h)a-+oo kko k kl

Since for any given h, fo(h) is simply the solution to a weighted least squares problem, it

is therefore a finite vector, and

II f.(h) 1.< 00

Now let

m(a) = max f(ah)

From Ref. [8], it is known that m(a) is a continuous function of a. Using the vector infinity

norm,

m(a1) - m(a2) I = I maxf(alh) - max f(a 2h)
h h

< max 11 f(a h) - f(a 2h) II
h

<c for IIa1-a2 11<b

Also,

lim m(o) = maxfo(h) < cc0--0o hETH

Since m(a) is a continuous function bounded at infinity, so is its norm, and the supremum

of that function is finite, that is,

sup I f(O) 11= sup II m(a) 11= S < o

0

Since the supremum of the infinity norm of f is S, this implies that f maps the convex,

bounded set B(O, S2n) C 7Z2n into itself. Now, since f(0) is a continuous function that maps

a convex compact set into a convex compact set, then as a consequence of the Schauder

Fixed Point theorems [16], there exists a point 0 E B(O, S2n) such that f(0) = 0, i.e., a

fixed point exists.
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3.4 Determination of RAB

The calculation of the R matrix is primarily dependent on the Tk matrix, but the

RAB matrix is also required. If the measurement noise is on Ak and Bk directly, then

this is not a problem. However, to make it more complicated, direct measurements of Ak

and Bk are generally not available. Rather, Fourier analyzer supplied measurements of

magnitude and phase angle are available. Therefore in this section, three different scenarios

are discussed: 1) Constant strength, uncorrelated noise on the real and imaginary phasor

components directly; 2) Constant strength, uncorrelated noise on the magnitude and phase

angle in radians as supplied by Matlab; and 3) Constant strength, uncorrelated noise on

the magnitude in decibels and phase angle in degrees as supplied by a frequency analyzer.

3.4.1 Noise on the Phasor Components Ak and Bk. This is the most unlikely

scenario of the three, but it is also the easiest and the one on which the derivation in

Section 3.2 is based. Here, one assumes direct access to the real and imaginary parts of the

frequency response data. This implies that the measurement noise strengths and correlation

are known, i.e., RAB is known. A plot of a representative noise is shown in Fig. 3.2.

0.1

n 0

-01 100 101

0.1 .

10 100 101
Frequency

Figure 3.2. Constant Strength Uncorrelated Noise Added to Ak and Bk
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3.4.2 Noise on the Matlab Supplied Mk and Ok. As stated previously, direct mea-

surements of Ak and Bk are generally not available. The more likely scenario is that one

has hardware or software supplied measurements of magnitude (Mk) and phase angle (0k).

The following equations are then used to calculate Ak and Bk.

Ak = Mk cos Ok, Bk = Mk sin Ok (3.12)

It is more likely that the measurement noises (vMo) on the observables Mk (AP(O, am))

and 4 k (Af(0, a)) are uncorrelated, and this would lead to correlation between VAk and

VBk. Representative noises for this scenario are shown in Fig. 3.3. As can be seen here,

another complication is that the strength of the noise on Ak and Bk is different at each

frequency. To remedy this, one can assume that the noises are small, and using Eq. (3.12),

0.2 0.1

• 'i i . . ! : 0 i : - :!

-0.2', 0 _0J0
10 10 10 1010 101

0.02 0.1

0 Z

10 100 101 O-1 100 101

Frequency Frequency

Figure 3.3. Constant Strength Noise on Mk and Ok

the following linearized relation is derived.

AAk1 [ ok -Mk Sin k AMk]

ABk sin Ok Mk cos Ok Ak

V TMj VM¢

Now RAB is calculated as follows.

RAB = E {VkV = TME {vMv T =M(3.13
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This indicates that RAB will be different for each measurement, and will need to be re-

calculated each time before adding Rk to the block diagonal R matrix. In practice, this

calculation is not completely accurate, since the true values of Mk and Ok, which are re-

quired for TMO, are not available. One can use the measured values in their place and

achieve good results for smaller noise values, but much better results are obtained if one

uses the parameter estimates to estimate the transformation matrix as well.

3.4.3 Noise on the Analyzer Supplied MkdB and kdeg. The motivation for this

scenario arises from hardware and software considerations. Manufacturer's accuracy spec-

ifications for the Tektronix frequency analyzer [33] are given in dB and degree values, but

the cos() and sin() functions in Matlab require radian values. This is handled through

the derivation of an additional linearized transformation. The pertinent equations are

M k =-1 0 20 Ok = Okdeg 180

This leads to changes in RM¢ at each frequency, as can be seen in Fig. 3.4, so once again

assuming small values of noise, the following is derived.

F iF kdB 1 1 0  iF
AMk 10 20 20 0 AMkdB

Aqk 0 180 A kdeg

VMO TdBo VdBO

This implies that

RM¢ = E VMV vT} = TdBORdBOTdBO (3.14)

so

RAB = TMOTdBoRdBoTdTBoTM where typically RdBO = (3.15)
0 01

2

As before, the parameter estimates are used to estimate this transformation matrix

as well. Additionally, in practice the TM¢ and TdBo (and even Tk) transformations can be

combined into one transformation matrix for the calculation of Rk.
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Figure 3.4. Constant Strength Noise on MkdB and Okdg
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3.5 Other Methods of System Identification

As mentioned in Chapter II, there are a couple common methods of dealing with

correlated system noises. The first method is the Instrumental Variable method. In this

method, one calculates the next estimate using an H matrix which is the H matrix that

would have resulted from a system consisting of the estimated parameters. In other words,

the estimated parameters yield an estimated system. The elements of the H matrix are then

the transformed magnitude and phase values off of the estimated Bode plot. The following

equation is then iterated until a suitable convergence criterion is met:

= (HTH)-1 HTZ (3.16)

The second common method for dealing with correlated noise is the Generalized

Least Squares method. A purported example of this is contained in Ref. [19]. The derivation

of the noise model is essentially the same, but too many simplifying assumptions are made

about the nature of the measurement noise. The final result can be shown to be identical

to a Generalized Minimum Variance algorithm that assumes RAB = I.

3.6 Second Order Example

For investigative purposes, a general second-order dynamical system, which is repre-

sentative of an aircraft's elevator-to-pitch rate transfer function, is considered. The actual

values are obtained from [2], and the transfer function is given by

T(s) y(s) bis + b2  _ 4.8s + 1.44 (3.17)u(s)- 82 - als - a 2 - 82 + 0.84s + 1.44

The Bode plot for this transfer function, which is representative of the pitch dynamics

of an aircraft, and which is used for inner-loop flight control system design, is shown in

Fig. 3.5. Also shown are the forty measurement frequencies used in each of the following

experiments.
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Figure 3.5. Second Order Bode Plot

The first thing that needs to be done is to obtain the proper noise model. For this

second-order system, the equation error noise vector in Eq. (3.5) is given by

allIAk a2VB 1,W. -VB, ~ - ~

wk_ +V VA, ~ VBk

This yields the 2 x 2 covariance matrix Rk

Rk=[ k i~ [LA Wk Wk (3.18)

whose elements are

a2 a1  a a la2 2a, 2 2  a2 aaa
WkWk L~ B~ (Wk Wk2k1 2 lv~ ) cA

-3-- -2±4B - 3

= Rk2l
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As can be seen, if A = o2 = 0 2 , and if VA and VB are uncorrelated, then Rk reduces

to U 2 12X2. However, one still cannot use Eq. (2.2) to estimate 0 because Rk : Rj when

Wk $,Wj.-

3.6.1 Basis for Choice of Noise Strengths. During the course of this example, the

three scenarios discussed in Section 3.4 are examined. An effort is made to keep the noise

comparable in each of the sections. The noise strengths used in this example are representa-

tive of a Tektronix frequency analyzer. The manufacturer's specifications give measurement

error values of ±0.2 dB and ±0.5 deg. These are taken conservatively as two sigma values

for the noise on the amplitude and phase measurements.

For the constant dB and deg addition in scenario 2, a noise with a covariance matrix

as shown in Eq. (3.15) with ardB (0.2/2)2 and ,2  = (0.5/2)2 is generated and added toMdB = deg=

the true dB and degree measurements obtained from the system shown in Fig. 3.5. These

noisy dB magnitude and phase values are then converted to noisy amplitude and phase

values, and finally to noise-corrupted A and B values. Each of the noisy values is then

subtracted from its true value to obtain the transformed noise. The results of this addition

and transformation process are shown in Fig. 3.4.

In Section 3.6.2, constant strength noise additions to Ak and Bk are examined. To

determine a reasonable value for the noise strength in this experiment, the actual covariance

of the Ak and Bk noise in Fig. 3.4 is calculated. The resulting covariance matrix is not a

scaled version of the identity matrix, but for this experiment, an average of the diagonal

terms is used for o, and o , and the off-diagonal terms are set to zero. This results in

noise as shown in Fig. 3.2 with a covariance matrix of

0.0232 0
RAB = (3.19)

0 0.023 2

Section 3.6.3 discusses the identification results as the measurement noise strength

is increased by powers of 10, i.e.,

RABnew = 1OP * RAB p= 0, 1,2,3,4 (3.20)
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This higher noise evaluation is also performed for the other noise scenarios discussed in

Section 3.4.

In Section 3.6.5, a constant strength noise is added to the amplitude and phase

variables. To determine appropriate strengths for these noises, the covariances of the Mk

and ok noises shown in Fig. 3.4 are calculated, and these covariances are used to form

constant strength noise additions as shown in Fig. 3.3. The resulting covariance matrix is

F0.0317 2 0
RM¢ = [ 0.00442 (3.21)

3.6.2 Inadequacy of the Least Squares Method. In this section, one pretends that

Ak and Bk are directly measurable. To compare the different estimation methods, uncorre-

lated and equal strength noises are added to the true Ak and Bk after they are computed

from a Bode analysis of the transfer function in Eq. (3.17). Representative noise is shown

in Fig. 3.2 with the resulting values of aA = o"B = 0.023. This choice of RAB results in a

diagonal R matrix, but it is still not a scalar multiple of the identity matrix because of the

varying measurement frequencies.

Figure 3.6 displays the results of a 100 run Monte-Carlo (MC) analysis, which upon

evoking the weak law of large numbers [11], renders a gauge of the identification algorithm's

estimation bias. The estimation results are first normalized by dividing each estimate by the

true estimate, and then plotted. Ellipses are plotted representing each estimation method's

actual one sigma variation. The ellipses' axes intersect at the average estimate for each

method. The algorithm predicted estimation error covariances are not plotted, because

they are not known for the LS or GLS methods, i.e., Eq. (2.2) cannot be calculated because

there is no constant a that can be used. Indeed, the a required in Eq. (2.2) is estimated as

follows:

m -4 
=
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Figure 3.6. All Estimates with Uncorrelated Ak and Bk Noise

However, this estimate is data driven and the predicted estimation error covariance still

would not be an accurate representation of the true error covariance. The available algo-

rithm predicted covariances, along with all other numerical results, are given in Table B.1.

As can be seen in the plots, there are large biases in the LS average estimate, and

the true parameter is well outside the one sigma bounds. This indicates, as is shown in the

plot, that the majority of the parameter estimates in the hundred runs are further from the

true estimate than one sigma.

Dramatic improvements can be made by using one of the other estimation methods.

As seen in the plot, the IV method does have quite a large sigma value, but the estimate

is not nearly so biased as the LS. The GLS and GMV estimates cannot be distinguished

on this plot because they are tightly clustered around the true estimate. Figure 3.7 zooms

in to give a better look at these estimates. This magnification provides a good view of the

IV estimates and sigma, but the GLS and GMV estimates are still clustered rather tightly

around the true parameter. Indeed, this is always the case. The GLS and GMV estimates

are always better than the LS and IV. For this reason, the LS and IV estimates are dropped

from most plots in the sequel. The numerical results are still included in the appendix.
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Figure 3.7. Magnification of Estimates with Uncorrelated Ak and Bk Noise

Further magnification in this noise scenario would provide little information on the

comparison of the GLS and GMV estimates because they are identical in this case. The

only difference between the two is a scaling of the R matrix which cancels out in the final

equation. The only thing gained by the GMV method is an accurate estimation of the

estimation error covariance. As is seen in Table B.1, these covariance estimates are rather

close to the actual ones. The small biases and covariance differences imply that the GMV

and GLS system identification algorithms yield relatively unbiased parameter estimates.

Additionally, GMV is doing a good job of predicting the accuracy of its estimate, i.e., the

algorithm is "efficient."

3.6.3 Increasing Noise. The next portion of the experiment involves increasing the

level of the measurement noise, as in Eq. (3.20). The results for p = 1 are very similar to

p = 0. But when p is increased to 2, a trend that causes problems later on starts to appear.

As the strength of the measurement noise increases, the LS estimates start to cluster around

the origin (Fig. 3.8). This may seem like it should not effect the GMV estimate, and it

does not in this case, but recall that the GMV estimate is initialized with this LS estimate.

When p is increased to 3, the GMV estimates also start to duster around 0. This is not a
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Figure 3.8. Higher Noise Estimates with Uncorrelated Ak and Bk Noise

gradual migration like the one that happens in the LS estimates as the noise increases; it is

sudden. Indeed, it is caused by the appearance of a second fixed point close to the origin.

To better illustrate this problem, a "shotgun approach" is taken for one particular

noise realization. The results of the GMV algorithm, when it is initialized with a series of

different vectors whose elements range from -0.5 to 0.5, are shown in Figure 3.9. The left

figure shows the paths taken during the iterations. The first iteration step is shown by a

dotted line, while the remaining iterations are plotted as a solid fine. The end points (or

fixed points) are shown as an *. Most of the initial value choices converge to the desired

estimate, but several runs initialized close to the origin converge to a different value. This

seems to be a detrimental property of the phasor oriented GMV algorithm at high noise.

How does one choose the "correct" fixed point? The solution to this may lie in the right hand

plot. This is a plot of [f(0) - o]T[f(O) - 0] at each iteration. The slowly converging paths

in this plot correspond to those paths that are converging to the wrong point. Although the

LS estimate is a convenient point to start the GMV algorithm, it is not the wisest choice,

since it tends to approach the origin as the noise level increases.

3-21



p= 3  5 p=3

0

10

10-10

S-0.5 - 10-1

_410 - 0s

-1 i25:
-0

10

10-35

-.. 8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0 20 40 60 80 100a 1 Iteration

Figure 3.9. Convergence Properties for Uncorrelated Ak and Bk Noise

A better choice would be a point in the same quadrant as the true parameter, but

with a larger magnitude. This is usually not possible, because one does not know the true

parameter. However, if the problem is known to be bothered by high noise, one can choose

several starting points, perhaps one from each quadrant, and the one that converges the

fastest is the correct one.

If one examines the convergence rates for the p = 3 estimates in Fig. 3.8, which are

shown in Fig. 3.10, it can be seen that many estimates converge very slowly, while others

do not appear to converge at all. However, when the GMV algorithm is initialized at the

point 0 0 = [-100 - 100 0 0 ]T, the results improve dramatically. These results are shown

in Fig. 3.11. As can be seen, the GMV estimates are no longer trapped around the origin,

and the convergence rates are much quicker as well.

3.6.4 Noise on Observables. In this section, the noise is added to the dB magnitude

and phase angle (in degrees), as is given in the Tektronix [33] specifications. Then, the two

required transformations (Eqs. (3.13) and (3.15)) are performed to obtain the correct a2,

B, and acAB used for the Rk matrix calculation in Eq. (3.18). Through proper modeling

of the noise transformations, the GMV algorithm achieves better estimates than any of the
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Figure 3.10. Convergence Rates for LS Initialization
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other methods. The GLS algorithm comes the closest, and a comparison of these for the

p = 0 case is shown in Fig. 3.12.

p=0 p=O
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1.004-+ + + ++ + +

++o + ++ 4+ + 4

1.002- * + + 1.005o' +++

+o01,+1 +0+ ++

0 +0 0

0+ ++ o GMV + +

o/+-1 sig GMV : +
0.994 +o, 0+95-- 1 sigGLS+do-k + +0 +

0.985 0.99 0.995 1 1.005 1.01 0.99 0.995 1 1.005
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Figure 3.12. Estimates with Uncorrelated MkdB and Odg Noise

As can be seen, the GMV estimates have both a lower bias and error covariance than

the GLS estimates. The reason for this is the proper modeling of the RAB matrix. Initial

attempts at this used the measured values in the transformation matrices. While this yields

good results for small noise strengths, the measured values for higher noise strengths do not

provide an accurate estimate of the magnitude and phase required for the transformation

matrix calculations. Problems arise in poor numerator estimates, and the parameters start

to get trapped around the origin sooner than they would otherwise.

Instead, the measured values are used only for the first five GMV iterations. This is

only done to get a more accurate estimate of the Bode plot, and may not even be necessary.

After the fifth iteration, the GMV parameter estimates are used to estimate the Bode plots,

and the magnitude and phase values from this estimation are used in the transformation

matrices. This method produces much more accurate estimates, and it is also more robust

to the "zero trapping" than before.

3-24



Higher noise strength runs were also performed for this scenario, and the numerical

results are given in Table B.3. As before, the GMV results are the best, and the error

covariance prediction is close to the actual.

3.6.5 Noise on Amplitude and Phase. In this section, the noise on the amplitude

and phase is assumed to be of constant strength and temporally uncorrelated. To this end,

the covariance matrix in Eq. (3.21) is used to generate noises for addition to Mk and Ok.

This implies that only one transformation needs to be performed to determine U2, a, and

UAB. Representative noises for this section are shown in Fig. 3.3. Once again, the measured

values are used in TM¢ for the first five GMV iterations, and then the parameter estimates

are used to estimate TM¢. The numerical results for all the noise strength cases are given

in Table B.2.

One concern of note in this scenario is shown in Fig. 3.13. This is a plot of the error

mean and covariance for the GMV algorithm as each measurement is added. The algorithm

estimated covariance is close to the actual covariance after about 22 measurements, but the

actual covariance appears to begin to diverge toward the end. The 22 measurements is not

of concern, because this is highly dependent on the order in which the measurements are

added to the linear regression. However, the cause of the divergence is not known. It has

something to do with the TMO transformation, because the covariance increase does not

appear in the GLS estimates. A possible cause is the negative measured magnitudes at this

noise level in this scenario. This may violate some physical property or assumption, but a

definitive cause can not be determined.

3.7 Discussion

The normalized numerical results of all the experiments are summarized in Ta-

bles B.1 through B.3 in Appendix B. In all cases, the values shown correspond to a forty

measurement linear regression. The Monte-Carlo averaged estimation error (e) and sigma

(or) are given for all cases, and the algorithm predicted sigma (a.) is given for the MV and
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Figure 3.13. Estimation Performance for Increasing Measurements

IV experiments. In each case, the bias in the MV estimate is about two orders of magnitude

smaller than in the naive LS estimate, and the estimation error covariance is much smaller

as well.

For p < 2, all 100 of the estimated Bode plots are virtually indistinguishable. Ap-

pendix B contains the final estimation results for p = 2,3. The top plots show the true Bode

plot and the average of the estimated Bode plots, along with the range of the estimated

Bode plots. As can be seen, the spread is quite small even for p = 2. It appears, however,

that the admittedly small, identification provided, uncertainty is well within the system's

bandwidth, i.e., it is structured uncertainty.

The bottom plots show the true poles and zero, along with the estimated poles and

zeros. For p < 2, the estimated poles lie practically on a horizontal line, and even at p = 2,

the vertical variation is very small, i.e., the identification algorithm renders a very accurate

estimate of the damped natural frequency. A noticeable bias begins to appear when p

reaches 3, but it is not all that large, considering the noise level.
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3.8 Conclusions

In this chapter, a frequency domain approach is taken, and phasors are used for

system identification. Gaussian measurement noise is assumed, as is customary in classical

filtering and system identification work. The proper minimum variance estimate equations

are derived and applied to a nonlinear estimation problem. The results are then compared

to the simple minded least squares estimate for a second-order system that is representative

of an aircraft's pitch dynamics, which is used for inner-loop flight control system design.

The GMV estimate outperformed the LS estimate in all cases. The LS estimate did,

however, provide a useful, albeit dangerous, starting point for iterating the GMV estimate.

At small noise levels, it does not matter where the GMV algorithm is initialized, but as

higher noise levels appear, it is dangerous to initialize the algorithm close to the 0 point.

There is an additional fixed point appearance there that has proven capable of trapping the

estimate. A positive note, when the estimate is trapped, the algorithm takes much longer

to converge, so multiple high magnitude starting points should allow one to find the desired

fixed point. In conclusion, the least squares estimate is not an effective one, even in cases

of small measurement noise. Although the IV estimate is somewhat better than the LS

estimate, it still performs poorly under increased noise levels. The GLS and GMV provide

much more accurate estimates, and the GMV seems to provide lower biased and smaller

covariance estimates in each case.

In this chapter, it is shown that the frequency domain can be used in system identi-

fication. Careful stochastic modeling of the estimation problem at hand renders an efficient

identification algorithm that is superior to straightforward least squares. However, the

experimental phasor approach is applicable to stable systems only.
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IV. Effects of Unmodeled Dynamics on the Phasor Approach

When system identification is performed for control system design, it is oftentimes

required to identify the plant's dominant mode only. Thus, identification is performed

in the presence of additive modes, and one then refers to unmodeled dynamics. In this

chapter, the proper choice of identification signals when unmodeled dynamics are present

is investigated. Different combinations of high and low frequency dynamics are added

to a representative and physically motivated second-order plant, and carefully controlled

identification experiments are performed. Moreover, in adding additional dynamics, one is

strongly guided by physical considerations, and this results in a well-designed experiment.

To solidify the concept, consider the flight control context.

Flight control system designers often use a plant model which consists of the short

period pitch dynamics of an aircraft. However, the short period dynamics are not the only

modes present in the aircraft's pitch channel. This directly impacts system identification.

Thus, it is desired to identify the dominant mode of a system when there are other un-

modeled dynamics present as well. Now, the more one knows about a particular system a

priori, the easier the identification problem becomes. Prior information, including band-

width information, is at a premium in system ID. Hence, the focus in this chapter is on

the interaction between the unmodeled dynamics and the proper choice of input frequencies

used to identify a plant.

In Section 4.1, a simple second-order plant representative of the short period dynam-

ics of an aircraft, and no additional dynamics, is used to establish a baseline for determining

optimal excitation frequencies. The short period dynamics are routinely used in flight con-

trol design work. Low and high frequency modes are added to the second-order plant in

Sections 4.2 and 4.3, respectively. The idea here is that modeling based on physical con-

siderations renders mathematically tractable problems. Hence, the low frequency mode is

chosen to represent the aircraft's phugoid mode, and the high frequency dynamics model

a flexible mode. Both the low and high frequency modes are included in the analysis and
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experiments presented in Section 4.4, and the results of naively overmodeling a system are

in Section 4.5.

4.1 Second-Order Plant

In this section, the proper choice of frequencies used to identify a second-order

underdamped plant, with one zero, is examined. This constitutes a baseline for comparing

with results obtained in the presence of unmodeled dynamics. For this purpose, the plant

given in Eq. (4.1), which is representative of the short period dynamics of an aircraft, is

used. The Bode plot of its transfer function is shown in Fig. 4.1, from which the plant's

bandwidth is readily apparent.

4.8s - 1.44 4.8(s - 0.3)

s 2 + 0.84s + 1.44 = S2 + 2(0.35)(1.2)s + (1.2)2 (4.1)

20
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Figure 4.1. Second-Order Bode Plot

To examine the impact on identification of the choice of input frequency, the transfer

function in Eq. (4.1) is used to generate a series of measurements, and Gaussian noise of

strength UMdB = 0.1 and adeg = 0.25 is then added to the measurements. The frequency
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range shown in Fig. 4.1 is then divided to provide 16 measurements per half decade. Finally,

a half decade window is stepped through the given frequency range at 1/4 decade incre-

ments, resulting in 15 different parameter estimation frequency windows. For each window,

twenty Monte-Carlo runs are performed using the estimation algorithm described in the

previous chapter. These results are graphically shown in Fig. 4.2, and the actual values are

summarized in Table C.1.
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Figure 4.2. Results of Identifying the Second-Order Plant

As can be seen, the bias in the estimate is extremely large when very low frequencies

are used for identification. An interesting note is that the covariance is small. This is

truly poor ID because the algorithm believes that its estimate is accurate, when in fact the
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opposite is true. In the parlance of Kalman Filtering, one refers to filter divergence - an

unfortunate manifestation of nonlinearities encountered when extended Kalman filters are

used. Furthermore, the algorithm is identifying the plant as a first-order unstable plant,

which may be caused by the effects of the transfer function zero at lower frequencies. The

covariance then increases a bit as the bias approaches zero, and returns to small values

around the center of the frequency range.

The estimation bias is smallest overall at window number seven, which corresponds

to the half decade window just below 1 rad/sec. This window is one below that which

contains the second-order mode's natural frequency. Also, the pole-zero estimation is most

accurate at the same window. The estimation bias then becomes large again at the high

frequencies, but the covariance increases as well. This is a better result than that yielded by

the low frequency inputs because the algorithm is warning the user that its estimate is poor.

The sole exception to the increasing bias is the estimate of bl, which remains accurate. This

seems to imply that the gain estimate may still be accurate.

The low and high measurement frequency problems, noted in this section for a

second-order plant, form the basis for the analysis in the following sections. These sections

include the addition of low and/or high frequency dynamics.

4.2 Low Frequency Unmodeled Dynamics

In this section, a second-order identification is again performed. However, the plant

dynamics here include an unmodeled, low frequency, mode in addition to the short-period

mode. Guided by insights into the physics of flight dynamics, this mode is similar to the

phugoid mode of an aircraft [2]. Thus, the fourth-order elevator deflection to pitch rate

transfer function is given by

4.7843s(s + 0.016)(s + 0.2862) (4.2)
() 2 + 0.00466s + 0.0053)(S 2 + 0.8394s + 1.4383)

To derive T41(s), a particular low frequency mode is chosen and included in a fourth-

order transfer function. Then, a numerical optimization routine is used to minimize the
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distance between the Bode plot of the fourth-order transfer function and the Bode plot of

T2(s), at frequencies between 10 0 5 and 100.5 rad/sec. The transfer function in Eq. (4.1)

results. This match is performed in a noiseless environment, so the parameters in Eq. (4.1)

are used to assess the error in the estimate obtained assuming a second-order model and

using the fourth-order plant's measurements. The Bode plots of the plants in Eqs. (4.1)

and (4.2) are compared in Fig. 4.3. As is seen, the Bode plots match around the natural

frequency of the "dominant" mode and above, but differ dramatically around the natural

frequency of the low frequency mode and below.
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Figure 4.3. Second- and Fourth-Order Bode Plot Comparison

The same moving frequency window estimation is performed using the noise cor-

rupted outputs of the fourth-order plant. The graphical results are portrayed in Fig. 4.4

and the actual numerical values are contained in Table C.2.

In this case, the low frequency estimation error covariances have collapsed to approx-

imately zero, while the bias remains very large. The addition of the low frequency dynamics

has hurt the estimation process. If one is naive enough to take low frequency measurements

into account, the algorithm would produce a seemingly accurate estimate, when in fact it
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is totally wrong. The error covariances then balloon as the estimation window moves into

the range of the desired mode and collapse once again as the bias approaches zero. Addi-

tionally, the high frequency results are virtually identical to those of the previous section.

An interesting note is that the most accurate estimate of the parameters, poles, and zero

has now moved to window number eight; the one containing the desired dominant mode's

natural frequency.

4.3 High Frequency Unmodeled Dynamics

In this section, the procedure is repeated with the low frequency mode replaced by a

high frequency mode. Again, the problem is formulated by deliberately leaning toward re-

liance on physical insight into the problem. Thus, this mode is similar to the high frequency

bending mode of an aircraft [26], and the fourth-order transfer function is given by

5.733(s + 0.2979)(s2 + 0.496s + 695) (4.3)

T4h(S) = (s2 + 0.8394s + 1.4383)(s 2 ± 2.86s + 827)

Here a high frequency mode is chosen and included in a fourth-order transfer func-

tion. Then an optimization routine is once again used to minimize the distance between the

Bode plot of the fourth-order transfer function and that of Eq. (4.1) at frequencies between

10-0.5 and 100' rad/sec. Therefore as before, the parameters in Eq. (4.1) are deemed to be

the desired parameters. The Bode plots of the plants in Eqs. (4.1) and (4.3) are compared in

Fig. 4.5. As is seen, the Bode plots match at low frequencies, but differ in the neighborhood

of the high frequency mode.

The same moving frequency window estimation is performed using the noise cor-

rupted outputs of the fourth-order plant. The graphical results are portrayed in Fig. 4.6

and the actual numerical values are contained in Table C.3.

Once again, the additional mode introduces unmodeled dynamics, which potentially

hamper the identification process. The low frequency performance is similar to the second-

order results, but the high frequency error covariances collapse again in the area around the

additional mode's natural frequency. Even the estimate of the b, parameter now has a large
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Figure 4.5. Second- and Fourth-Order Bode Plot Comparison

bias and small error covariance. The area of covariance collapse is not as large as when the

low frequency mode is added, but as in the case of low frequency unmodeled dynamics, it

corresponds to the area where the second-order Bode plot differs from the fourth-order.

The window of best estimation is also more ambiguous. Best parameter and pole-

zero estimates range between windows eight and nine, depending on the parameter. This

seems a bit strange when one considers the high frequency mode should push the better

identification to lower frequencies. However, the fourth-order transfer function is matched

to a second-order in a subset of window eight, which implies the best match should always

be in window eight.

4.4 High and Low Frequency Unmodeled Dynamics

In this section, both the high frequency and low frequency modes are added to the

plant, and the system identification procedure is repeated. This is similar to the situation

in a real aircraft, and the sixth-order transfer function is given by

T6S) 5.7141s(s + 0.016)(s + 0.2841)(s2 + 0.496s + 695) (4.4)

(s2 + 0.00466s + 0.0053)(s 2 + 0.8424s + 1.4405)(s2 + 2.86s + 827)
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T6(s) is the result of using the same high and low frequency modes as before, and

an optimization routine to match a sixth-order plant's Bode plot to that of Eq. (4.1) at

frequencies between 10 - 0 .5 and 10 0 .5 rad/sec. Therefore as before, the parameters of this

second-order transfer function are used as the desired parameters. The Bode plots of the

plants in Eqs. (4.1) and (4.4) are compared in Fig. 4.7. Obviously, the Bode plots now differ

at both low and high frequencies.
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Figure 4.7. Second- and Sixth-Order Bode Plot Comparison

The same moving frequency window estimation is performed using the noise cor-

rupted outputs of the sixth-order plant. The graphical results are portrayed in Fig. 4.8 and

the actual numerical values are contained in Table C.4.

The estimation problems noted before are now compounded. The error covariance

is now artificially small at both low and high frequencies. This collapse of estimation

performance occurs when the Bode plots of the actual and desired plants differ greatly.

Additionally, the best estimation is now definitely achieved in window eight. This further

supports the notion that the best estimate occurs in the window where the Bode plots are

matched.
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4.5 Attempt at Overmodeling

In this section, the effect of overmodeling in the face of limited measurements is

examined. The plant is modeled as sixth-order, but each estimate still only uses 16 mea-

surements. As expected, the results are very poor, and representative samples are shown

in Fig. 4.9. Compounding the problem that 16 measurements are not sufficient to identify

10 parameters accurately, is the fact that none of the frequency windows provides enough

information about the full bandwidth for an accurate estimate. This emphasizes the idea

of keeping the number of estimated parameters small as related to the measurement infor-

mation.
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Figure 4.9. Overmodeling Results
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4.6 Conclusions

Some degree of a priori knowledge about a plant must exist for accurate identifica-

tion. In the context of this work, this entails knowledge of the plant's bandwidth, and of

the bandwidth of the dominant mode.

When one attempts to obtain a second-order model for a second-order plant, the

measurements should be in the region of the mode present in the plant or an accurate

estimate will not be possible. In the discussed flight control scenario, it seems that the

optimum frequency range for proper estimation is immediately prior to the plant's natural

frequency. However, this may be specific to this plant and its low frequency zero.

When one attempts to obtain a second-order model of a higher order plant, i.e., when

identification in the presence of modeling error is performed, the importance of applying

sinusoidal test signals whose frequency is near the frequency of the desired mode becomes

greater. Otherwise, not only will the estimation process give you an inaccurate (biased)

estimate, but, in addition, it will tell you that it is an accurate estimate. This would lead

to placing undue confidence in the estimate and is akin to the notorious filter divergence

phenomenon encountered in extended Kalman filtering.

The best parameter match seems to be in window number eight in all higher order

cases. This is probably due to matching the second-order Bode plot to the higher order

one in that frequency range. If a different range had been used, the results would probably

have matched in that range instead. Small variances in the matching range produce small

changes in the parameters. Therefore, the small biases in the windows around eight are

probably due to matching error and not actual estimation error.
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V. Identification of a Discrete-Time Dynamical System

While the identification of continuous-time plants from frequency data is very useful,

the primary scenario for the identification of dynamical systems lies in the time domain. In

the control systems paradigm, the parameters of the plant are needed to design compen-

sators to elicit desired responses from the plant. To this end, plant input is usually applied

in the present day by computer controller actuators. This brings the discrete-time plants

models into play. Control is typically applied through a zero-order hold device to the plant.

In this chapter, the discrete-time parameters of a given physical plant are identified

using several methods. A comparison is made between the proposed Generalized Minimum

Variance (GMV) and established Generalized Least Squares (GLS) identification algorithms.

The Instrumental Variable (IV) method is not presented here, because the results are similar

to those observed in Chapter III, where the IV estimates were significantly worse than either

the GLS or GMV estimates.

Here, the experimental data consists of a finite number of input and output mea-

surements of a discrete-time plant, which is representative of the sampled pitch dynamics of

a transport aircraft. Also, sensor noise has corrupted the measurements of the output. The

GLS method is described in Ref. [14], and is basically the same as the method proposed in

Ref. [32].

Section 5.1 sets up the time domain problem, and explains the application of the

GMV and GLS methods. Section 5.2 presents the actual plant used in the experiments. The

algorithms are compared using only noise on the output in Section 5.3. The convergence

properties are discussed in Section 5.4. Input noise is added to the problem in Section 5.5.

Section 5.6 contains the results when the sampling rate is increased by a factor of four.
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5.1 Time Domain Identification Setup

Consider the discrete-time z-domain transfer function given by

T(z) y(z) - boz' + biz'-' + b2 z
n - 2 +" + b- 1 Z + b. _ .i Zn' (5.1)u(Z) - z- 1az - a2 zn - 2 

..... an-1z - an = % o-aizn-i

where a0 = -1, and the 2n + 1 parameters a, ... an and b0 ...bn are unknown and may

have a zero value, as discussed in Chapter III. This transfer function can be rewritten in

time domain form as

(q-0 - q-1a1 - . - q-nan) y(kT) =(q-obo + q-2 b2 +± + q-nbn) u(kT) (5.2)

A(q-) B(q-')

where T is the sampling period and q-n is an n step time delay. Letting Yk = y(kT) and

Uk = u(kT), Eq. (5.2) can be written in recursive form as follows:

Yk = ajyk-1 + a2yk-2 + "' + anyk-n + bouk + bluk-1 + b2uk-2 + + buk-n (5.3)

To identify the parameters of the discrete time system, one need only solve the following

system of 2n + 1 equations

Yk a,

Yk+1 Yk-1 Yk-2 " Yk-n Uk ... Uk-n

Yk+2 Yk Yk-1 " Yk-n+l Uk+1  • Uk-n+l an (5.4

Yk+3 :bo

Yk-1+N Yk-2+N • Yk-n+N Uk+N • Uk-n+N

Yk+N bn

However, the values for Yk and Uk cannot be directly measured. Rather, we can

measure the noise corrupted Yk and Uk, where the noise is assumed to be Gaussian:

Yk = yk + Vk, v = K(O, a)

Uk = Uk + Wk, w = K(O, a)
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This changes Eq. (5.3) to

Yk - Vk = al(Yk-1 - k-1) + a2(Yk-2 - Vk-2) + + an(Yk-. - vk-.)

+ bo(Uk - Wk) + bl(Uk-l - Wk-l) + ... +± bn(Uk- n - Wk-n) (5.5)

or

Yk = alYk-1 + a2Yk-2 + "". + anYk-n + boUk + blUk-1 + b2Uk- 2 + "'" + bnUk-. + Vk

where

vk = Vk - alvk-1 - a2vk-2 - anVk-n - boWk - blWk-1 - b2Wk-2 - bnWk-n (5.6)

This expression is now in a form that can be set up in a statistical Linear Regression

equation as in Eq. (2.7), where

Yk

Yk+1
Z --

Yk+N

Yk-1 Yk-2 ... Yk-n Uk Uk-1 .... Uk-n

Yk Yk-1 ".. Yk-n+l Uk+1 Uk ... Uk-n+l

Yk-l+N Yk-2+N ... Yk-n+N Uk+N Uk-I+N ... Uk-n+N

0 al a 2 ... an bo bi ... bn

Vk

Vk+1

Vbk+N

As before, the R matrix is the expected value of EcT, and if the noise is assumed to be

white, then the R matrix will be an N x N Toeplitz matrix with a non-zero diagonal and

n non-zero off diagonal terms above and below the diagonal.
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5.1.1 GLS Estimation. The GLS algorithm is derived through an attempt to match

the identification problem to a rigorous least squares formulation. The LS estimate would

be accurate if the R matrix was equal to a scalar multiple of the identity matrix. This

would occur if the Ok series was white.

Assuming there is measurement noise only on the output, the system under consid-

eration can be expressed by
B(z)

y(z) = A(z) u(z) + e(z)
A(z)

where e(z) is some white noise sequence. This can be rewritten as in Eq. (5.2):

A(q-')yk = B(q-')uk + A(q-')ek

However, the disturbance A(q-')ek is no longer white. To "whiten" the system, the follow-

ing is considered.

A(q-) (A(-I)) = B(q 1) (A(--1)) + -k

Here, the input and output are filtered through 1/A(q-1), the disturbance is once again

white, and a LS estimate can be correctly used. The problem with this formulation is that

A(q - 1 ) is not known. To overcome this, an iterative procedure is once again used. The

initial estimate is simply the LS estimate

GLS OLS

This estimate is used to estimate the necessary A(q- ') and the input and output are then

filtered as follows.

Uk = al k-l + a2k-2 + "'" + ank-n + k

Next, Yk and uk replace the Y and U in the H matrix to form the Ht matrix, and the next

estimate is calculated as follows:

bGLS ---- I-Tz
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This process of filtering and estimating is repeated until some suitable convergence criteria

is met, i.e., - i is sufficiently small. It seems that this method also con-

verges for small enough noise values, provided enough measurements are available. As the

noise strength is increased, more and more measurements are needed to consistently obtain

an estimate. The GLS method also appears to suffer from the problem of converging to

incorrect estimates for low enough signal-to-noise ratios.

5.2 Second Order System

For investigative purposes, attention is now restricted to the general second-order

dynamical system given by

4.8s + 1.44T(s) = s2 + 0.84s + 1.44 (57)

which is representative of a transport aircraft's elevator to pitch rate transfer function [2].

For this problem, it is assumed that the control is being passed through a zero-order hold

with a 10 Hz sampling rate. Therefore, the control is constant over the sample interval, and

the discrete-time (z-domain) transfer function is (see Appendix A)

0.4663z - 0.4525

- 1.9056z + 0.9194 (5.8)

The input to the system is two sinusoids; the minimum number of sinusoids to be persis-

tently exciting for a second-order system with a zero. Thus, the elevator deflection is

u(t) = sin(3t) + sin(0.5t)

In this scenario, it is assumed that there is noise only on the output, and that the input

is known. Therefore, according to the GMV paradigm, the equation error noise vector in

Eq. (5.6) is given by

16k = Vk - alvk-1 - a2vk-2
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Figure 5. 1. Discrete Bode Plot of Given Plant

To obtain the equation error covariance matrix, one calculates
2() , 7 0,

2tV2 (ala2 - a) , T = 1,

E {ikbk- } = (5.9)
22 (-a2), T =2,

0, r>2.

which means that the equation error covariance R is the pentadiagonal matrix R ovR,

where

1a + a2 -a, + aa 2  -a 2  0 ... 0
- a , + a a 2  1 a 1 a 2 -i a la 2 - a 2 0

Rv= -a 2  -a, + aja 2 I + a2 + a2 -a, + ala 2 .. 0 (5.10)

0 0 0 0 ... 1+a2+ a22

5.3 Algorithm Comparison

In this section, the GLS and GMV estimates are compared. To do this, Matlab's

[22] randn() function is initialized with a seed of zero and used to generate noise with a

covariance av - (lOP * 0.0001)2. This noise is then added to the true output obtained from
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the system given in Eq. (5.8). Five levels of noise (p = 0, 1, 2, 3,4) are examined in this

work, but only three are presented here. The low noise case of p = 0 is presented first. The

output for this case, corrupted by representative noise, is shown in Fig. 5.2.

p=O
6

4-

2-

-

-4-

-61 l1 12 13 14 15 16

Time (see)

Figure 5.2. Plant Output with Representative Low Noise Level

The p = 2 and 3 cases are not presented here because the results are very similar

to the first case. Only when the noise level increases to p = 3 or 4 do the problems and

differences become apparent. The noise levels for these cases are shown in Fig. 5.3.

p= 3  p= 4

6 6

4- 4-

21 2

0~ 0>

-2 -2

-4 -4-

10 I'1 12 13 14 1'5 16 -10 1'1 12 13 14 1'5 16
Time (see) Time (see)

Figure 5.3. Plant Output with Representative High Noise Levels
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Figure 5.4 displays the denominator estimates for a 100 run Monte-Carlo (MC)

analysis for two different regression lengths - 40 and 70. The estimation results are first

normalized by dividing each estimate by the true estimate, and then plotted. Ellipses are

plotted representing each estimation method's actual one sigma variation. The ellipses' axes

are centered at the average estimate for each method. The algorithm predicted estimation

error covariances are not plotted, because they are close to the actual covariances in each

case.

p=O m=40 p=O m=70

I~ 0

00

0
1 03 00

1 +

1 0 GS 1

0 o GM 0 GMV
SGLS + GLS

00 - sig GMV +I -sig GMV
S- -1 sig GLS -- sig GLS
S 1 1 1 1 1 1 1 1 1

al al

Figure 5.4. Denominator Estimates for 40 (left) and 70 (right) Measurement Linear Re-
gression

As can be seen, the GLS estimates are quite a bit better than the GMV estimates

for the case where 40 measurements are taken (approximately 4 seconds of data). However,

this does not tell the whole story. When 70 measurements (approximately 7 sec of data) are

used, both estimates are better, and the statistical results are virtually the same. To better

visualize this behavior, Fig. 5.5 shows the GLS and GMV estimation error and covariance

for the a, parameter.

As can be seen, the GLS estimate is initially better than the GMV estimate. How-

ever, within about 60 measurements, the GMV has caught up with the GLS, and the two

5-8



10- 4  GMV - al Estimation Error (%) x 10-4 GLS - al Estimation Error (%)

-MC mean error -MC mean error
.MC +/- sigma MC +/ sigma
Algorithm Computed Sigma Algorithm Computed Sigma

0
•~~ ~~~~ ...... .. .. '' .... ...... .:

so 100 150 200 50 100 150 200
Number of Measurements Number of Measurements

Figure 5.5. GMV and GLS - Incremental a, Estimation

are almost identical afterwards. The difference is even smaller when the initial time is re-

moved. Figure 5.6 contains the incremental estimation of the a, parameter for the case of

no initial time.

x 104 GMV - al Estimation Error (0-) IC 4  GLS - al Estimation Error (%)5 5 M lEtmto ro °6

-MC mean error -MC mean error
- MC +/- sigma -MC +1-sigma

' [.. Algorithm Computed Sigma ...... Algorithm Computed Sigma

0
U

0 
0

20 40 60 80 100 20 40 60 8'0 100
Number of Measurements Number of Measurements

Figure 5.6 GMV and GLS - Incremental a, Estimation without Initial Time

From this information, it may seem that the GLS is always at least as good as the

GMV, but the cases above are for a very small noise level. When the noise level increases,

a problem appears in the GLS estimation. The GLS method requires, in general, more

measurements initially to consistently produce a valid estimate. Figure 5.7 contains the
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incremental a, estimation error and covariance for the case of p = 3. Once again, it is

apparent that the GLS estimate is better than the GMV up until about 60 measurements,

but what is not shown is that, while the GMV algorithm produces an estimate for m < 10,

the GLS algorithm does not produce an estimate for all 100 noise realizations until m 19.

GMV - al Estimation Error (%) GLS - al Estimation Error (%)

- - MC mean error - MC mean error
MC +1- sigma . MC +/- sigma

. Algorithm Computed Sigma Algorithm Computed Sigma

0, " .. .. .. . 0 :

20 40 6 0 80 100 20 40 60 80 100
Number of Measurements Number of Measurements

Figure 5.7. Incremental a, Estimation for p = 3

This initial measurement requirement is more visible when the initial time is removed

as well. Figure 5.8 shows these results. The lack of information in the GLS plot below about

m = 25 is due to the fact that the algorithm does not produce an estimate for this area.

Similar things happen for the case of p = 4 as well. The GLS estimation requires even

more measurements to produce an estimate. The normalized numerical results are given in

Appendix D for each of the identification algorithms compared in this work. The values are

for p = 3,4 with 400 measurements.

Another difficulty with both methods that begins to play a major role at this noise

level is the problem of algorithm convergence. As can be seen in Fig. 5.9, the algorithm

predicted covariance is quite far from the actual covariance, and the bias is rather large

below 60 measurements for both algorithms. This is due to the fact that the algorithm did
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GMV - al Estimation Error (%) GLS - al Estimation Error (%)
0.5- 0.5

k MC mean error -MC mean error
- - MC +/- sigma [ . MC +/- sigma

Algorithm Computed Sigma Algorithm Computed Sigma

o - -.-,.-

-0.5 -0.5
20 40 60 80 100 20 40 60 80 100

Number of Measurements Number of Measurements

Figure 5.8. Incremental a, Estimation for p = 3 without Initial Time

not converge to the desired fixed point when initialized with the LS estimate. Rather, it

converges to a second fixed point, as is discussed in the next section.

GMV - al Estimation Error (%) GLS - al Estimation Error (%)
5.. 5-

MC mean error - MC mean error
-MC +/- sigma .- -MC +/- sigma

u.Algorithm Computed Sigma Algorithm Computed Sigma

0-

-5-5
50 100 150 200 50 100 150 200

Number of Measurements Number of Measurements

Figure 5.9. Incremental a, Estimation for p = 4

5.4 Convergence Characteristics

The convergence problem in the time domain case is somewhat worse than that

in the frequency domain. In the frequency domain, there was one small area around the
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origin that, if the algorithm was initialized there, caused the algorithm to converge to an

incorrect fixed point. The solution to this problem was just to not initialize in that area,

but rather use a large value from each quadrant and choose the one that converged the

quickest. However, in the time domain, the picture appears to be much more complicated.

Figure 5.10 contains the estimation results for m = 40, p = 4. As can be seen, both the

GMV and GLS algorithms suffer from this problem, and the erroneous fixed point is not

necessarily near the origin.

p=4 m=40
1.5

0.5-o

++

0 0'.5 1 1.5
al

Figure 5.10. Denominator Estimates Showing Convergence Problems

There are at least three different time domain convergence patterns. One is the case

where the algorithm converges to the desired estimate no matter where it is initialized. The

second case is where the algorithm converges to an incorrect fixed point when initialized at

the LS estimate, but will converge to the desired fixed point when initialized close to the

true parameter. The third case is where the algorithm will not converge to the desired fixed

point no matter where it is initialized. This latter case is truly disconcerting, and it is not

known why it happens or how to correct it. The only things that can be said about it are

that it only happens for a small number of noise realizations at a very low signal to noise

ratio where there are not yet enough measurements. In other words, there is insufficient
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excitation. The phenomenon disappears once "enough" measurements are added to the

linear regression, increasing the level of excitation.

Two examples of case two are shown in Fig. 5.11. They are the 6th and 18th

particular noise realizations. The different areas shown in the plots are determined using

the "shotgun" approach discussed in Section 3.6.3. The algorithm is initialized at different

points, and the thick lines seperate the areas that converge to different points. In realization

6, the small area around the true parameter is the area that yields the desired parameter

estimate when the algorithm is initialized there. The rest of the space converges to an

incorrect estimate. In realization 18, the upper left and lower right quadrants converge to

the desired estimate, and the others do not.

Realization #6 Realization # 18
3 3

2 Incorrect 2 Correct

11

-1 Corre -I Incorrect Correct

-2- -2-

-2 -1 0 1 2 3 -2 -1 0 1 2 3
al al

Figure 5.11. Convergence Pattern for Noise Runs 6 and 18

On a brighter note, looking at the output or form of the estimated plants may shed

some light on the multiple fixed point quandry. Figure 5.12 contains the true output, the

measured output for this realization, and the outputs obtained by running the input through

the two different estimated plants. As can be seen, the correct output is much smoother

initially than the incorrect one in both cases.
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Realization #6 Realization #18
6 6

5...True 5 ...True

/i Measured It Measured a
4- Incorrect 4 -"Incorrect It,.

4Correct 4- _ Cr

3- 3-

00 ',. 4t 0.,"

-I -I - S

201
Time (sec) Time (sec)

Figure 5.12. Outputs for Noise Realizations 6 and 18

The high measurement noise may fool the identification algorithm into thinking that

there is a high-frequency component in the plant. However, upon closer inspection of noise

realization number six, it can be seen that the incorrectly identified plant is a highly unlikely

candidate. It has one pole on the positive real axis and one on the negative real axis. This

is not a possible realization for a physical plant with a zero-order hold, since it would imply

one real and one imaginary pole. Additionally, in this case, the pole on the negative real

axis is slightly unstable.

-0.9477z + 1.6921 -0.9477(z - 1.7854)
T(z)6 = z2 + 0.2290z - 0.7989 (z + 1.0156)(z - 0.7867) (5.11)

This could also explain, at least in this case, why adding more measurements would eliminate

the convergence problems. The more measurements that are added, the less the unstable

plant's output would match the measured output.

As for the case of no convergence to the desired parameter, noise realization number

20 is a good example of this. As in the other realizations, there are two fixed points present.

Figure 5.13 shows that most of the space converges to an unlikely plant similar to Eq. (5.11),

with two poles on the real axis - one positive and one negative.

-1.8521z + 3.2726 -1.8521(z - 1.7670) (5.12)
T(z) 2o = z2 + 0.3389z - 0.5852 = (z + 0.9530)(z - 0.6141)
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Realization #20
3

2 Incorrect

-3 -2 -1 0 1 2 3
al

Figure 5.13. Convergence Pattern for Noise Run 20

The small spot, denoted "other", converges to a completely different plant, but one

that is probably as unlikely as the other. This identified plant is given by

T(Z)2-b 5.9513z + 8.4410 _ -5.9513(z - 1.4183) (5.13)

z 2 - 0.1807z + 0.9685 (z - 0.0903 ± jO.98)

As can be seen, the imaginary poles are now both plausible for a zero-order hold plant, but

the magnitude of the poles is 14.8 rad/sec. If a plant has a mode with a frequency this

high, then 0.1 sec is not even close to a sufficiently small sampling period for identification

purposes. The output plots in Fig. 5.14 bear this out in that the output for this plant looks

very similar qualitatively to the noisy measured output. A high frequency component is

readily apparent.

Therefore, some initial knowledge/prior information is necessary if one is trying to

identify plants with a very small number of measurements for the noise level present. If

the algorithm fails, it does not seem to find physically believable plants for the assumed

situation.
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Figure 5.14. Outputs for Noise Realization 20

5.5 Noise on Input

An additional advantage of the GMV method is its adaptability to other linear

regression type frameworks, particularly to expanded noise models. If there is noise on the

input as well as the output, then the GLS derivation is completely incorrect. The GMV

algorithm can, however, be easily adapted to handle input noise simply by modifying vbk to

include the new noise. Here,

)k = Vk - alVk-1 - a2vk-2 - blWk-1 - b2Wk-2

Now, the needed stochastic modeling entails the calculations

a (1 + al + a2) (b+ , 0,

0 1 ( a j a 2 - a ) W ( b l b 2 ) , 7 = 1 ,

E{ gk--}= (5.14)
a. (-a2), 7 = 2,

0, r >2.
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which means that the equation error covariance matrix R is now the pentadiagonal matrix
R 2 + 2

R avRv + WR2 , where R, is given in Eq. (5.10) and the tridiagonal R, is as follows:

b2 + b2 bb 2  0 ... 0

bib2  b2 + b2 bib2  ... 0
= (5.15)

0 0 0 .. +

For this comparison, the strength of noise on the input is the same as that on the

output. For the case of very small input noise, the GLS-GMV comparison is similar to the

case of no input noise. The GLS is better for small m, but the GMV catches up, as is shown

in Fig. 5.15. This good performance by GLS is probably due to the filtering effect, i.e., the

effects of noise can be reduced by filtering the input and output through low pass filters.

_ - GMV - al Estimation Error (%)X 10- 3  GLS - al Estimation Error (%)

-MC mean error MC mean error
-MC +/- sigma - -- MC +/- sigma

" Algorithm Computed Sigma Algorithm Computed Sigma

0.5 - 70.5-

U "U . . . . . . . . . . ....... . . . . ... . . . . . ............. : ......... ...... .....

• -0.5

20 40 60 80 100 20 40 60 80 100
Number of Measurements Number of Measurements

Figure 5.15. Incremental a, Estimation for p = 0 with Input Noise and No Initial Time

However, when the noise level increases, the input noise seems to have a more pro-

nounced effect, and the GLS estimates become worse than the GMV estimates, as is shown

in Figs. 5.16 and 5.17.

Taken to the extreme, the GLS algorithm appears to break down. Not only does it

fail to produce an estimate for small m, it also fails for large m. Even when it does produce

an estimate, it is not so good except, strangely, for m around 40 to 50. The GMV estimate
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Figure 5.16. Incremental al Estimation for p =3 with Input Noise
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Figure 5.17. Incremental a, Estimation for p = 3 with Input Noise and No Initial Time
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is having trouble with convergence issues for small m, more so with the included initial

time case. It takes between 100 and 200 measurements for the initial time case to converge

consistently from the LS estimate, while the other case converges consistently for 60 to 70

measurements.

GMV - al Estimation Error (%) GLS - al Estimation Error (%)
10- 10-

-MC mean error ] i mean error"-~~MC mea erarororii
S " - -MC+/-Wgma . MC+/-sigma

...... Algorithm Computed Sigma Algorithm Computed Sigma

5- 5-

r) ........... i : 0

5"5/ : . . ,...

I-. . : / 5 - -
0 .. 0 -

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Number of Measurements Number of Measurements

Figure 5.18. Incremental a, Estimation for p = 4 with Input Noise

GMV - al Estimation Error (%) GLS - al Estimation Error (%)
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Algorithm Computed Sigma Algorithm Computed Sigma
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5-

-10 -10c50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
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Figure 5.19. Incremental a, Estimation for p = 4 with Input Noise and No Initial Time
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5.6 The Effects of Sampling Rate

In this section, the effects of sampling rate and identification time interval are ex-

amined. To do this, the sampling rate for the system is increased by a factor of 4. The new

discrete-time transfer function is

0. 1192z - 0.1183 (5.16)

T z - 1.9783z + 0.9792

The incremental identification of one parameter is shown in Fig. 5.20. The left side contains

the identification for the original sampling time of 0.1 seconds, and the right hand plot is

for the shortened time of 0.025 seconds. As can be seen, the number of measurements in

each are such that the physical time interval is the same. It is obvious from the plots that

GMV - al Estimation Error (%) GMV - al Estimation Error (%)

5 - 5 . .- --....
- M~mea errr -MC mean error
-MC+-siga - MC +/- sigma

Algorithm Computed Sigma Algorithm Computed Sigma

... .. . .............. ! .- , -.. - - ------ --- . -' ..... -....... . . .. -

- ' ' -5
20 40 60 80 100 50 100 150 200 250 300 350 400

Number of Measurements Number of Measurements

Figure 5.20. Incremental a, Estimation for 0.1 (left) and 0.025 (right) Sampling Times

more measurements are needed to obtain the same quality of estimate for the 0.025 rate.

Forty measurements at 0.1 produce a relatively good estimate, while the estimate at forty

measurements for 0.025 is quite poor. Therefore, increasing the sampling rate wiln worsen

the estimate if the same number of measurements are used.

On the other hand, increasing the sampling rate while retaining the same physical

identification time interval produces a substantial improvement in the quality of the es-

timate. Figure 5.21 contains the denominator estimates for 10 seconds of data for both
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sampling rates. As can be seen, the 0.025 rate, which has 400 measurements, is approxi-

mately ten times better than the 0.1 rate, which has only 100 measurements. Conversely,

p=3 m=100 p=3 m=400

1.004 1.0006
0

°

1.003 0

1.002 + 1.04

1.001-1.0002-
I 1 ...... ............... ..... ............. ........

0.9990 9 1.........70 . ...

0.998-G
0.997 0.999GL

-1 sigGMV 09 -1 sigGMV

+ -- siGL0.996- --1 sig GLS 0.9996 +c i L

0.995 ,
0.998 0.999 1 1.001 1.002 0.9998 0.9999 1 1.0001 1.0002 1.0003

al al

Figure 5.21. Denominator Estimates for 10 Seconds of Data - 0.1 left and 0.025 right

increasing the 0.1 rate estimate to 400 measurements only results in a factor of two im-

provement. Therefore, if one can afford the computational burden of the increased number

of measurements, it is a very good thing to have.

5.7 Conclusions

In this chapter, the performance of the Generalized Minimum Variance and Gen-

eralized Least Squares estimation algorithms is compared. Gaussian measurement noise is

assumed, as is customary in statistical filtering and system identification work. The novel

minimum variance estimate equations are derived and applied to a nonlinear estimation

problem. The results are then compared to the established Generalized Least Squares esti-

mate for a second-order system that is representative of an aircraft's pitch dynamics, which

is used for inner-loop flight control system design.

While the GLS method requires more measurements initially to obtain an estimate,

it appears to produce a better estimate at this point than the GMV. However, the two

methods appear to be statistically equivalent as more measurements are added. One distinct
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advantage of the GMV method is its ability to produce valid estimates at small measurement

samples, and in general, under conditions of poorer excitation.

The GMV and GLS estimates outperformed the LS estimate in all cases. The LS

estimate did, however, provide a useful, albeit sometimes dangerous, starting point for iter-

ating the parameter estimate. At small noise levels, it does not matter where the algorithms

are initialized, but as noise levels increase, there is an additional point of convergence that

can trap the estimate. In high noise cases (low signal-to-noise ratio), it becomes necessary

to examine the final result to see if it is a valid estimate. There seem to be no definitive

differences between the convergence rates for incorrect verses correct parameter estimates

in the time-domain. Obviously, there must be at least a small amount of prior information

about the plant for a valid estimate to be obtained.

As before, the least squares estimate is not effective, even in cases of small mea-

surement noise. The GLS and GMV provide much more accurate estimates, and the GMV

seems to provide estimates with much fewer measurements. Additionally, the GMV is much

more adaptable to various identification requirements.
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VI. Identification of the Physical Parameters of a Continuous-Time Dynamical

System

In this chapter, the identification of physical parameters using the sampled input

and output of continuous-time plants is discussed. The experiment is based on Case 3 of a

system identification competition out of Italy [3], and is related to the work in [5]. These

consider the identification of thermal building parameters, which are typically modeled as

a second-order thermal circuit with two inputs and one output.

Currently, an important problem of classical system identification is the methods by

which algorithms are validated. Too often, the researchers start with a set of input/output

data from an unknown plant. They use the data to estimate the parameters of the plant, and

then use the input data and the identified plant to simulate the output. If the original output

and the simulated output are "close", then the algorithm is considered to be successful. The

flaw in this validation "method" becomes apparent under conditions of less than optimal

excitation. With poor excitation, it is possible for drastically different plants to produce

the same output from the same input. This is a typical manifestation of an inverse problem,

which system identification is.

The proposed proper method of algorithm validation is to start with a known plant,

produce an input/output data set using this plant, add measurement noise commensurate

with the known prevailing signal-to-noise ratio in the actual experiment, identify the pa-

rameters, and compare these parameters to the original known plant. If the parameter

estimates are good in this "synthetic" experiment, then the algorithm can be applied to the

unknown plant as well.

Section 6.1 is a summary of the problem. Section 6.2 explains the method used for

identification of the discrete time parameters. Section 6.3 explains the procedure of the

experiment. Section 6.4 explains how to use the initial knowledge of the system to improve

the identification, and Section 6.5 contains the methods used for obtaining the physical

parameter estimates.
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6.1 Physical System

The physical system for this experiment is represented by the second-order linear

thermal network shown in Fig. 6.1. Ti and T, are the internal and external temperatures,

Te G1 G2 TiTT
Figure 6.1. Layout of the Physical System

respectively, Q is the heat flow, R 1, R 2, and R 3 are thermal resistance elements, and G1

and G2 are thermal capacitance elements. In the competition, each data set consisted of 30

days of hourly observations of temperature and heat flow. A relatively high level of noise

was added to Tg, a low noise level was added to Q, and no noise was added to Ti. The

noise on T, results in a variation of the usual system identification problem, where the input

signals are assumed known (noiseless).

The two states in this system are T and T2, the two inputs are T, and Ti, and the

output is Q. Therefore, letting Hi= 1/1R, i = 1, 2, 3, the state space equations are

dT1G- = I(T - T1) + H 2 (T 2 - T1 )

dT2G2= H 2 (T1 - T 2 ) + H 3 (Ti - T 2)

Q =H 3 (T - T 2 )

or in the more familiar form x = Ax + Bu and y = Cx + Du,

G1 G1 + I Ti (6.la)
G2G2 G2
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This continuous-time system is a Two-Input Single-Output (TISO) system that is

not strictly proper. The state equations given above yield the following continuous-time

transfer function:

Bos2 + Bis + 1 -i, 1 ATe(s) (6.2)
AS 2 + As +A 2 (s) ± As2 + As + A2

where

Bo = R1R2G1G 2  (6.3a)

B1 = R 1G1 + R 2G 2 + R1G2  (6.3b)

Ao = R1R2R3GIG 2  (6.3c)

A1 = RIR 2G1 + R 1R 3G 1 + R 1R 3G 2 + R 2R 3G 2  (6.3d)

A 2 = R 1 + R 2 + R 3  (6.3e)

The inputs are Ti and T,, the output is Q, and the five unknown physical parameters to be

identified are R1, R 2, R 3, G1, and G2.

6.2 Time Domain Estimation Method

When a Tustin transformation is performed on a proper or strictly proper second-

order continuous system, such as that in Eq. (6.2), the resulting discrete time system is not

strictly proper. In other words, the following discrete system is the result.

b1 oz2 + blz + b12  b20 z 2 + b21 z + b22t(Z)  (6.4)
q(z) z 2 - a1z - t(z)+ - az - a2

Here, the discrete-time transfer function's 8 parameters a,, a2, blo, bil, b12, b20, b21 , and

b22 are unknown. Although the original continuous-time system had 5 parameters, the

Tustin transformation produces 8 in the discrete-time system. This transfer function can

be rewritten in recursive form as

qk = alqk-1 + a2qk-2 + blotik + blitik-1 + bl2tik-2 + b2otek + b2ltek-1 + b22tek-2 (6.5)
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If one can obtain the true output qk, and the true inputs t ik and t4k, then only eight

measurements are needed to solve for the unknown parameters. However, the true values

cannot be directly measured. Rather, the noise corrupted Qk, Tik, and Tk are measured,

where the noise is assumed temporally uncorrelated (white) and Gaussian:

Qk = qk + Vk, v = A(O, av)

Tik = tik + Wik, wi= Af(O, Ur2,)

Tek = tek + Wek, we = K(O, ae)

which, when substituted into Eq. (6.5), yields

Qk - vk = al(Qk - k-1) + a2(Qk-2 - Vk-2) + blo(Tik - Wik) + bil(Tik-1 Wik-1)

+ b12(Tik- 2 - wik-2) + b2o(Tek - Wek) + b2l(Tek-1 - Wek-1) + b22(Tek-2 - Wek-2)

or

Qk = aQk-l +a2Qk-2+bloTik+bllTik-l+bl2Tik-2+b 2oTek+b 2 lTek-l+b22Tek-2+Vk (6.6)

where

f)k = Vk - alvk-1 - a2vk-2 - blowik - bllwik-1 - bl2Wik- 2 - b20Wek - b2lWek-1 - b22Wek-2

This expression is now in a form that can be set up in a statistical linear regression

equation given by Eq. (2.7), where

Qk

Qk+1

Qk+N

Qk-i Qk-2 Tik Tik-1 Tik-2 Tek Tek-1 Tek-2

H Qk Qk-1 Tik+l Tik Tik-1 Tk+1 Tek Tek-1

Qk-1+N Qk-2+N Tik+N Tik-l+N Tik-2+N Tek+N Tek-l+N Tek-2+N
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[ IT
0= al a 2 blo bil b1 2 b20 b2 1 b22

Vk+1

Vk+N

The R matrix is the expected value of cE, and if the noise is assumed white, then

the R matrix is an N x N Toeplitz matrix with a non-zero diagonal and 2 non-zero off-

diagonal terms above and below the diagonal. If v and we are assumed uncorrelated and

the input measurement Ti is noiseless (awi = 0), then the R matrix is given by

1 + a2 + a 2 -a + aa 2  -a 2  .. 0

-a, + aa 2 1 + a2 + a2 -al + ala 2 "" 0

-a2 -al + aa 2 1+ a + a2 0

0 0 0 ... +a2+a 2

b 0 + b 21 + b22 b20b21 + b11 b 1  20b22 0

b20b21 + bllb 21 b20 + b21 + b22 b20b21 + b11b21 ".. 0

+awe b20 b22  b20 b21 + blib21 b20 + b21 + b 2  .. 0

0 0 0 "" b2o-+ b2 + b22

6.3 Problem Specifics

The inputs used in this problem are created by taking the first five or six peak

frequencies from a Fourier analysis of the competition inputs. Therefore, the inputs used

in this experiment are just a sum of cosines and are given by

6

T,= Z Mak cos (Wakt + ak), a = i,e
k=1

where M, w, and ¢ are given in Table 6.1.
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Table 6.1. Values for the Ti and Te Inputs

klJ Mik Wik Oik II Mek I Wek kek

1 25.4132 0 0 11.0476 0 0
2 -0.9391 0.0245 -2.5171 -2.0109 0.0123 -0.9026
3 -0.7854 0.0368 -2.6255 -0.8515 0.0245 -2.3968
4 -0.8098 0.2454 -3.0426 -2.7772 0.2577 -3.0037
5 -2.3719 0.2577 2.9906 -1.6586 0.2700 0.6751
6 -1.2646 0.2700 0.3943 0 0 0

These inputs are given to the system described in Eq. (6.2), where the physical

parameters are those of the competition: R1 = 1, R 2 = 0.1, R3 = 10, G1 = 100, and

G2 = 50. Next, 1000 periods of data are taken, but only the final 402 (m = 400) points are

used. This is done in an attempt to simulate a building that is in steady state.

Finally, a low noise level is added to the output, and a higher noise level is added

to the external temperature input. The signal to noise ratios are based on the competition,

and are chosen to be 130 dB and 50 dB, respectively.

6.4 A Priori Information

If one attempts to "brute force" identify all eight of the parameters in Eq. (6.4),

then the T, numerator results are very poor. This is probably because the discrete system

is over-determined. There are, in actuality, only five parameters in the system. Keeping this

in mind, one can modify the system as follows so only five parameters need be identified.

6.4.1 Modification of the Known Continuous-Time System. Rather than using

brute force, it is useful to use the a prior knowledge that one has. To this end, rewrite

the transfer functions in Eq. (6.2) as

(Bo8 2 + Bs) Ti(s) Ti(s) - Te(s) (6.7)
Q(s) = Aos2 + Als + A2  Aos2 + A l s + A 2
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When a Tustin transformation is performed on this system, the following system is the

result.
q(z) . bl°z2 + b ll z + b12 

t i ( z
) + b20z

2 + b21 z + b22 [ti(z) - t,(z)] (6.8)
q Z2 -z 2 a1 z -a 2  z 2 -a 1 z -a 2

It would appear that there are still eight parameters to identify, but when a Tustin trans-

formation is performed on a second-order continuous-time transfer function with a constant

numerator, as in the second term of Eq. (6.8), b21 = 2b20 and b22 = b20. Also, when a Tustin

transformation is performed on a second-order numerator with the form Ks(s + z), as in

the first term of Eq. (6.8), bn1 + b12 + b1 3 = 0. Therefore, Eq. (6.8) is really

) (-bil - b1 2 )Z2 + bllz + b1 2  b20 z 2 + 2b 2°z + b20 [ti(z) - te(Z)] (6.9)
z 2 - a1z - a2  i(z)+ z 2 - a1 z- a2

which changes Eq. (6.6) to

Qk = alQk-1 + a2Qk-2 + bl(Tik-1 - Tik) + b12(Tk- 2 - Tk)

+b 20 ((Tik - Tek) + 2(Tik-1 - Tek-1) + (Tik-2 - Tek-2)) + Vk (6.10)

where

vk = vk - avk-1 - a2vk-2 - (-bil - b12 + b20)wik - (b1l + 2b2 o)wik-1

-(b 1 2 + b2o)Wik-2 + b20wek + 2b2Owek-1 + b20wek-2

The number of discrete parameters to be estimated has been decreased to five, and is now

equal to the number of unknown physical parameters in the original system. This changes

the H and R matrices to (7. = 0 and TAk = Tik - Tek)

H = [ Qk-1 Qk-2 (Tik-1 - Tik) (Tik- - Tik) (T~k + 2 TAk1 + TAk-2) j
l+ a 2 + a 2 -a, + aja 2  -a 2  ... 0

-a, + ala2 1 + a2 + a 2 -al + aja 2 ... 0

2 -a 2  -a, + ala2 1 + al a2 ... 0

0 0 0 ... 1+a2+a 2
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000...6

6.4.2 Feasibility of the Tustin Transformation. Of concern in this work is the va-

lidity of the Tustin transformation. The Tustin transformation assumes ramp type inputs,

and substitutes a bilinear approximation for exp (At) in the conversion process (see Ap-

pendix A). The inputs to the discrete Tustin system would be the same as the clean sampled

inputs to the continuous system. Therefore, the difference would be in the sampled out-

puts. To try to determine this difference, the discrete system in Eq. (6.9) is simulated with a

sampled version of the continuous input that is used with the continuous-time system. The

results indicate that there is a discrepancy between the discrete and continuous outputs as

shown in Fig. 6.2. As is seen, there is a relatively large initial difference between the two

2.6X 
0.5

X 10
- 3

2.4 - Continuous System (Q)
2.4l ... Discrete System (Qi) 0
2.2

-0.5
2

-1

,e. O-1.5
' 1.6 .

1.4 -

1.2 -2.5
1 , -3

0. 8 -3.5

0.6 200 400 600 800 1000 4 200 400 600 800 1000

Time (see) Time (see)

Figure 6.2. Comparison of Continuous and Discrete Outputs

system outputs if the entire data set is used. This agrees with results discussed in Ref. [13].

This difference is probably due to the initial transient in the continuous system, which is
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too fast for the Tustin transformation to model. The large initial difference introduces a

relatively large error in the estimate, and it takes a very large estimation window to wash

it out.

However, if the system measurements are taken after the system is in steady state,

the initial differences are smaller. If the corresponding discrete system is simulated using

only the information in the final 402 measurements, then the results in Fig. 6.3 are obtained.

x 10
- 5

6-

4-

2

0'-2

-4-

-6-

-18-

0 100 200 300 400
Time (sec)

Figure 6.3. Difference with Initial Time Removed

To examine the possible effects of these continuous/discrete differences, the identifi-

cation experiment is run with a very small measurement noise on both the Te input and the

output, for both the continuous and corresponding discrete systems. The identification re-

sults for the continuous system are shown in Fig. 6.4, and the discrete results are in Fig. 6.5.

As can be seen, the induced biases are much less than 1% , so the Tustin transformation

is considered satisfactory for this problem. If the sampling rate were lower, or if the initial

time information was needed, then perhaps a different continuous-discrete transformation

would be needed. Other noise models are investigated in this work as well in an attempt to

reduce the error.
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Figure 6.4. Continuous Estimation Results for Very Small Noises

m=400 m=400
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0.99 0.999

0.9985 0.9985 0
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Figure 6.5. Discrete Estimation Results for Very Small Noises
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It can be seen in Fig. 6.3 that the difference between the continuous and discrete

outputs consists mainly of a high frequency sinusoid and also possibly of a ramp in the

beginning. There are at least three possible ways to treat this. One could model the

disturbance as a sinusoidal error, a combination sinusoid/ramp, or simply as white noise.

Each of the three were added to the system model, but the extra parameters added by the

additional modeling seem to negate any gains, and little, if any, improvement is achieved.

Therefore, in order to keep the number of estimated parameters to a minimum, a simple

white noise model is used.

6.5 Estimation of the Physical System Parameters

This section discusses the procedure used to obtain the required estimates. Once

the discrete system parameters and error covariances are estimated, they are converted into

the estimates and covariances for G1, G2, R 1, R 2, and R 3. To accomplish this, the discrete

parameters are first converted to their continuous-time equivalents via an inverse Tustin

transformation, and then a set of nonlinear equations is solved for the physical parameters.

The covariance estimates are obtained via perturbation methods.

6.5.1 Identification of the Parameters of the Discretized System. As discussed in

Section 6.4.2, only the final 402 points are used from the data sets to simulate a building

in steady-state. Next, a 100 run Monte Carlo analysis is performed. For each, the least

squares estimate is calculated as an initial guess, and the Generalized Minimum Variance

estimate is iterated fifty times. Figure 6.6 shows the average estimate, each of the 100

estimates, and the calculated covariance for both of the denominator parameters and two

of the numerator parameters. Table 6.2 contains the normalized numerical results for the

bias (e), actual error covariance (a,), and algorithm predicted covariance (ap) for all the

parameters.

6-11



m=400 m=400
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Figure 6.6. Discrete Parameter Estimates and Error Covariances

Table 6.2. Normalized Numerical Results for Discrete Parameters

0 11e=0-0(%)I 0' ____

a, -0.0605 0.3138 0.2943
a2  -0.1422 0.7382 0.6921

bl -0.0378 0.3170 0.2979
b12 -0.1141 0.7497 0.7039

b0 0.3790 1.8682 1.7600
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6.5.2 Conversion to Continuous-Time. The first order of business here is to use

an inverse Tustin transformation to convert the discrete parameters of Eq. (6.9) into a set

of continuous-time parameters as in Eq. (6.2).

The calculation for the error covariance estimate of the continuous-time param-

eters is done using an approximation of the Jacobian matrix J. To do this, let 0, =

[A0 A1 A 2 Bo B1 ]T and Od = [a, a2 bil b1 2 b20]T. Then j is numerically calculated such

that AO, = j AOd, where A~d[i] = aOd[i]. This approximation is exact for linear systems,

and it should be close for slightly nonlinear systems. It is assumed that the systems here are

slightly nonlinear for the purpose of Jacobian matrix computation. After these calculations

are performed, the covariance of the continuous parameters is given by P, = JPdjT. The

normalized continuous parameter estimates and covariances are shown in Fig. 6.7, and the

normalized numerical results are in Table 6.3.

m=400 m=400

1.015 1.015

0 0 0 0 0110 0 1.01'

0 0 00
1.005- 0 o0 - b 1.005 o o 0 0 %

15 00 00 0.............. ...................... ... .. ... ....... .. ...... o .o ... 0b ......l o 0. . . . 1 .................... ..do.,.

0 00 00 0 0 0
0.995

o 0

0.99 0 0.99 0 0 0 0
0 0 00

0.985 0.985

0.94 0.96 0.98 1 1.02 1.04 0.94 0.96 0.98 1 1.02 1.04
AO BO

Figure 6.7. Continuous Parameter Estimates and Error Covariances

6.5.3 Conversion to Physical System Parameters. After the estimate and covari-

ance for 0, is obtained, the set of nonlinear equations given in Eq. (6.3) are solved for the

physical system parameters.

A0
R3 = -

B0
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Table 6.3. Normalized Numerical Results for Continuous Parameters

S e=0-0(%) a, up
Ao -0.3982 2.1402 1.9909
A1  0.0054 0.6181 0.6456
A 2  0.0044 0.0571 0.0647
Bo -0.3756 2.1501 2.0015
B1  -0.0022 0.6326 0.6599

A 1Bo - AoB 1
B2

R2 = B

C2B1 - C2(A 2 - R 3)
R, = A2 - R2 - R3

Bo
R1R 2C2

Once the parameter estimates are obtained, the error covariances are estimated

similar to the continuous parameter error covariance estimates, i.e., AO = J AO, where

AOc[i] = oo[i]. The results of these final calculations are shown in Fig. 6.8, and the

numerical results are in Table 6.4.

m=400 m=400
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0 00
P - 0 0 08 0. 0.. . .......

0 °o 0.95"
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09 0 09 o 0

0 O0
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Figure 6.8. System Parameter Estimates and Error Covariances
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Table 6.4. Normalized Numerical Results for Physical Parameters

0 leo- ) 0e a, up
R, 0.0479 0.6549 0.9461
R2 2.2519 5.5391 5.6649
R 3  -0.0224 0.0262 0.0262

___1 2.1800 4.3873 4.1068

j2 -4.2527 6.7806 5.2851

6.6 Conclusions

This chapter investigates a method of identifying physical parameters using sampled

measurements of continuous-time inputs and outputs. The flexibility of the GMV algorithm

is apparent in this problem, adapting easily to measurement noise on one input and on the

output. Also, the system has been rearranged such that only five parameters need be iden-

tified. The well known Tustin transformation is used to convert the estimated discrete-time

parameters to continuous-time parameters. The error covariances are estimated numeri-

cally, and the results are close to the actual covariances. The physical parameters and error

covariances are calculated in a similar manner.

An important point of this chapter is the number of parameters to be identified.

If one tries to identify an over-determined system, the results will suffer, if they can be

obtained at all.
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VII. Conclusions,

This research identifies and focuses on the solution of the problems that measure-

ment noise introduces to the identification of dynamical systems. Measurement noise is a

fact of life in experimental and applied science, and should be specifically addressed. The

Generalized Minimum Variance (GMV) identification procedure developed in this work is

one possible solution. An advantage of this method is the fact that it is based on linear

regression and linear prediction. This makes it easy to understand and adapt to other es-

timation/system identification problems, where it produces equally good results. Further

applications of the GMV algorithm can be found in Ref. [15].

This work introduces the concept that the parameter estimate provided by the GMV

algorithm is a fixed point of a nonlinear mapping derived from the theory of Minimum

Variance identification. Existence of a fixed point is proven, and the particular algorithm

used corresponds to the iteration suggested by a contraction mapping. This eliminates the

need for global optimization, and the problems of multiple local minima are greatly reduced.

In fact, only one other possible fixed point solution was observed in the course of this work

at low signal-to-noise ratios. However, this benign situation may not persist for higher order

systems. Moreover, when the alternative solution is found, it is not a plausible one for the

given situation, and possible means of eliminating it are suggested.

In Chapter III, the GMV algorithm is applied to the identification of continuous-

time transfer functions using frequency domain measurements. Three different noise models

are examined, and the results are compared to those from the classical Least Squares,

Generalized Least Squares (GLS), and Instrumental Variable methods. Only the GLS

algorithm produces similar quality parameter estimates. Moreover, the way in which the

GLS method is cost minimization-based perhaps clouds the treatment of measurement noise,

and the results suffer. When the noise is properly treated in the GMV method, the results

are better. Convergence rates for the two algorithms are similar, with a small number of
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iterations needed at small noise levels. However, large numbers of iterations are needed as

the noise level becomes high.

Prior knowledge of the system order is needed to use the GMV method, and some

knowledge of the system bandwidth is needed to obtain the parameter estimates accurately.

As is seen in Chapter IV, if ones takes measurements outside the bandwidth of interest,

totally inaccurate estimates are obtained.

In Chapter V, the GMV algorithm is applied to the identification of a discrete-time

plant. This scenario is applicable to control system design, since the input to a computer

controlled plant is typically zero-order hold in nature, and thus one obtains a direct and

correct transformation from the continuous-time model to the discrete-time model. The

versatility of the GMV identification method is apparent in this situation as it easily adapts

to accommodate the addition of measurement noise on the input.

Also readily visible in this chapter is the importance of correct model validation. In

general, simply because the estimated and measured outputs are close does not mean that

the system has been correctly identified. In the GMV estimation method, an iteration is

performed to find a fixed point. As the noise increases, another fixed point appears. When

the output of this second estimated plant is compared to the correctly estimated plant, little

quantitative difference is apparent. Thus, the output of two distinctly different plants can

have similar outputs for a given input. Fortunately, at least in this scenario, the incorrectly

identified plant is not a plausible solution.

Finally, Chapter VI applies the GMV algorithm to the identification of a continuous-

time dynamical system, and to the estimation of its physical parameters. Here, noise is

present on one of the inputs and the output of the second-order, two input-one output

plant. The Tustin transformation is determined to be a suitable one in this case, because

the deterministic errors introduced are less than one percent. Note, one should not simply

apply any identification method blindly. If only actual measurements are available, with no

idea of the actual parameters, one should first perform a synthetic experiment and gauge
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the results. If problems arise in such an experiment, they can then be addressed before one

attempts to identify the actual unknown parameters using real data.

An additional important aspect of system identification is also addressed in this

chapter: the concept of keeping the number of identified parameters to a minimum. This

is where prior knowledge of the system is useful. In the problem addressed in Chapter V,

there were actually only five parameters describing the system. If the problem is addressed

in the time domain with no prior knowledge, then the number of needed parameters is eight.

Using knowledge of the system however, one can reduce the number of needed parameters

in the time domain to five - the minimum number. Failing to do so severely hampers the

identification process.

In conclusion, the attributes of proper (stochastic) modeling cannot be overempha-

sized. The performance of the GMV system identification algorithm is shown to be equal to

or superior than the best available linear regression based system identification methods. It

produces good parameter estimates for small numbers of measurements, along with an ac-

curate prediction of the estimation error, when convergence is not a problem. Convergence

of the GMV algorithm occurs for relatively low signal-to-noise ratios. Hence, the GMV

algorithm is completely autonomous for reasonable noise levels. Also, the structure of the

R matrix may allow the design of recursive algorithms if so desired. Finally, being based

on proper stochastic modeling, the GMV system identification method developed in this

dissertation is shown to be readily adaptable and equally applicable to a whole spectrum

of identification and estimation problems.

7-3



Appendix A. Methods for Discretizing Continuous Systems

While physical systems are almost always continuous-time systems, they are typically

converted into discrete-time models for many purposes, including digital control and system

identification. There are many variations in discretization methods, and most are based on

differing assumptions about the form of the input.

A.1 Continuous- Time Model

All linear (or linearized) physical systems can be represented by the familiar form

*(t) = Ax(t) + Bu(t) (A.la)

y(t) = Cx(t) + Du(t) (A.lb)

where x is a vector of the states in the system, u is a vector of the inputs to the system,

and y is a vector containing the outputs of the system. The goal of discretizing the system

is to obtain a model of the form.

Xk = Adxk-1 + BdUk-1 (A.2a)

Yk = Cdxk + Dduk (A.2b)

where Xk = x(kT), Xk-1 = x((k - 1)T), and likewise for uk and Yk. Comparing Eq. (A.2b)

to Eq. (A.lb), it can be seen that

Cd = C and Dd=D (A.3)

To solve for the time history of the output, given the time history of the input u(t)

and the system states at the initial time x0 = x(to), the following is used [7]:

x(t) = eA(t-to)xo + j eA(t-')Bu(r)dr (A.4)

This equation is the primary building block for discretizing the system. Setting the

initial time equal to (k - 1)T, where T is the discretization step, yields

pkT

Xk = e AT xi T + eA(kT-)Bu(r)dr (A.5)

A (k-1)T
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In order to perform the integration shown in Eq. (A.5), total knowledge of u(t) for

(k - 1)T < t < kT is required. Given a sampled input, one has knowledge of u(t) only at

the endpoints, so some assumption must be made about the form of u(t) in between.

To begin, let t = kT - r, so dt = -d7r, and Eq. (A.5) becomes

xk = eATXk-1 + eAtBu(kT - t)dt (A.6)

A.2 Assumption of Constant Input Between Samples

In this scenario, it is assumed that the input is constant and equal to that at the

initial time, i.e.,

u(t) = u((k- 1)T) = Uk-1, (k- 1)T < t < kT

Now, since the input is a constant, it can be brought outside the integration, so Eq. (A.6)

becomes
FT

Xk = eATXk-1 + [10 eAtdt BUk-1 (A.7)

Integrating the term in square brackets yields

eAtdt = A-leAt] T = A-' (eAT - i) (A.8)

so provided that A is invertible,

Xk = eATXk-1 -+ [A-' (eAT - i)B] Uk-1 (A.9)

Upon inspection, it is apparent that Eq. (A.9) has the same form as Eq. (A.2a),

where

Ad = eAT and Bd = A (eAT - i) B (A.10)

This can be converted to a discretized transfer function via

y(z) = Cd (ZI - Ad) - ' Bd (A.11)
u(z)
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A.2.1 Example System from Chapter V. The continuous-time transfer function for

this system is

4.8s + 1.44
T(s) = s2 + 0.84s + 1.44

This can be converted to the control canonical state space form [28]

*(t) = x(t) + [ u(t) (A.12a)
- 1.44 -0.84 1 1

Y(t)= [ 1.44 4.8 ]x(t)+ [ 0 ]u(t) (A.12b)

Using Eqs. (A.3) and (A.10), setting T = 0.1, the discretized matrices are[ 0.9930 0.0957 1 [ 0.0049]
-0.1378 0.9126 0.0957

Cd 1.44 4.8] Dd=[0]

Therefore, using Eq. (A.11), the resulting discretized transfer function is

0.4663z - 0.4525
- 1.9056z + 0.9194 (A.13)

A.3 Assumption of Linear Form Between Input Samples

In this scenario, it is assumed that the input is linear between the two samples.

Therefore, the input is given by

u(t) = [t - (k- 1)T] Uk + [1- t- (k- 1)T] U k - l

t- (k- 1)T(u- _)
= Uk-1 + T (Uk - Uk-1)

so

u(kT - t) = Uk + Uk-1 - Ukt (A.14)
T

Substituting Eq. (A.14) into Eq. (A.6) and simplifying yields

Xk = eATxk-1 + eAtdt BUk + [ te B(uk- Uk)
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Integrating the second bracketed term by parts yields

JTteAt dt = AlteAt]' - j' A-'eAtdt = Al1TeAT - A-2 (eAT -0 (A.16)

Now, substituting Eqs. (A.8) and (A.16) into Eq. (A.15),

Xk =AdXk-1 + Bdouk + BdlUk-1

where

Ad = e AT (A.17a)

BdQ = [(A 2T - (eAT _ 1) - A-'] B (A.17b)

Bdl =[A-'eAT _ (A2T) -1(eAT _ I)] B (A.17c)

As one can see, this system does not have the form of Eq. (A.2). Rather, it has the form

Xk =AdXk-1 + Bdouk + BdlUk-1 (A.18a)

Yk =CdXk-1 + DdUkl1 (A. 18b)

This can be rewritten in z-domain form as

zx(z) = AdX(Z) + zBdou(Z) + BdlU(Z)

y(Z) = CdX(Z) + DdU(Z)

so

x(z) = (zI - Adf' (zBdo + Bdl) U(Z)

y(Z) = Cd [(zI - Ad)'1 (zBdO + Bdl) u(z)] + DdU(Z)

= [Cd (ZI - Ad-' Bdl + Dd] u(z) + Z [Cd (ZI - Ad)-' Bdo] U(Z)

Therefore, the transfer function for a system described by Eq. (A.18) is

___=Z_ C ZI-A)- d] C _Z L -. Ad)-' BdI d (A.19)
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A.3.1 Example System as in Chapter V. As before, the continuous-time state equa-

tions are given in Eq. (A.12). The discrete-time matrices in Eqs. (A.3) and (A.17), for

T = 0.1, are then given by

[ 0.9930 0.0957

Ad = -0.1378 0.9126

Fd 016 Fd 0.0032]
Bao [ 0.0 4 86 1 0.0471

Cd [1.44 4.8] Dd-[0]

Then, following Eq. (A.19), the transfer function for this model is

0.2355z 2 + 0.0028z - 0.2244 (A.20)
z 2 - 1.9056z + 0.9194

A.3.2 Further Approximations of the Tustin Transformation. The Tustin transfor-

mation assumes the input has the linear property discussed this section, plus it uses the

following bilinear approximation for the exponential:

eAT ( AT+ ) (i_-ZA) (A.21)

Using this simplification, the discretized matrices in Eqs. (A.3) and (A.17) are

1 =Bdo = Bdl=
Ad= 0.9931 0.0956 [d d 0.0024

-0.1377 0.9128 0.0478

Cd= 1.44 4.8] Dd=[0]

and the Tustin transformed discrete-time transfer function is then given by

T(z) - 0.2330z2 + 0.0069z - 0.2261 (A.22)
z 2 - 1.9059z + 0.9197

A.3.3 Example from Chapter VI. The continuous-time state space equations for

this system are obtained from Eq. (6.1):[ 0.11 0.1] .1 ,
(t)= x(t) 0

0.2 -0.202 J ± [0.002 0

YM) = [0 -0.1 1 x(t)+ [0.1 0] u(t)
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Therefore, the appropriate discretized matrices are

[ 0.9039 0.0865 Cd [0 -0.1
0.1729 0.8244

[ 0.0432 4.7598 1 [ ]
0.9122 0.4323

and, using Eq. (A.19), the resulting transfer functions are

(0.9991z 2 
- 1.7284z + 0.7311)10 - 1

y(z) = z2 - 1.7283z + 0.7302 u,(z)

(4.3232z 2 + 8.6464z + 4.3232)10 - 5

z2 - 1.7283z + 0.7302 u2(Z)

or, using the form of Eq. (6.9),

y(z) = [(1.7293 - 0.7306)z 2 - 1.7293z + 0.7306] 10- 1

z 2 - 1.7283z + 0.7302 u,(z)

4.3232 * 10- 5 (z 2 + 2z + 1) [u(Z) - U2 (Z)]
+ 2 - 1.7283z + 0.7302

A.4 Higher Order Assumptions

The constant-input assumption discussed in Section A.2 is perfectly acceptable for

systems driven by computer controllers, or other systems where the input to the system

actually is held constant over the sample time interval. This assumption, however, is not at

all suitable for the identification of continuous-time plants using samples of the continuous-

time input and output. For that, one must assume a higher order form on the input.

The linear assumption discussed in Section A.3 produces a relatively good model,

provided the sampling rate is high enough to make the input appear somewhat linear

between samples. The eAT approximation made in the Tustin transformation does worsen

the system model somewhat, but it allows the simplification of some common transfer

function forms. Therefore, one can decrease the number of needed parameters, improving

the identification process.

If the sampling rate is too slow, or the initial transient period of the system needs to

be used, then the linear/Tustin assumptions must be abandoned for a higher order model.
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These higher order models can assume a parabolic or sinusoidal form for the input. Assum-

ing these types of inputs, however, increases the order of the discrete-time model above that

of the continuous-time model. This means additional, over-determined, parameters need to

be identified. Care must be exercised in this process, because identifying over-determined

systems causes many problems.
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Appendix B. Noise Plots and Results for Chapter III

This appendix contains plots of representative noise, plots of estimated poles and

Bode plots, and numerical results for the frequency domain experiments in Chapter III.

Figure B.1 contains representative uncorrelated noise added to the phasor quantities. Fig-

ures B.4 and B.5 show the representative uncorrelated noise added to the magnitude and

phase angle, and the noise as it appears on the phasor quantities. Figures B.8 and B.9

show the same for the noise added to the magnitude in dB's and phase angle in degrees.

The normalized numerical results for each of the examined noise scenarios are given in Ta-

bles B.1, B.2, and B.3. Shown are the calculated average error in the estimate e = W-0, the

estimation error sigma a, and the algorithm predicted error sigma aOp for the Monte-Carlo

analysis. The n/a entries in the tables indicate that these methods do not produce an

estimate for the covariance value. The other figures contain the final estimated Bode plots

and poles and zeros for the higher noise cases. Shown are the true and average estimated

Bode plots, along with the one sigma bounds on the estimated Bode plots. The pole and

zero figures show each of the estimated poles and zeros, along with the true values.
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Table B.1. Numerical Results for Noise on A and B

Method 9 e (%) 'p e (%)o p

p=
0  p= 1

a, -15.0562 7.7862 n/a -65.0425 14.9841 n/a
Least a2  -13.8730 5.7541 n/a -58.5484 11.4132 n/a

Squares bl -14.3308 6.5080 n/a -60.8256 12.5748 n/a
b2  -14.1483 5.9816 n/a -59.3727 11.5906 n/a

Generalized a, -0.0206 0.2690 0.2965 -0.1449 0.8501 0.9362
Minimum a2 -0.0265 0.1816 0.1764 -0.1530 0.5774 0.5563
Variance bil -0.0017 0.2390 0.2355 -0.0520 0.7538 0.7441

b2_ -0.0554 0.5991 0.6094 -0.3607 1.8981 1.9235

Generalized a, -0.0206 0.2690 n/a -0.1449 0.8501 n/a
Least a2 -0.0265 0.1816 n/a -0.1530 0.5774 n/a

Squares bi -0.0017 0.2390 n/a -0.0520 0.7538 n/a
b2  -0.0554 0.5991 n/a -0.3607 1.8981 n/a

al 0.7340 5.3380 11.0606 3.4853 17.2366 11.2673
Instrumental a2  -0.1310 1.4472 6.1274 -0.1748 4.7678 6.1504

Variable b 0.0600 3.2623 6.6856 0.7034 10.4290 6.7548
b2 -0.2866 2.3113 6.2029 -0.6365 7.5575 6.2016

p=2 p=3

a, -100.7956 6.7849 n/a -102.3768 3.0871 n/a
Least a2  -91.5509 3.8402 n/a -97.7128 0.7871 n/a

Squares b1  -95.0081 4.7130 n/a -100.4070 1.5802 n/a
b2  -92.7353 3.8645 n/a -99.1122 0.8354 n/a

Generalized a, -1.2510 2.6522 2.9257 -11.6838 7.1846 8.3129
Minimum a 2  -1.1654 1.8652 1.7240 -9.5793 6.5824 4.5607
Variance b, -0.6375 2.3487 2.3345 -7.3512 6.8212 6.8449

b2  -2.9605 6.0049 5.9899 -24.7188 18.1148 16.5515

Generalized a, -1.2510 2.6522 n/a -11.6838 7.1846 n/a
Least a2 -1.1654 1.8652 n/a -9.5793 6.5824 n/a

Squares bi -0.6375 2.3487 n/a -7.3512 6.8212 n/a
b2  -2.9605 6.0049 n/a -24.7188 18.1148 n/a
al -73.9084 327.3302 29.3982 -4224.8129 40090.8675 784.6319

Instrumental a 2  -21.2100 56.3442 7.3096 127.2910 1885.0227 40.7235
Variable b, -30.0850 117.6643 8.7277 -816.8024 7149.0848 144.3396

b2  -21.3158 52.7278 7.3603 426.4470 4774.7141 85.3484
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Table B.2. Numerical Results for Noise on R and €

Method 0 e (%) p e (%) e Op
p= 0  p= 1

a, -13.7859 8.3089 n/a -60.8193 17.0990 n/a
Least a2  -12.7156 6.7777 n/a -54.5728 14.5087 n/a

Squares b, -13.2254 7.1137 n/a -56.8998 15.1957 n/a
b2  -13.0119 7.0774 n/a -55.4231 14.8450 n/a

Generalized al -0.0333 0.2404 0.2465 -0.1644 0.7582 0.7779
Minimum a2 -0.0214 0.1388 0.1509 -0.1232 0.4388 0.4763
Variance b, -0.0191 0.2253 0.2433 -0.1101 0.7114 0.7685

b2  -0.0253 0.3002 0.3322 -0.1700 0.9492 1.0490

Generalized a, -0.0327 0.3053 n/a -0.2092 0.9694 n/a
Least a2 -0.0332 0.1799 n/a -0.1760 0.5730 n/a

Squares b, -0.0150 0.2670 n/a -0.1166 0.8457 n/a
b2  -0.0810 0.5487 n/a -0.4561 1.7458 n/a
a, 0.5676 3.6425 11.0571 2.3534 11.3904 11.2125

Instrumental a2  -0.2263 1.8593 6.1239 -0.2770 6.4606 6.1379
Variable b, -0.1548 1.9778 6.6750 0.0437 6.8177 6.7071

b2  -0.4102 3.2066 6.1972 -0.6982 10.8584 6.1859

p= 2  p=3

a, -99.4138 7.4107 n/a -102.6223 2.1372 n/a
Least a 2  -89.8717 5.4065 n/a -97.3743 1.1510 n/a

Squares b, -93.4695 5.8279 n/a -100.2593 1.3004 n/a
b2  -91.1127 5.5227 n/a -98.8350 1.2308 n/a

Generalized al -1.0872 2.4214 2.4171 -7.6534 9.6950 6.5178
Minimum a2  -0.9521 1.4101 1.4821 -9.7354 6.5211 4.0128
Variance b, -0.8351 2.2562 2.4079 -7.3839 7.9341 7.0072

b2  -1.4429 3.0272 3.2757 -14.5805 11.1922 9.0866

Generalized a, -1.7115 3.0686 n/a -83.8464 35.6204 n/a
Least a 2  -1.2550 1.8752 n/a -78.8845 35.7437 n/a

Squares b, -1.0672 2.6737 n/a -81.7519 37.8196 n/a
b2  -3.3997 5.6253 n/a -83.9706 32.0320 n/a

a, -46.5619 143.6145 20.0687 -187.3172 387.1076 40.0542
Instrumental a2  -16.0451 39.5066 6.7231 -65.2617 65.3378 7.0002

Variable b, -23.7460 58.3411 7.0748 -93.5016 106.3434 8.7700
b2  -16.9293 43.3818 6.4407 -63.4651 80.3390 7.7578
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Table B.3. Numerical Results for Noise on RbB and Odeg

Method 0 e (%) i a, e (%) uip
p=O p=1

a, -2.9445 2.4267 n/a -23.3012 10.8525 n/a
Least a2  -2.8304 1.6040 n/a -21.0595 8.6073 n/a

Squares b1  -2.9268 1.7780 n/a -21.9066 9.1428 n/a
b2  -2.9272 1.8480 n/a -21.4273 8.8081 n/a

Generalized a, -0.0273 0.2526 0.2501 -0.1481 0.8007 0.7902
Minimum a2 -0.0190 0.1429 0.1546 -0.1174 0.4508 0.4876
Variance b, -0.0040 0.1951 0.2044 -0.0010 0.6165 0.6463

b2  -0.0137 0.2613 0.3055 -0.0732 0.8231 0.9650

Generalized a, -0.0814 0.4701 n/a -0.4840 1.5197 n/a
Least a2  -0.0368 0.2525 n/a -0.1567 0.8002 n/a

Squares b, -0.0293 0.2936 n/a -0.1965 0.9365 n/a
b2  -0.0719 0.6230 n/a -0.3082 1.9785 n/a

a, 0.1858 1.7507 11.0242 0.7129 5.5303 11.0621
Instrumental a 2  -0.1124 0.7662 6.1226 -0.2948 2.4593 6.1177

Variable b, -0.0802 0.9566 6.6708 -0.1318 3.0493 6.6748
b2  -0.1836 1.2616 6.2037 -0.4647 4.0419 6.1913

p=2 p=3
a -76.6357 14.0096 n/a -100.9812 5.0805 n/a

Least a2 -68.3917 11.0486 n/a -92.4881 3.6376 n/a
Squares b, -71.2315 11.7539 n/a -95.8282 4.0113 n/a

b2  -69.2936 11.1049 n/a -93.6736 3.5043 n/a
Generalized a, -1.0841 2.5686 2.4737 -9.1244 8.9164 7.0716
Minimum a2 -0.9353 1.4612 1.5155 -8.1383 6.8051 4.1673
Variance b, 0.1100 1.9513 2.0448 1.4464 6.5124 6.5088

b2  -0.5225 2.6053 3.0288 -4.2140 9.7562 9.0579

Generalized a, -3.7523 5.2088 n/a -40.9184 28.3573 n/a
Least a2 -0.8867 2.6295 n/a -14.6615 28.0427 n/a

Squares b, -1.6765 3.1116 n/a -27.5110 29.5469 n/a
b2  -1.7881 6.5015 n/a -24.0412 37.7590 n/a
a, 1.6252 28.1418 11.2921 21.5836 1089.3221 42.1069

Instrumental a 2  -2.3172 18.1915 6.1431 -29.5097 81.5201 7.5469
Variable b, -1.3839 21.0757 6.7647 -12.3400 236.9992 10.8943

b2  -2.6517 21.6585 6.2209 -35.4831 165.4659 9.4785
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Appendix C. Numerical Results for Chapter IV

This appendix contains the numerical results for the unmodeled dynamics experi-

ments performed in Chapter IV. Given are the estimated parameters and the corresponding

poles and zero of the estimated plant for each of the measurement windows. Table C.1 con-

tains the estimated parameters for the baseline second-order plant. Tables C.2 and C.3

contain the estimated parameters for the fourth-order plants containing the low and high

frequency dynamics, respectively. Table C.4 contains the estimated parameters for the

sixth-order plant. Finally, Table C.5 contains the poles and zero for each of the measure-

ment windows in each of the cases.
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Table C.1. Estimation Results Using Only the Second-Order Plant

Run 9-9 C 7, 9-0 up 0'a

S9=al = -0.84 = a2 = -1.44

1 1.20 10°  1.07 10-2 1 o.2510-7 1.44 100 1.72 10- 3 6.43 10- 4

2 1.20 100 9.82 10- 3 7.95 10- 3  1.44 100 4.20 10- 3  1.26 10- 3

3 1.22 100 8.93 10- 3 4.77 10- 3  1.44 100 5.34 10- 3 2.28 10- 3

4 1.20 100 1.25 10- 1 9.48 10- 3  1.38 100  6.73 10-2 8.98 10- 3

5 4.77 10- ' 4.79 10-2 6.94 10-2 6.66 10- ' 7.08 10-2 9.44 10-2

6 7.66 10-2 5.81 10-2 4.97 10-2 9.59 10-2 7.38 10- 2 6.15 10-2

7 -1.08 10- 3 9.95 10- 3 1.07 10-2 -6.00 10- 4 7.46 10- 3  7.01 10- 3

8 1.08 10- 3  2.37 10-3 2.70 10- 3 -6.86 10- 4 2.08 10- 3 2.98 10- 3

9 2.15 10- 3  4.08 10- 3 3.65 10- 3  2.73 10- 3  5.75 10- 3 6.29 10-3

10 7.26 10- 3  1.98 10-2 2.45 10- 2 -7.60 10- 4  1.30 10-2 1.59 10-2

11 4.20 10- 2 1.52 10- 1 1.46 10-' 3.47 10-2 8.99 10-2 1.03 10-1

12 -2.95 10-2 8.02 10- 1 5.88 10- 1 -6.64 10- 2 5.19 10- 1 4.05 10-'
13 -4.26 10- 1  2.67 100  1.61 100 3.98 10- 3  1.86 100 1.32 100
14 -7.75 10- 1  5.84 100 3.05 100 -9.35 10- 3  3.71 100 3.38 100

15 2.39 10- 1  9.67 100  5.02 100  -3.14 100 1.48 10' 1.04 101

9= bI = 4.8 0 = b2 = 1.44
1 -5.16 100 9.94 10-  1.27 10-2 -1.44 100 1.73 10- 3 6.43 10- 4

2 -5.16 100 9.00 10- 3 9.23 10- 3  -1.44 100 4.23 10- 3  1.26 10- 3

3 -5.18 100 7.22 10- 3 9.35 10- 3  -1.44 100  5.47 10- 3 2.29 10- 3

4 -5.05 100  2.92 10- ' 3.26 10-2 -1.38 100  6.59 10- 2 9.00 10- 3

5 -2.38 100 2.51 10-' 3.37 10- 1 -6.79 10- 1 7.33 10-2 9.61 10-2

6 -3.71 10- 1 2.87 10- 1 2.38 10-1 -1.01 10- 1 7.74 10-2 6.48 10-2

7 2.35 10- 3  4.82 10-2 4.48 10-2 -9.42 10- 4  1.05 10-2 9.96 10- 3

8 -5.17 10- 3  1.29 10-2 1.70 10-2 1.18 10- 3  8.79 10- 3  1.11 10-2

9 -2.60 10- 3 1.49 10-2 1.55 10-2 -1.84 10-2 3.36 10-2 3.29 10-2

10 -6.96 10- 3 2.24 10-2 2.02 10-2 -4.22 10-2 1.11 10- 1  1.43 10- 1

11 -6.09 10- 4 2.28 10-2 2.34 10- 2 -2.21 10- 1 7.79 10-' 7.49 10- 1

12 -4.82 10- 3  1.99 10-2 2.39 10-2 1.49 10-' 3.95 100 2.89 100
13 5.72 10- 4  2.43 10- 2 2.37 10-2 2.08 100 1.28 101 7.80 100
14 -5.30 10- 3 2.04 10-2 2.37 10-2 3.77 100 2.81 101 1.47 101
15 -1.11 10-2 3.02 10-2 2.38 10- 2 -1.04 100  4.65 10'1 2.41 101
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Table C.2. Estimation Results With the Low Frequency Mode Addition

Run W-0 a, p -0 O I Up

= al = -0.84 = a2 = -1.44
1 8.59 10-1 2.14 10 - 4  1.73 10 - 4  1.44 100 2.84 10-6 3.31 10 - 6

2 8.56 10-1 1.30 10- 4 1.06 10 - 4  1.44 100 6.08 10-6 3.22 10-6

3 8.38 10- 1  3.75 10- ' 1.91 10- ' 1.43 100  6.35 10 - 7 7.31 10- 7

4 8.34 10-' 3.45 10- 5 2.99 10 - 5  1.43 100  1.28 10- 6 1.90 10-6

5 1.22 100 6.46 10 - 3 3.12 10 - 3  1.45 100 1.63 10- 3 5.93 10- 4

6 3.66 10- 1  4.99 10- ' 4.07 10-2 3.38 10- 1  7.42 10-2 5.71 10- 2

7 -2.75 10- 4 1.01 10-2 1.08 10-2 -8.34 10- 3 7.67 10- 3  7.15 10- 3

8 5.85 10 - 4  2.37 10 - 3 2.70 10- 3 -1.80 10 - 4 2.08 10- 3 2.99 10 - 3

9 2.90 10 - 3  4.08 10- 3 3.66 10 - 3  5.28 10- 3  5.75 10- 3 6.28 10- 3

10 9.62 10- 3  1.98 10-2 2.44 10-2 1.33 10- 3  1.30 10- 2 1.59 10-2

11 4.46 10-2 1.52 10- 1 1.46 10- ' 3.59 10-2 9.00 10-2 1.03 10- 1

12 -2.75 10- 2 8.01 10- 1 5.88 10- 1 -6.60 10-2 5.20 10-' 4.06 10- 1

13 -4.28 10- 1  2.66 100 1.61 100 1.78 10- 3  1.86 100 1.32 100
14 -7.77 10- 1  5.84 100 3.05 100 -1.25 10- 2 3.72 100 3.39 100
15 2.37 10- 1  9.67 100 5.02 100 -3.14 100 1.48 101 1.04 10'

0= bl = 4.8 = b2 = 1.44
1 -4.80 100 2.71 i0 - 5 2.47 10- 5  -1.44 100 1.15 10- 7 1.29 10 -'
2 -4.79 100 4.83 10 - 5 4.63 10 - 5  -1.44 100 1.84 10-6 8.83 10- 7

3 -4.79 100 4.74 10- ' 6.97 10- ' -1.44 100  1.27 10- 5 5.86 10- 6

4 -4.80 100 8.87 10- 5 1.09 10 - 4  -1.44 100  2.53 10- 5  1.83 10- 5

5 -5.48 100 5.92 10- 3 4.34 10 - 3  -1.46 100  2.91 10 - 3  1.04 10 - 3

6 -1.35 100 2.84 10-' 2.21 10-' -2.52 10- 1 8.67 10-2 6.62 10-2

7 5.21 10- 2 4.96 10- 2 4.60 10- 2 3.75 10- 2 1.10 10- 2 1.03 10- 2

8 -2.11 10 - 3 1.29 10- 2 1.70 10- 2 9.57 10 - 4  8.78 10- 3  1.11 10-2

9 -1.37 10- 2 1.49 10- 2 1.55 10- 2 -3.46 10- 2 3.35 10- 2 3.28 10- 2

10 -2.21 10-2 2.24 10-2 2.02 10-2 -6.72 10-2 1.11 10- 1  1.42 10- 1

11 -1.63 10-2 2.27 10-2 2.34 10-2 -2.46 10- 1 7.75 10-' 7.45 10- 1

12 -2.05 10-2 1.98 10-2 2.38 10-2 1.26 10- 1  3.93 100 2.88 100
13 -1.51 10-2 2.42 10-2 2.37 10-2 2.06 100 1.28 101 7.77 100

14 -2.10 10-2 2.04 10- 2 2.36 10-2 3.76 100 2.80 10' 1.46 10'
15 -2.68 10-2 3.01 10-2 2.38 10-2 -1.05 100  4.64 101 2.40 10'
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Table C.3. Estimation Results With the High Frequency Mode Addition

Run 9-0 o-0 0 e O'p

0= al = -0.84 0= a2 =-1.44
1 1.20 100 10° 1.06 10-2 1.23 10-2 1.44 100  1.71 10 - 3 6.39 10- 4

2 1.20 100  9.74 10 - 3 7.84 10 - 3  1.44 100  4.18 10 - 3  1.25 10 - 3

3 1.21 100 8.96 10 - 3 4.72 10 - 3  1.44 100 5.33 10 - 3 2.27 10 - 3

4 1.20 100  1.26 10-1 9.51 10 - 3  1.38 100  6.80 10-2 9.01 10 - 3

5 4.74 10- 1  4.82 10-2 6.97 10-2 6.66 10-' 7.10 10-2 9.44 10-2

6 7.28 10-2 5.82 10-2 4.98 10-2 9.69 10- 2 7.36 10-2 6.14 10-2

7 -4.30 10 - 3 9.97 10- 3 1.07 10-2 -5.53 10- 1 7.45 10 - 3  7.01 10 - 3

8 1.04 10 - 3  2.37 10 - 3 2.70 10 - 3 -6.10 10 - 4 2.08 10 - 3 2.98 10 - 3

9 6.13 10 - 4  4.04 10 - 3 3.64 10 - 3 -9.57 10 - 3 5.74 10- 3 6.30 10 - 3

10 -5.64 10-2 2.16 10-2 2.54 10-2 -7.39 10-2 1.35 10- 2 1.59 10-2

11 -1.05 100  2.82 10- ' 1.77 10-' -8.38 10- 1 1.14 10- 1 8.86 10-2

12 -9.08 100 9.90 10- 1 6.67 10- 1  -7.38 10" 5.84 10- 1 3.07 10- 1

13 -5.74 100 1.37 10- 1 5.64 10-2 -8.95 101 2.84 10- 1 2.91 10-'
14 -6.65 10-' 1.12 10-' 4.20 10- 2 -2.77 102 7.10 10- 1 6.96 10-'
15 -1.44 101 4.03 10- 1 4.47 10- 1  -5.35 102 5.11 100 4.11 100

__= bl = 4.8 = =b2 =1.44
1 -5.15 100 9.74 10 - 3 1.25 10 - 2 -1.44 10 0  1.71 10 - 3 6.36 10 - 4

2 -5.16 100 8.90 10 - 3 9.09 10 - 3  -1.44 100 4.19 10- 3  1.24 10 - 3

3 -5.17 100 7.19 10 - 3 9.28 10- 3  -1.44 100  5.44 10 - 3 2.26 10- 3

4 -5.04 100 2.95 10-' 3.28 10-2 -1.38 10°  6.63 10- 2 8.99 10 - 3

5 -2.37 100 2.52 10-' 3.37 10-' -6.82 10- 1 7.31 10-2 9.56 10-2

6 -3.65 10- 1 2.87 10- 1 2.38 10- 1 -1.08 10-' 7.69 10-2 6.43 10-2

7 9.69 10- 3  4.82 10-2 4.49 10-2 -7.16 10- 3 1.05 10-2 9.91 10- 3

8 -4.88 10- 3 1.29 10-2 1.70 10-2 6.21 10- 4  8.80 10- 3  1.11 10-2

9 -8.79 10- 3  1.48 10-2 1.55 10-2 4.49 10-2 3.35 10-2 3.29 10-2

10 -2.23 10-2 2.22 10-2 1.97 10-2 4.58 10-' 1.23 10- 1  1.49 10-'
11 -9.45 10-2 2.29 10-2 2.10 10- 2 5.75 100 1.43 100 8.95 10-'
12 -4.53 10- 1 2.41 10-2 1.79 10-2 4.47 101 4.67 100 3.16 100
13 -3.77 100 1.32 10- 2 8.24 10 - 3  1.65 101 4.21 10-' 2.52 10- 1

14 -4.34 100 1.20 10-2 7.20 10- 3  4.01 100  2.82 10- 1 1.67 10-1
15 3.06 10- 1  2.68 10-2 2.04 10-2 7.32 101 2.44 100 2.94 100
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Table C.4. Estimation Results With Both Low and High Frequency Mode Additions

Run - U ap 0 e I p
= al = -0.84 = a2 = -1.44

1 8.59 10-' 2.14 10- 4 1.73 10- 4  1.44 100  2.84 10- 6 3.30 10- 6

2 8.56 10- 1  1.30 10- 4 1.06 10 - 4  1.44 100 6.08 10- 6 3.22 10-6

3 8.38 10- 1  3.75 10- ' 1.91 10- 5  1.43 100 6.34 10 - 7 7.30 10 - 7

4 8.34 10- 1  3.45 10- 5 2.99 10- 5  1.43 100 1.28 10- 6 1.90 10-6

5 1.22 100 6.41 10 - 3 3.09 10- 3  1.45 100 1.63 10 - 3 5.90 10- 4

6 3.60 10- ' 5.03 10-2 4.11 10- 2 3.36 10- ' 7.43 10- 2 5.73 10- 2

7 -3.78 10- 3 1.01 10- 2 1.09 10- 2 -7.98 10 - 3 7.66 10 - 3 7.15 10- 3

8 5.47 10- 4  2.37 10 - 3 2.70 10- 3 -1.86 10- 4 2.08 10- 3 2.99 10- 3

9 1.36 10- 3  4.05 10 - 3 3.64 10 - 3 -7.12 10 - 3 5.74 10- 3 6.29 10- 3

10 -5.39 10- 2 2.15 10- 2 2.53 10- 2 -7.18 10- 2 1.35 10- 2 1.59 10-2

11 -1.04 100 2.81 10-' 1.76 10-' -8.38 10- 1 1.14 10- 1 8.86 10- 2

12 -9.08 100 9.90 10- 1 6.66 10- 1  -7.39 100 5.86 10-' 3.07 10- 1

13 -5.74 100 1.37 10- 1 5.64 10-2 -8.96 101 2.84 10- 1 2.91 10- 1

14 -6.66 10- 1 1.12 10-' 4.20 10-2 -2.77 102 7.10 10- 1 6.96 10-'
15 -1.44 101 4.03 10- 1 4.47 10- 1  -5.35 102 5.11 100 4.11 100

0 = bl = 4.8 0 = b2 = 1.44
1 -4.80 100  2.70 10- 5 2.45 10-  -1.44 100 1.15 10 - 1.28 10 - 7

2 -4.79 100 4.80 10- 5 4.60 10- 5  -1.44 100 1.83 10-6 8.78 10- 7

3 -4.79 100 4.71 10- ' 6.93 10-' -1.44 100 1.26 10- ' 5.83 10-6

4 -4.80 100 8.86 10 - 5 1.08 10- 4  -1.44 100 2.52 10 - 5 1.82 10- 5

5 -5.48 100  5.81 10 - 3 4.28 10- 3  -1.46 100 2.90 10 - 3  1.03 10 - 3

6 -1.33 100 2.85 10- 1 2.22 10- 1 -2.55 10- 1 8.64 10-2 6.60 10- 2

7 6.07 10-2 4.96 10- 2 4.60 10-2 3.10 10- 2 1.10 10-2 1.03 10-2

8 -1.79 10- 3 1.29 10-2 1.70 10-2 2.25 10 - 4  8.79 10 - 3  1.11 10-2
9 -1.99 10-2 1.47 10-2 1.55 10-2 2.85 10- 2 3.34 10-2 3.28 10- 2

10 -3.74 10-2 2.22 10-2 1.97 10-2 4.30 10- 1  1.23 10- 1 1.48 10- 1

11 -1.10 10- ' 2.28 10-2 2.10 10-2 5.70 100 1.42 100  8.90 10-'
12 -4.68 10- 1 2.40 10-2 1.79 10-2 4.45 10' 4.66 100 3.15 100
13 -3.77 100 1.31 10-2 8.21 10- 3  1.64 101 4.20 10- 1 2.51 10- 1

14 -4.34 100 1.19 10-2 7.17 10- 3  4.00 100 2.81 10- 1 1.67 10- 1

15 2.90 10- 1  2.68 10- 2 2.03 10-2 7.30 101 2.43 100 2.93 100
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Table C.5. Estimated Poles and Zeros for Each Case

Run I 2nd Order 4th Order Low 4th Order High 6th Order
Poles - True = -0.42 + j1.124

1 0.356 & 0.002 0.009+j0.032 0.353 & 0.002 0.009+jO.032
2 0.356 & 0.004 0.008+j0.053 0.354 & 0.004 0.008+j0.053
3 0.365 & 0.012 -0.001±jO.074 0.362 & 0.012 -0.001+j0.074
4 0.181+j0.152 -0.003±jO.073 0.179±j0.157 -0.003±jO.073
5 -0.181+j0.861 0.414 & -0.031 -0.183+j0.861 0.412 & -0.030
6 -0.382+jl.095 -0.237+jl.022 -0.384±jl.094 -0.240+jl.023
7 -0.421±1.124 -0.420±jl.128 -0.422±jl.123 -0.422+jl.127
8 -0.419±jl.125 -0.420+1.124 -0.419±1.125 -0.420+jl.124
9 -0.419±jl.123 -0.419±1.122 -0.420+1.128 -0.419±1.128

10 -0.416±jl.126 -0.415+1.125 -0.448+1.146 -0.447+1.145
11 -0.399±1.116 -0.398+1.116 -0.943±1.178 -0.941±1.180
12 -0.435+j1.148 -0.434+1.148 -8.934 & -0.987 -8.928 & -0.989
13 -0.633+jl.017 -0.634+j1.018 -3.288±j8.954 -3.288±j8.955
14 -0.808±j0.893 -0.809+j0.894 -0.753±j16.669 -0.753+16.669
15 -0.301+j2.119 -0.301+j2.119 -7.622+j21.881 -7.622+j21.881

Zero - True 0.300
1 0.002 0.006 0.002 0.006
2 0.004 0.024 0.004 0.024
3 0.012 0.149 0.012 0.149
4 0.226 5.038 0.236 5.596
5 -0.315 -0.035 -0.312 -0.033
6 -0.302 -0.344 -0.300 -0.341
7 -0.300 -0.305 -0.298 -0.303
8 -0.301 -0.300 -0.300 -0.300
9 -0.296 -0.294 -0.310 -0.307
10 -0.292 -0.287 -0.397 -0.393
11 -0.254 -0.250 -1.528 -1.521
12 -0.331 -0.328 -10.609 -10.602
13 -0.732 -0.732 -17.372 -17.372
14 -1.087 -1.087 -11.838 -11.838
15 -0.082 -0.082 -14.625 -14.624
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Appendix D. Results for Chapter V

This appendix contains the normalized numerical results for the higher noise exper-

iments in Chapter V. Tables D.1 and D.2 contain the results for experiments with input

noise only, and the others contain the results for the experiments with both input and out-

put noise. Given in each case are the actual average error (e) and error sigma (a,), along

with the algorithm predicted error sigma (a,) for the 100 run Monte-Carlo analysis. The

NaN and Inf entries indicate that the particular algorithm did not converge in that case.

NaN and Inf are the not-a-number and infinity values, respectively, that are produced by

Matlab.

Table D.1. Numerical Results for p = 3 - Output Noise Only

Method 0 e=9--(%) ue I - 0(%) a ap

Initial Time No Initial Time
a, -16.3283 1.3336 0.8827 -15.4486 1.2063 0.8573

Least a2  -30.5571 2.5130 1.6678 -29.0724 2.2751 1.6293
Squares b, -11.8435 1.2978 6.1293 -9.0016 1.2583 6.2259

b2 -34.4039 2.7767 6.9777 -29.2986 2.6407 6.9806

Generalized a, 0.0005 0.0381 0.0413 -0.0034 0.0404 0.0415
Minimum a2 0.0016 0.0825 0.0882 -0.0066 0.0871 0.0885
Variance b, -0.0244 0.3395 0.3443 0.0309 0.3428 0.3444

b2 -0.0268 0.3392 0.3470 0.0301 0.3391 0.3467

Generalized a, 0.0002 0.0380 0.0404 -0.0022 0.0407 0.0417
Least a2 0.0011 0.0819 0.0862 -0.0040 0.0876 0.0891

Squares b, -0.0227 0.3358 0.3431 0.0265 0.3420 0.3422
b2 -0.0251 0.3374 0.3461 0.0267 0.3378 0.3444

al -0.0003 0.0422 0.9753 0.0038 0.0454 0.9410
Instrumental a2  -0.0011 0.0855 1.8659 -0.0038 0.0895 1.8151

Variable b, -0.0128 1.1521 6.1058 0.2370 0.8167 6.2204
b2 -0.0038 1.1974 6.8403 0.3110 0.9930 6.8564
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Table D.2. Numerical Results for p = 4 - Output Noise Only

Method 9 e=9 - (%) a 9- Up(%) I p

Initial Time No Initial Time

a, -80.2695 1.8686 2.0634 -79.8178 1.7720 2.0549
Least a 2  -133.0600 3.9315 4.0202 -132.8790 3.7436 4.0182

Squares b, -217.6903 32.6668 59.1150 -213.0996 35.6261 60.1482
b2  -362.5656 37.2700 64.9588 -350.6757 40.2495 65.5272

Generalized a, -0.0175 0.4260 0.3848 -0.0771 0.4257 0.3857
Minimum a2 -0.0171 0.9154 0.8188 -0.1460 0.9103 0.8215
Variance b 0.1072 3.3889 3.3907 0.6370 3.4707 3.3981

b2 0.0526 3.3985 3.4191 0.6210 3.4506 3.4228

Generalized al 0.0138 0.4245 0.3764 -0.0271 0.4309 0.3850
Least a2  0.0487 0.9086 0.8003 -0.0425 0.9199 0.8199

Squares b, 0.0009 3.3775 3.3745 0.4608 3.4922 3.3691
b2 -0.0650 3.4030 3.4051 0.4416 3.4689 3.3922

a, NaN NaN NaN 0.0259 0.4596 9.1528
Instrumental a2  NaN NaN NaN -0.0614 0.9135 17.7292

Variable b, NaN NaN NaN 2.4422 8.1945 61.4004
b2 NaN NaN NaN 3.1748 9.9608 67.2974

Table D.3. Numerical Results for p = 3 - Input and Output Noise

Method 9 e= -O (%) O Fp I W- (%) a I p
Initial Time No Initial Time

a, -17.2891 1.2256 0.8709 -15.9980 1.1173 0.8495
Least a2  -31.2484 2.3315 1.6623 -29.0062 2.1094 1.6277

Squares b, -43.0761 7.7805 4.7164 -39.4903 7.5683 4.7598
b2 -69.7460 8.8178 5.3556 -62.9591 8.5739 5.3315

Generalized a[ 0.0015 0.0896 0.0877 -0.0130 0.0899 0.0873
Minimum a2 -0.0053 0.1941 0.1864 -0.0323 0.1906 0.1857
Variance bi -0.5206 0.6930 0.7201 -0.4320 0.6973 0.7155

b2  -0.5089 0.7059 0.7268 -0.4174 0.7041 0.7237

Generalized a, 0.0328 0.0930 0.0404 0.0111 0.0929 0.0417
Least a2 0.0576 0.2029 0.0860 0.0144 0.1965 0.0891

Squares b, -0.7842 0.7207 0.3419 -0.7059 0.7527 0.3413
b2 -0.7752 0.7381 0.3449 -0.6906 0.7611 0.3434
a1 -7.0318 2.6997 1.2022 -5.4413 2.3233 1.1499

Instrumental a2  -8.7355 3.5016 2.0832 -6.3069 2.8940 2.0245
Variable b, -60.5149 17.1172 5.5997 -55.0791 16.3389 5.5930

b2  -79.4733 23.9440 7.0957 -69.8840 22.1776 6.8645
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Table D.4. Numerical Results for p = 4 - Input and Output Noise

Method 0 e= -9 (%) I a up W - 0 (%) I 6rp
Initial Time No Initial Time

a, -76.0406 2.0994 1.9559 -75.8311 1.8472 1.9655
Least a2  -135.6182 4.3837 3.9279 -135.1656 3.9999 3.9403

Squares b, -65.5936 10.0666 8.8508 -63.9891 10.2143 8.7801
b2  -142.2788 10.7713 9.3633 -138.8498 10.6890 9.2873

Generalized a, -0.1503 0.5865 0.6404 -0.3038 0.6772 0.6487
Minimum a2 -0.7400 1.2970 1.3586 -1.0400 1.4508 1.3771
Variance b, -28.3322 4.2703 4.8447 -27.2686 4.7292 4.8908

b2 -27.5265 4.2037 4.9049 -26.4482 4.7150 4.9586

Generalized a, NaN NaN Inf NaN NaN Inf
Least a2  NaN NaN Inf NaN NaN Inf

Squares b, NaN NaN Inf NaN NaN Inf
b2 NaN NaN Inf NaN NaN Inf
al NaN NaN NaN NaN NaN NaN

Instrumental a2  NaN NaN NaN NaN NaN NaN
Variable b, NaN NaN NaN NaN NaN NaN

b2 NaN NaN NaN NaN NaN NaN
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