
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

6-21-2023

Numerical Simulation of the Korteweg–de Vries Equation with Numerical Simulation of the Korteweg–de Vries Equation with

Machine Learning Machine Learning

Kristina O. F. Williams *
Air Force Institute of Technology

Benjamin F. Akers
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Williams, K. O. F., & Akers, B. F. (2023). Numerical Simulation of the Korteweg–de Vries Equation with
Machine Learning. Mathematics, 11(13), 2791. https://doi.org/10.3390/math11132791

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholar.afit.edu%2Ffacpub%2F1279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Citation: Williams, K.O.F.; Akers, B.F.

Numerical Simulation of the

Korteweg–de Vries Equation with

Machine Learning. Mathematics 2023,

11, 2791. https://doi.org/10.3390/

math11132791

Academic Editor: Xiangmin Jiao

Received: 17 May 2023

Revised: 13 June 2023

Accepted: 16 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Numerical Simulation of the Korteweg–de Vries Equation with
Machine Learning
Kristina O. F. Williams * and Benjamin F. Akers

Department of Mathematics and Statistics, Air Force Institute of Technology, Dayton, OH 45433, USA;
benjamin.akers@afit.edu
* Correspondence: kristina.williams@afit.edu

Abstract: A machine learning procedure is proposed to create numerical schemes for solutions of
nonlinear wave equations on coarse grids. This method trains stencil weights of a discretization
of the equation, with the truncation error of the scheme as the objective function for training. The
method uses centered finite differences to initialize the optimization routine and a second-order
implicit-explicit time solver as a framework. Symmetry conditions are enforced on the learned
operator to ensure a stable method. The procedure is applied to the Korteweg–de Vries equation. It is
observed to be more accurate than finite difference or spectral methods on coarse grids when the
initial data is near enough to the training set.

Keywords: machine learning; Korteweg–de Vries equation; coarse grid

MSC: 65M25

1. Introduction

Numerical methods for nonlinear wave equations have a long history, from the sem-
inal works of Courant, Friedrichs, and Lewy [1] almost a century ago, to more recent
contributions of Fornberg, Trefethen, LeVeque, and many others [2–10]. By and large, these
methods are successful when a sufficiently fine discretization is used. Many classical nu-
merical methods for partial differential equations (PDE) perform poorly on coarse grids, i.e.,
with few data points [11–13]. Recently, a number of authors have used machine learning
to augment numerical solvers in the coarse discretization regime [14–16]. In this work, a
procedure for numerically solving a nonlinear dispersive wave equation is proposed using
a machine learning model to optimize stencil weights. A simple neural network is used,
and the resulting numerical scheme is trained on solutions of the PDE (The method allows
for training on either exact solutions or coarse samples of a highly-resolved numerical solution).
The result is a numerical scheme that can outperform both Fourier collocation and its sister
finite difference scheme when applied on the coarse grid.

The novel numerical method is developed and applied to the Korteweg–de Vries
(KdV) equation. The KdV equation was originally derived as a model for waves in shallow
water [17,18]. Numerous recent works have since used the KdV equation or a modified
version of it in many areas where long, weakly nonlinear waves are of interest [18–29].
The KdV equation has localized traveling wave solutions, or solitons. These localized
waves maintain their shape as they propagate through space and time [30]. This is due to a
balance between the nonlinear and dispersive properties of the equation [31,32]. The KdV
equation is integrable, and the solutions are real. Although the formula of the soliton was
used for debugging, the results in this paper rely on neither the existence of solitary waves
nor integrability. The form of the KdV equation in consideration is

ut + uxxx − 6uux = 0, (1)

Mathematics 2023, 11, 2791. https://doi.org/10.3390/math11132791 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132791
https://doi.org/10.3390/math11132791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11132791
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132791?type=check_update&version=1

Mathematics 2023, 11, 2791 2 of 14

where the subscripts denote the derivative of the respective independent variables. The
closed-form solutions of the KdV equation are

ũ(x, t) = − c
2

sech2
(√

c
2

(x− ct)
)

, (2)

where c is the speed. Figure 1 shows a plot of the wave solution in time and space, using
c = 1, with a time interval length of 3 and spatial domain size of 40.

Figure 1. An example of the traveling waves solution of the Korteweg–de Vries equation, c = 1 in (2),
is plotted as a function of space and time.

Machine learning methods have been applied to PDEs many times [33] and in numer-
ous applications [34,35]. Several recent works have used machine learning methods to find
the underlying PDE [18,20,25,26,36,37]. Many recent works have aimed to improve the accu-
racy of solutions to PDEs [15,19,21–25,38,39]. The machine learning models and approaches
vary throughout these works such as the use of a residual network [37,40], a new proposed
network called PDE-Net [36], a neural network based on Lie groups [27], a multilayer feed-
forward neural network [34], and an unsupervised learning [41] approach [42]. Some ap-
proaches combine deep neural networks with other methods such as regression models [20]
and Galerkin methods [43]. Several works have implemented the physics-informed neural
networks (PINNs) approach [19,21,22,24,25,44,45], as proposed by Raissi et al. [39]. PINNs
incorporate the PDE and boundary conditions into the objective or loss function to preserve
the physics of the equation [19,22,39,46]. Variations within the PINN framework exist
to include the gradient optimized [24] and parareal [47] PINNs. An important note to
make about PINNs is that the machine learning models represent the solution as a neural
network, which are functions of x and t. In this work, a neural network is used to model
the stencil weights as a function of the unknown solution u.

Deep learning models, also known as deep neural networks, are very common ma-
chine learning models used in problems involving PDEs [15,25,33,48]. Historically, deep
neural networks were defined to have more than two hidden layers [49,50]. With today’s
technology, the number of layers can be well into the double digits, so a neural network
with three or four hidden layers may be considered “simple”. Um et al. [33] use a model
with 22 layers. On the lower end, Bar-Sinai et al. [15] use a three-layer neural network.
Raissi et al. [25] use two deep neural networks, one with five layers and the other with
only two. Raissi et al. [48] provide results using different numbers of layers in their
model. The drawbacks to using deep neural networks may include having insufficient
training data, slow training time, and/or overfitting [49,50]. This paper uses a single-
layer neural network, which is considered a simple neural network, and which has 16
unknown coefficients.

The numerical method of this paper uses a fixed stencil width for the spatial dis-
cretization (as opposed to variable as in [15]) and bases the time-stepping algorithm on
a second-order implicit-explicit scheme (IMEX2) so as to have an unbounded stability

Mathematics 2023, 11, 2791 3 of 14

region [11]. Many recent numerical machine learning works use fourth-order Runge–Kutta
(RK4) [21,23,25,39,46], presumably for its temporal accuracy, but we find the stability prop-
erties to be of greater importance for this training procedure, hence IMEX2 [11,51,52]. Other
second-order time-stepping algorithms exist, such as RK2, and could be used in future
studies but may lack the stability properties offered by IMEX2 [11]. In addition to choosing
a time-stepper with an unbounded stability region, the machine learning network is built
in such a way as to preserve the operator’s anti-symmetry, guaranteeing eigenvalues which
live in the stability region of the scheme. The resulting scheme is stable for all time, with no
limitations on the time step size k (time step is limited in [15]).

The machine-learned numerical method is compared in performance against classical
methods, here finite difference and Fourier collocation. Several other works have estab-
lished methodologies that effectively use machine learning to solve various problems asso-
ciated with PDEs but do not compare performance with classical methods [19,21–24,39,44].
The method in this paper is observed to outperform these two classic methods, but comes
with a restriction that the initial data must be close to the training set. This is an expected
trade-off based on how the scheme was designed.

Training and test data sets can be generated in various ways. In several works, an
initial set of data is generated using a classical method such as from finite difference or
spectral methods [20–23,25,36], and the training and test data sets are both taken from that
initial set [22,23,25,43]. Another approach includes generating one set of solutions to train
on and another entirely different set to test on [43]. One last approach is training and testing
on data randomly sub-sampled from several different initial sets of solutions [15]. This
paper first uses a short time interval of a single solution trajectory for training, then tests on
both the long time dynamics of the trained trajectory and those of other initial data. Also
tested were training routines that used short time intervals from two solution trajectories.

The remainder of the paper is organized as follows: Section 2 discusses the architecture
of the scheme, the machine learning model, and the procedure for creating the solutions to
be used for training and testing. Section 3 discusses the outcomes of using different sets of
initial data when training and testing the model and the performance compared to finite
difference and spectral methods. Finally, Section 4 provides conclusions about the use of
this method for approximating solutions to PDEs on coarse grids and future research.

2. Numerical Method
2.1. Initial Data

Both training and testing data was generated via highly-resolved numerical sim-
ulations. The numerical method used for this data was Fourier collocation for spatial
derivatives and an IMEX2 time-stepping scheme, which has the form

un+1 − un−1

2k
=

1
2

g(un+1) +
1
2

g(un−1) + f (un), (3)

where n denotes a point in space and the superscripts denote the solutions evaluated at
the point n, and k is the temporal step size [52]. This scheme uses an implicit scheme
(trapezoidal) for the linear term of the KdV equation, denoted as g(u) in (3), and an explicit
scheme (leap frog) for the nonlinear term, denoted as f (u) in (3). This method is not
self-starting, so for the first time step, a first-order IMEX scheme was used with the form

un+1 − un

k
= g(un+1) + f (un), (4)

which uses the backward Euler method for the linear term and the forward Euler method
for the nonlinear term [52]. For a small nonlinearity, the IMEX2 scheme becomes the
trapezoidal scheme, which is stable on the entire left-half of the λk-plane, to include the
imaginary axis. Since the eigenvalues of the KdV equation are all pure imaginary, the
IMEX2 scheme is linearly stable (with an unbounded stability region [11]).

Mathematics 2023, 11, 2791 4 of 14

All simulations in this work were conducted on a Windows 10 laptop computer
and Mac Pro with macOS Monterey using MATLAB version R2022b. The initial data
are all localized and exponentially decaying. The total number of spatial points was
sampled logarithmically in powers of two. The infinite spatial domain was approximated
by L = 40, 50, and 60. For each domain size, the initial highly-resolved solution sets
consist of 512 spatial steps and 30,001 temporal steps. Spatial and temporal data were
sub-sampled from highly-resolved numerical simulations to build the training and test
data sets for the machine learning model. The temporal data is sampled every 10th time
step and spatial data is sampled to achieve grids with 16, 32, and 64 points for each domain
size. The resulting highly-resolved, but coarsely gridded, data were used for both training
and testing.

2.2. Model Set-Up

Many recent works build numerical methods with a machine learning
component [18–26,36,39,43,46]. In contrast to these previous works, the machine learn-
ing model herein is applied solely to the linear spatial derivative term. In this section, we
describe the construction of this model. The model is built off of a finite difference method
for the third derivative term of the equation, specifically a second-order centered difference
approximation [53], which has the following form:

(uxxx)j ≈
− 1

2 uj−2 + uj−1 − uj+1 +
1
2 uj+2

h3 . (5)

This approximation uses a five-point stencil with coefficients − 1
2 , 1, 0, −1, and 1

2 . Let
b1 = − 1

2 and b2 = 1. Then, Equation (5) can be written as

(uxxx)j ≈
b1uj−2 + b2uj−1 − b2uj+1 − b1uj+2

h3 ,

and the differentiation matrix is the matrix BFD such that

(uxxx)1
(uxxx)2

...

(uxxx)N−1
(uxxx)N

≈ 1

h3

0 −b2 −b1 0 . . . 0 b1 b2
b2 0 −b2 −b1 0 . . . 0 b1
b1 b2 0 −b2 −b1 0 . . . 0
0 b1 b2 0 −b2 −b1 0 . . .
. .
. . . 0 b1 b2 0 −b2 −b1 0
0 . . . 0 b1 b2 0 −b2 −b1
−b1 0 . . . 0 b1 b2 0 −b2
−b2 −b1 0 . . . 0 b1 b2 0

u1
u2

...

uN−1
uN

,

for j from 1 to N. BFD is a circulant matrix, so the coefficients are the same in every row
since they have no dependence on j [3]. Additionally, BFD is anti-symmetric; that is, a
matrix such that BT = −B where the superscript T denotes the transpose.

In this paper, the coefficients b1 and b2 are replaced with optimal weights found using
machine learning that reduce error on coarse grids. The model function used to find the
weights has the form

−−−→
aj(~un) =~b + W1

−−−−−−−−→
σ(W2(Xj~un)), (6)

which is a vector-valued function of length two, where ~b is a vector of length two of
unknown coefficients, W1 and W2 are matrices of unknown coefficients with dimensions
2× 2 and 2× 5, respectively, and −→σ is an activation function which acts on the input vector
component-wise. Xj is a 5× N matrix with entries

(Xj)i,l = δ(j−3+i) mod N,l ,

Mathematics 2023, 11, 2791 5 of 14

with mod N accounting for the periodicity, and where δ is the Kronecker delta defined as

δij =

{
1, if i = j,
0, if i 6= j,

so that Xj applied to un evaluates the five adjacent function values,

Xj~un =

un

j−2
un

j−1
un

j
un

j+1
un

j+2

, (7)

thus the model design preserves the support of the finite difference stencil (Equation (7) will
look different when j = 1, 2, N − 1 or N due to periodicity at the boundaries, and this change is
handled explicitly in the definition of Xj).

The differentiation matrix of the machine learning model, denoted BML, is enforced
to be anti-symmetric so that its eigenvalues lie on the imaginary axis. This gives a stable
scheme, but also enforces an added consistency with the PDE. For each j from 1 to N, the
output of the vector function of the machine learning model is

−−−→
aj(~un) =

[
(a1)j
(a2)jt

]
.

Unlike in the finite difference method, the coefficients found using the machine learning
model are different for every row, since they depend on un

j . Therefore, BML has the
following form:

0 (−a2)1 (−a1)1 0 . . . 0 (a1)N−1 (a2)N

(a2)1 0 (−a2)2 (−a1)2 0 . . . 0 (a1)N

(a1)1 (a2)2 0 (−a2)3 (−a1)3 0 . . . 0

0 (a1)2 (a2)3 0 (−a2)4 (−a1)4 0 . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 (a1)N−5 (a2)N−4 0 (−a2)N−3 (−a1)N−3 0

0 . . . 0 (a1)N−4 (a2)N−3 0 (−a2)N−2 (−a1)N−2

(−a1)N−1 0 . . . 0 (a1)N−3 (a2)N−2 0 (−a2)N−1

(−a2)N (−a1)N 0 . . . 0 (a1)N−2 (a1)N−1 0

.

This results in a machine learning approximation for the third derivative term as follows:

(uxxx)j ≈
(a1)j−2uj−2 + (a2)j−1uj−1 + (−a2)juj+1 + (−a1)juj+2

h3 . (8)

This approximation is substituted into the IMEX2 scheme, replacing the finite differ-
ence approximation for the third derivative term, which gives

un+1 − un−1

2k
= − 1

2h3 BML(un)un+1 − 1
2h3 BML(un)un−1 + f (un). (9)

Mathematics 2023, 11, 2791 6 of 14

This scheme differs from the IMEX2 scheme in Equation (3) since g now depends on u at
two different time steps. Since this scheme is not self-starting, the following time-stepping
scheme is used for the first time step:

un+1 − un

k
= − 1

h3 BML(un)un+1 + f (un).

2.3. Objective Function and Error

The objective function used for training is the truncation error of Equation (9), evalu-
ated by using the highly-resolved numerical simulations as a proxy for the exact solution.
The nonlinear function f is approximated using a second-order finite difference approx-
imation for first derivatives. Minimization techniques are then applied to the scheme to
optimize the model’s truncation error.

Gradient-based optimization algorithms for the objective function are commonly
used to include stochastic gradient descent [19,24,43], Adam optimizer [19,20,23,42], Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) [27], and Limited-memory BFGS [19,21,22,26,28,39,44].
For this paper, the gradient-based method used to minimize the truncation error is the
steepest descent algorithm. The tolerance for the algorithm is one-tenth of the truncation
error of the corresponding finite difference method (where~b = [− 1

2 ; 1] and W1 and W2 are
matrices whose entries are all zeros). This finite difference method was also used as an
initial guess in the optimization routines.

In addition to the truncation error, the forward error is also used as a measure of
performance. The forward error is calculated by taking the 2-norm of the difference
between the approximated solutions found using each method and the highly-resolved
Fourier solution, uF:

Forward error = ||u− uF||2.

To summarize, the training data from the highly-resolved Fourier simulations is
used as a proxy for the exact solution, then the truncation error of (9) is minimized. The
weights (i.e., the entries of~b, W1, and W2) are optimized via steepest descent. Once these
weights are found, they are used in Equation (9) to evolve new initial data. The results
are compared to finite difference and Fourier collocation using the same time-stepper and
spatial discretization.

3. Results

Two training routines were evaluated. One training method used a single solution
trajectory over a short time interval. The second used two solution trajectories (again over a
short time interval). In both scenarios, the trained numerical method was evaluated against
the parent finite difference method and Fourier collocation both at and near the training
initial data, for short and long times.

In both training routines, the set of initial data trained and tested on is of the form

u(x, 0) = −A
[

c
2

sech2
(√

c
2

x
)]

, (10)

where A is a changeable parameter. When A = 1, this is a soliton solution of the KdV
equation traveling at speed c. For A 6= 1, the solution is not a traveling wave, and has a
more complicated trajectory. The model was trained and tested using both traveling wave
and non-traveling wave initial data.

The activation function used in simulations in this paper was the hyperbolic tangent
function, which resulted in the machine learning model function

−−−→
aj(~un) =~b + W1

−−−−−−−−−−→
tanh(W2(Xj~un)). (11)

Mathematics 2023, 11, 2791 7 of 14

This is a common activation function [50] and is used in several other recent works involving
PDEs [15,19–22,25,43–45].

Figure 2 shows an example plot of the truncation error through the training time using
the trained speed c = 1 and trained A = 1. For larger h values, the method converged to
below the threshold of one-tenth the truncation error value for the finite difference method.
For smaller h, the method is unable to converge below this threshold. For these values, the
model may need to be amended by adding more layers or by using a broader stencil. For
the remaining figures shown in this paper, a step size of h = 2.5 is used, which uses a grid
of 16 data points.

Figure 2. Truncation error for the machine learning and finite difference methods at each spatial
step size through training time using trained speed c = 1 and trained A = 1. Blue dashed line with
square markers is the machine learned error with green solid denoting convergence of minimization
algorithm and black outline denoting non-convergence; solid red line with circle markers is the finite
difference error; yellow dotted line with triangle markers is one-tenth the finite difference error.

In Figure 2, the trained scheme significantly outperforms the finite difference method
on coarse grids, but the gains decrease with step size. There is no gain in using this
methodology as h→ 0 (nor is any convergence study conducted in the small h limit). The
remainder of the paper considers a fixed model with fixed step size, where the machine-
learned procedure outperforms Fourier collocation and classic finite difference. To decrease
errors beyond those presented, one could consider a convergence study in the number of
layers or the breadth of the layers in the machine learning model. Generally, more layers
in neural networks can provide more accurate approximations [49]; however, the training
cost increases with layer width and depth. The effect of more or broader layers is a future
research avenue.

Figure 3 shows the forward error over time using the trained speed c = 1 and A = 1,
with Figure 3a showing the error through time t = 3. The forward error of the machine
learned model is less than that of the finite difference method for the entire time interval,
even though the method was only trained on a very small portion of the entire time interval,
as shown in Figure 3b.

3.1. Single Solution Trajectory

When the model was trained on a single solution trajectory, one A, c pair from (10),
the training set was the the first 12 consecutive time steps (t0 to t11) of a coarse sampling of
the highly-resolved solution. The model was tested using other initial data (nearby A, c
pairs) and for longer times.

Mathematics 2023, 11, 2791 8 of 14

(a) (b)

Figure 3. Forward error over time training and testing on speed c = 1 and A = 1. Red dashed
line is the finite difference error; blue dotted line is the machine learned error. Dark gray vertical
line indicates the end of the training time interval (a) Error through time t = 3. (b) Error through
time t = 0.2.

Discussion

The model was trained on an initial highly-resolved solution set using a non-solitary
wave, with c = 1 and A = 1.5. Figure 4 shows the forward error rates for each c and A that
were trained and tested on. The forward error rate was calculated by taking the logarithm
of the absolute maximum forward error of the machine learning model over the entire time
interval divided by the absolute maximum forward error of the finite difference model
over the time interval. In Figure 4, the solutions with c and A values within the region
surrounded by the solid black lines performed 10 times better than the finite difference
method. From Figure 4a, a range of solutions found by testing on varying c and A values
around the solution that was trained on, which is indicated by the ‘+’, also have lower
forward errors when using the optimal coefficients found during minimization. The
only areas shown where the machine learning model did not outperform finite difference
methods were for most A values used in combination with speeds less than 0.75.

(a) (b)

Figure 4. Forward error rate plots comparing performance of finite different methods and the machine
learning model. Model trained using c = 1 and A = 1.5, indicated by “+”. Model tested using c and
A values ranging from 0.25 to 3. Contours indicate initial data where the machine learning model
performs 10 times better than (solid), 2 times better than (dotted), and equivalent to (dashed) finite
difference methods. (a) Maximum forward error rate through training time interval. (b) Maximum
forward error rate through time t = 3.

At time t = 3, the machine learning model continued to outperform finite difference
methods for most A, c pairs plotted in Figure 4b; however, the region of solutions that
performed 10 times better than finite difference methods has essentially become non-
existent. A region of A, c pairs still performed at least two times better than the finite
difference method, as indicated by the dotted contours.

Mathematics 2023, 11, 2791 9 of 14

Figure 5 shows the wave solution at time t = 3 using test values c = 1 and A = 0.75
comparing the highly-resolved Fourier method, finite difference method, the machine
learning model, and an under-resolved Fourier model. The machine learning model
outperformed both classical methods in predicting the behavior of the wave solution at
a time well beyond the interval it was trained on and on a coarse grid. The approximate
computation time for each method is as follows: 0.352 s for machine-learned; 0.344 s for
finite difference; and 0.037 s for under-resolved Fourier. Several other initial data were
used for training and testing, both on solitary and non-solitary waves, with similar results.

Figure 5. Time evolution of a wave trained on a non-solitary wave (c = 1 and A = 1.5) and tested
on a different non-solitary wave (c = 1 and A = 0.75). Solution at time t = 3. Solid blue line is the
highly-resolved Fourier; dotted red line with “o” markers is the machine learning model; dotted
yellow line with “x” markers is finite difference; dotted purple line with “∆ ” markers is Fourier on
coarse grid. The machine-learned model relative forward error is 0.1322. The finite difference relative
forward error is 0.3934. The coarse Fourier relative forward error is 0.5663.

It is important to note that the methodology in this paper has been set up so that the
truncation error of the machine learning model will always be less than that of the finite
difference method when the minimization method converges. By the Lax Equivalence
Theorem, the forward error of a method is bounded by the sum of the accumulated
truncation error of that method [2,11,12], e.g.,

‖ũ− un‖ ≤
n−1

∑
j=0

σjkτk(tj). (12)

In (12), σ is the maximal growth rate of errors from one step to the next (stable schemes
have σ ≤ 1), ũ is the exact solution, un is the numerical solution at time tn, and τk(tj) is
the truncation error at time tj. As a consequence of (12), the forward error of the machine
learning model must be less than the accumulated truncation error of the model, and the
forward error of the finite difference method must be less than the accumulated truncation
error of the finite difference method; however, nothing can be said about the ordering of
the forward error of the two methods. In other words, the methodology does not guarantee
that the forward error of the machine learning model will be less than the forward error
of the finite difference method. That said, the spectrum of the linear operators in all cases
(machine learned model, finite difference, and Fourier) lie exactly on the boundary of
the linear stability region of IMEX2, so the growth rates of truncation errors from step
to step are exactly one (σ = 1), and there is no difference in the temporal stability of
these schemes. The proof of the Lax Equivalence Theorem uses the triangle inequality, so
in principle there could be more cancellation in one scheme than another. We, however,
observe that the forward error and the accumulated truncation error are matched closely for
all methods. Even though the machine learned model is trained using the truncation error
as the objective function, it effectively also minimizes the forward error (Direct minimization

Mathematics 2023, 11, 2791 10 of 14

of the forward error would be significantly more expensive as it would require running the scheme
(with its matrix inversions) during each evaluation of the objective function in the training).

3.2. Two Sets of Initial Data

In addition to training on a single solution trajectory, we tested models that were
trained on two sets of initial data simultaneously. The results of this training algorithm
presented here used pairs (A, c) = (1, 1) and (A, c) = (1, 2), so the model is training on two
solitary waves of different speeds. The data from the first seven time steps (t0 to t6) of each
set of solutions were used to train the model. To create the objective function for two sets of
solutions, the truncation error for each is combined to create a multi-objective minimization
problem. The error using each solution is calculated individually then normalized by
dividing by the square of the largest absolute solution from the respective training data
set before being added together to create the objective function. In the steepest descent
algorithm, the threshold is one-tenth of the minimum finite difference truncation error
between the two solutions. This minimization process allows the algorithm to find the
optimal coefficients that minimize both initial sets of data simultaneously.

Discussion

Figure 6 shows the forward error rate plots for training on the two solutions. In
Figure 6a, by training on two initial solutions with different speeds, a larger range of speeds
used in combination with varying A values were able to outperform the finite difference
method by at least 10 times through the training time, as compared to training using only
one solution with one speed, as was performed in Figure 4. As the wave propagates to
time t = 3, there were no areas where the machine learning model outperformed the
finite difference method by 10 times or more, although a majority of (A, c) pairs shown in
Figure 6b resulted in a method that outperformed the classical method.

(a) (b)

Figure 6. Forward error rate plots comparing performance of finite different methods and the machine
learning model. Model trained using speeds c1 = 1 and c2 = 2 and A = 1, indicated by “+”. Model
tested using c and A values ranging from 0.25 to 3. Contours indicate initial data where the machine
learning model performs 10 times better than (solid), 2 times better than (dotted), and equivalent to
(dashed) finite difference methods. (a) Maximum forward error rate through end of training time
interval. (b) Maximum forward error rate through time t = 3.

A wave solution is shown in Figure 7 at time t = 3, which tests the model using c = 1
and A = 0.75. The model outperformed both the finite difference and under-resolved
Fourier methods in predicting the behavior of the highly-resolved solution.

Mathematics 2023, 11, 2791 11 of 14

Figure 7. Time evolution of a wave trained using c1 = 1 and c2 = 2 and A = 1 and tested on a wave
using c = 1 and A = 0.75. Solution at time t = 3. Solid blue line is the highly-resolved Fourier
collocation method; dotted red line with “o” markers is the machine learning model; dotted yellow
line with “x” markers is the finite difference result; dotted purple line with “∆ ” markers are a Fourier
collocation on the coarse grid. The machine-learned model relative forward error is 0.0452. The finite
difference relative forward error is 0.1003. The coarse Fourier relative forward error is 0.1444.

The optimal coefficients found by training on the previous two initial data were tested
using two different sets of data, where (A, c) = (1, 2.25) and (A, c) = (1, 0.75). Figure 8b
shows the collision of the two solitons as they propagate through space and time using the
machine learned model on a coarse grid. Despite the model not being trained on a collision,
it is still able to pick up on the overall dynamics, displaying the new trajectories of each
wave after the collision occurs. Figure 9 shows the time evolution of the waves, comparing
the machine-learned solution to the highly-resolved Fourier at different times throughout
the interval. The model is a bit slow at picking up the trajectories of the waves, but is able
to recognize the collision between the solitons.

(a) (b)

Figure 8. Simulation of a collision between solitons with speeds c = 2.25 and c = 0.75. (a) Highly-
resolved Fourier dynamics. (b) Machine learned dynamics. Coefficients found by training on initial
data (A, c) = (1, 1) and (A, c) = (1, 2); tested using (A, c) = (1, 2.25) and (A, c) = (1, 0.75).

Mathematics 2023, 11, 2791 12 of 14

(a) (b) (c)

Figure 9. The collision of two solitary waves is depicted. The machine learned model was trained
using two single solitary wave trajectories at (A, c) = (1, 1) and (A, c) = (1, 2); the colliding waves in
this test had different amplitudes from the trained trajectories, (A, c) = (1, 2.25) and (A, c) = (1, 0.75),
and the training did not include a collision. The solid blue line is the highly-resolved Fourier; the
dotted red line with “o” markers is the machine learning model; the dotted yellow line with “x”
markers is the finite difference result. The solution at time t = 0 is in panel (a), at t = 2 in panel (b),
and at t = 7 in panel (c).

4. Conclusions

In this paper, machine learning was utilized to optimize the coefficients of a numerical
differencing scheme for the KdV equation. This scheme was trained on a coarse grid and
outperformed two classical methods (finite difference and Fourier). Training procedures
using a single solution trajectory and a pair of trajectories were implemented. The model
was tested on a variety of nearby initial data, both solitary and non-solitary trajectories.
A solitary wave collision was also tested. The methodology is expected to be applicable
to other nonlinear wave equations. Future work could include using the forward error as
the objective function instead of the truncation error; however, this will be more expensive
as a matrix inversion will be required for the time-stepping scheme for each iteration in
the steepest descent algorithm. Other future work could include training the model on
non-consecutive time steps by randomly sampling the initial data to obtain the training and
test data sets as has been carried out in several recent works [19,21–23,25,36,37,39]. This
could also include randomly sampling from several initial data sets. Additionally, more
layers could be added to the model. A different activation function could be used, e.g.,
leaky or standard rectified linear unit [15,44–46]. The method also naturally generalizes to
broader stencils.

Author Contributions: Conceptualization, B.F.A.; methodology, K.O.F.W. and B.F.A.; software,
K.O.F.W.; validation, K.O.F.W. and B.F.A.; formal analysis, K.O.F.W. and B.F.A.; writing—original draft
preparation, K.O.F.W. and B.F.A.; writing—review and editing, K.O.F.W. and B.F.A.; visualization,
K.O.F.W.; supervision, B.F.A.; project administration, B.F.A.; funding acquisition, B.F.A. All authors
have read and agreed to the published version of the manuscript.

Funding: B.F.A. acknowledges funding from the APTAWG, under the program “Simulation of laser
propagation in reactive media”.

Data Availability Statement: MATLAB code is available upon request.

Acknowledgments: The authors would like to thank Jonah Reeger for helpful conversations.

Conflicts of Interest: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, make any warranty, express or implied, or assume any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Mathematics 2023, 11, 2791 13 of 14

References
1. Thomée, V. From finite differences to finite elements: A short history of numerical analysis of partial differential equations. In

Numerical Analysis: Historical Developments in the 20th Century; Elsevier: Amsterdam, The Netherlands, 2001; pp. 361–414.
2. Fornberg, B. A Practical Guide to Pseudospectral Methods; Number 1; Cambridge University Press: Cambridge, UK, 1998.
3. Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000.
4. LeVeque, R.J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems;

SIAM: Philadelphia, PA, USA, 2007.
5. Milewski, P.A.; Tabak, E.G. A pseudospectral procedure for the solution of nonlinear wave equations with examples from

free-surface flows. SIAM J. Sci. Comput. 1999, 21, 1102–1114. [CrossRef]
6. Jin, S.; Xin, Z. The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math.

1995, 48, 235–276. [CrossRef]
7. Dutykh, D.; Pelinovsky, E. Numerical simulation of a solitonic gas in KdV and KdV–BBM equations. Phys. Lett. A 2014,

378, 3102–3110. [CrossRef]
8. Akers, B.; Liu, T.; Reeger, J. A radial basis function finite difference scheme for the Benjamin–Ono equation. Mathematics 2020,

9, 65. [CrossRef]
9. Akers, B.F.; Ambrose, D.M. Efficient computation of coordinate-free models of flame fronts. ANZIAM J. 2021, 63, 58–69.
10. Akers, B. The generation of capillary-gravity solitary waves by a surface pressure forcing. Math. Comput. Simul. 2012, 82, 958–967.

[CrossRef]
11. Novak, K. Numerical Methods for Scientific Computing; Lulu Press: Morrisville, NC, USA, 2017.
12. Smith, G.D. Numerical Solution of Partial Differential Equations: Finite Difference Methods; Oxford University Press: Oxford, UK,

1985.
13. Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010;

Volume 37.
14. Pathak, J.; Mustafa, M.; Kashinath, K.; Motheau, E.; Kurth, T.; Day, M. Using machine learning to augment coarse-grid

computational fluid dynamics simulations. arXiv 2020, arXiv:2010.00072.
15. Bar-Sinai, Y.; Hoyer, S.; Hickey, J.; Brenner, M.P. Learning data-driven discretizations for partial differential equations. Proc. Natl.

Acad. Sci. USA 2019, 116, 15344–15349. [CrossRef]
16. Nordström, J.; Ålund, O. Neural network enhanced computations on coarse grids. J. Comput. Phys. 2021, 425, 109821. [CrossRef]
17. Korteweg, D.J.; De Vries, G. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of

long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1895, 39, 422–443. [CrossRef]
18. Rudy, S.H.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Data-driven discovery of partial differential equations. Sci. Adv. 2017,

3, e1602614. [CrossRef] [PubMed]
19. Guo, Y.; Cao, X.; Liu, B.; Gao, M. Solving partial differential equations using deep learning and physical constraints. Appl. Sci.

2020, 10, 5917. [CrossRef]
20. Xu, H.; Chang, H.; Zhang, D. DL-PDE: Deep-learning based data-driven discovery of partial differential equations from discrete

and noisy data. arXiv 2019, arXiv:1908.04463.
21. Bai, Y.; Chaolu, T.; Bilige, S. Physics informed by deep learning: Numerical solutions of modified Korteweg-de Vries equation.

Adv. Math. Phys. 2021, 2021, 1–11. [CrossRef]
22. Zhang, Y.; Dong, H.; Sun, J.; Wang, Z.; Fang, Y.; Kong, Y. The new simulation of quasiperiodic wave, periodic wave, and soliton

solutions of the KdV-mKdV Equation via a deep learning method. Comput. Intell. Neurosci. 2021, 2021, 8548482. [CrossRef]
[PubMed]

23. Li, J.; Chen, Y. A deep learning method for solving third-order nonlinear evolution equations. Commun. Theor. Phys. 2020,
72, 115003. [CrossRef]

24. Li, J.; Chen, J.; Li, B. Gradient-optimized physics-informed neural networks (GOPINNs): A deep learning method for solving the
complex modified KdV equation. Nonlinear Dyn. 2022, 107, 781–792. [CrossRef]

25. Raissi, M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 2018,
19, 932–955.

26. Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.
Phys. 2018, 357, 125–141. [CrossRef]

27. Wen, Y.; Chaolu, T. Learning the nonlinear solitary wave solution of the Korteweg-de Vries equation with novel neural network
algorithm. Entropy 2023, 25, 704. [CrossRef]

28. Gurieva, J.; Vasiliev, E.; Smirnov, L. Improvements of accuracy and convergence speed of AI-based solution for the Korteweg-De
Vries equation. ББК 22.18 я43 М34 2022, 5, 49336041.

29. Wu, H.; Xu, H. Studies of wave interaction of high-order Korteweg-de Vries equation by means of the homotopy strategy and
neural network prediction. Phys. Lett. A 2021, 415, 127653. [CrossRef]

30. Remoissenet, M. Waves Called Solitons: Concepts and Experiments; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2013.

31. Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 2.
32. Holton, J. An Introduction to Dynamic Meteorology; International Geophysics; Elsevier Science: Amsterdam, The Netherlands, 2004.

http://doi.org/10.1137/S1064827597321532
http://dx.doi.org/10.1002/cpa.3160480303
http://dx.doi.org/10.1016/j.physleta.2014.09.008
http://dx.doi.org/10.3390/math9010065
http://dx.doi.org/10.1016/j.matcom.2010.09.012
http://dx.doi.org/10.1073/pnas.1814058116
http://dx.doi.org/10.1016/j.jcp.2020.109821
http://dx.doi.org/10.1080/14786449508620739
http://dx.doi.org/10.1126/sciadv.1602614
http://www.ncbi.nlm.nih.gov/pubmed/28508044
http://dx.doi.org/10.3390/app10175917
http://dx.doi.org/10.1155/2021/5569645
http://dx.doi.org/10.1155/2021/8548482
http://www.ncbi.nlm.nih.gov/pubmed/34868298
http://dx.doi.org/10.1088/1572-9494/abb7c8
http://dx.doi.org/10.1007/s11071-021-06996-x
http://dx.doi.org/10.1016/j.jcp.2017.11.039
http://dx.doi.org/10.3390/e25050704
http://dx.doi.org/10.1016/j.physleta.2021.127653

Mathematics 2023, 11, 2791 14 of 14

33. Um, K.; Brand, R.; Fei, Y.R.; Holl, P.; Thuerey, N. Solver-in-the-loop: Learning from differentiable physics to interact with iterative
pde-solvers. Adv. Neural Inf. Process. Syst. 2020, 33, 6111–6122.

34. Khodadadian, A.; Parvizi, M.; Teshnehlab, M.; Heitzinger, C. Rational Design of Field-Effect Sensors Using Partial Differential
Equations, Bayesian Inversion, and Artificial Neural Networks. Sensors 2022, 22, 4785. [CrossRef] [PubMed]

35. Noii, N.; Khodadadian, A.; Ulloa, J.; Aldakheel, F.; Wick, T.; Francois, S.; Wriggers, P. Bayesian inversion with open-source codes
for various one-dimensional model problems in computational mechanics. Arch. Comput. Methods Eng. 2022, 29, 4285–4318.
[CrossRef]

36. Long, Z.; Lu, Y.; Ma, X.; Dong, B. Pde-net: Learning pdes from data. In Proceedings of the International Conference on Machine
Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 3208–3216.

37. Wu, K.; Xiu, D. Data-driven deep learning of partial differential equations in modal space. J. Comput. Phys. 2020, 408, 109307.
[CrossRef]

38. Yang, X.; Wang, Z. Solving Benjamin–Ono equation via gradient balanced PINNs approach. Eur. Phys. J. Plus 2022, 137, 864.
[CrossRef]

39. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Physics 2019, 378, 686–707. [CrossRef]

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

41. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013;
Volume 112.

42. Bar, L.; Sochen, N. Unsupervised deep learning algorithm for PDE-based forward and inverse problems. arXiv 2019,
arXiv:1904.05417.

43. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018,
375, 1339–1364. [CrossRef]

44. Kadeethum, T.; Jørgensen, T.M.; Nick, H.M. Physics-informed neural networks for solving nonlinear diffusivity and Biot’s
equations. PLoS ONE 2020, 15, e0232683. [CrossRef]

45. Beck, C.; Hutzenthaler, M.; Jentzen, A.; Kuckuck, B. An overview on deep learning-based approximation methods for partial
differential equations. arXiv 2020, arXiv:2012.12348.

46. Blechschmidt, J.; Ernst, O.G. Three ways to solve partial differential equations with neural networks—A review. GAMM-Mitt.
2021, 44, e202100006. [CrossRef]

47. Meng, X.; Li, Z.; Zhang, D.; Karniadakis, G.E. PPINN: Parareal physics-informed neural network for time-dependent PDEs.
Comput. Methods Appl. Mech. Eng. 2020, 370, 113250. [CrossRef]

48. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial
differential equations. arXiv 2017, arXiv:1711.10561.

49. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive Computation and Machine Learning Series; MIT Press:
Cambridge, MA, USA, 2017; pp. 321–359.

50. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems; O’Reilly Media, Inc.: Newton, MA, USA, 2019.

51. Ascher, U.M.; Ruuth, S.J.; Spiteri, R.J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations.
Appl. Numer. Math. 1997, 25, 151–167. [CrossRef]

52. Ascher, U.M.; Ruuth, S.J.; Wetton, B.T.R. Implicit-explicit methods for time-dependent partial differential equations. SIAM J.
Numer. Anal. 1995, 32, 797–823. [CrossRef]

53. Fornberg, B. Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 1988, 51, 699–706. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22134785
http://www.ncbi.nlm.nih.gov/pubmed/35808281
http://dx.doi.org/10.1007/s11831-022-09751-6
http://dx.doi.org/10.1016/j.jcp.2020.109307
http://dx.doi.org/10.1140/epjp/s13360-022-03078-8
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1371/journal.pone.0232683
http://dx.doi.org/10.1002/gamm.202100006
http://dx.doi.org/10.1016/j.cma.2020.113250
http://dx.doi.org/10.1016/S0168-9274(97)00056-1
http://dx.doi.org/10.1137/0732037
http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0

	Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning
	Recommended Citation

	Introduction
	Numerical Method
	Initial Data
	Model Set-Up
	Objective Function and Error

	Results
	Single Solution Trajectory
	Two Sets of Initial Data

	Conclusions
	References

