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Abstract

Though still in its infancy, the design of DNA crisscross slats presents great

potential in the algorithmic self-assembly of DNA. The provision for higher lev-

els of cooperativity allows for fewer errors through the natural proofreading of

slat placement, leading to more robust assembly. Highly accurate simulations

of self-assembling DNA squares have been achieved by following the kinetic Tile

Assembly Model. Building on that foundation, this study seeks to calibrate the

system parameters of a kinetic simulator for self-assembling DNA slats to match

experimental results and to use those ranges of parameters to perform exploratory

simulations of systems not yet tested in a lab setting. Novel systems include those

with fewer unique slat types to analyze the trade-off between growth rate and

accuracy of each assembly.
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1 Introduction

1.1 Problem Statement

In the field of DNA tile-based self-assembly, kinetic models are simulation

models that seek to capture elements of real-world chemistry and thermodynamics

that are either ignored or oversimplified by abstract modeling. Kinetic models

represent real-world properties such as tile concentration and temperature in the

form of free energy variables Gmc and Gse, as well as kf , or forward rate constant,

which is representative of units of time [1]. These parameters generally have ranges

in which accurate, controlled growth is observable that corresponds to real-world

experimental setups.

DNA polyomino slats are an alternative structural approach to the con-

struction of DNA tiles for self-assembly, as opposed to traditional square tiles [2].

Slats consists of rods subdivided into singular binding domains and are formulated

with the idea that they allow for much better use of cooperative growth than tra-

ditional square tiles and thus allow for much greater error checking. These slats

are arranged into macrotiles with assemblies varying in cooperativity, referring to

the number of attachments needed for a slat to be stable, and slat count, referring

to the uniqueness of slats in a given macrotile. Differences have been observed in

the apparent relationship between kinetic model parameters and real-world exper-

imental parameters under polyomino slats versus square tiles [2].

The purpose of this project was to investigate the parameters utilized in

kinetic modeling to find ranges in which accurate, controlled growth is possible

in systems that use DNA polyomino slats. This consisted of thousands of runs

of kinetic simulations in an effort to produce results that resembled those found

in [2], with the ultimate aim of investigating the variance of these parameters at

different levels of cooperativity and different slat counts and, if necessary, reformu-

1



lating known formulae and generalizations already established in square tile kinetic

modeling for polyomino slats.

1.2 Background and Definitions

1.2.1 Algorithmic Self-Assembly of DNA and the aTAM

The mathematics of algorithmic self-assembly can be applied to DNA struc-

tures to create systems that spontaneously assemble according to logical rules. A

visualized system in the abstract Tile Assembly Model (aTAM) [1] consists of

square tiles with “glue” labels and strength values on each side. A tile attaches

to another tile or group of tiles if the corresponding glues have matching labels

and if the combined strength of the resulting bonds is greater than or equal to

the model variable “system temperature.” Temperature in the aTAM designates

the minimum combined binding strength required for tile attachment [1]. Coop-

erative growth, the idea that multiple sides of a tile must be paired with their

respective counterparts to successfully attach given a system temperature, enables

algorithmic growth through careful manipulation of glue labels and strength values

[1].

As this is self-assembly, the attachment of tiles must be a spontaneous

process. While the aTAM is Turing complete [3], this only occurs at a mini-

mum temperature of 2 due to the requirement of cooperative growth. Cooperative

growth, however, relies heavily on proper orientation and positioning of tiles in

an assembly, which take prohibitive amounts of time to assemble entirely on their

own. Seed tiles or seed assemblies are used to facilitate this type of growth by

providing a base superstructure for additional tiles to attach to that theoretically

only allows tiles to attach already in the proper orientation and position in the

assembly. DNA can implement the aTAM through a design motif that uses a self-

assembled square of DNA with single strands of nucleotides extending from each

side of the square to act as the glues [1]. Careful design of those sequences results

in their use as glue labels that attach to their complementary sequence on another

2



Figure 1.1: Example of a system in the aTAM assembling under the constraint
of cooperative growth.
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tile. Ultimately, these DNA tiles can self-assemble into structures [4] and perform

computation [1].

1.2.2 Kinetic Tile Assembly Model (kTAM)

In the aTAM, tiles that bind together do not come unbound, and no tile

binds with mismatched glue labels or with insufficient glue strength. In the real-

ity of chemistry and the associated thermodynamics, tiles binding correctly and

continuing to stay bound is only statistically true. Even strongly bound tiles can

detach occasionally, and the stability of tile attachment is influenced by factors

such as the physical temperature of the solution and the relative and absolute con-

centration of tiles. Likewise, tiles not designed to bind in a specific location will

often do so for a short amount of time, likely to detach again afterward. However,

if other tiles attach after an erroneous tile, the error can become trapped inside the

structure and likely propagate additional erroneous growth through additional tiles

attachment. The mechanisms influencing this dynamic attaching and detaching

of DNA structures can be described by the kinetic Tile Assembly Model (kTAM)

[1]. Under this model, temperature, concentration, and the length of glue strands

can be varied to influence the dynamics of assembly. Higher physical temperature

results in increased energy in the system and makes tiles more likely to dissociate

from others. Lower temperature allows for easier bonding for all tiles, incorrect

pairings included. This can lead to so-called “tumorous” growth, or more formally

unordered growth, where tiles attach correctly or incorrectly regardless of the in-

tended algorithm. The most accurate growth occurs at the slowest growth rates

associated with temperatures just below the melting point. At this temperature,

incorrect attachments are highly likely to dissociate before becoming trapped, and

only correct tiles are likely to remain for meaningful amounts of time. Though

influencing the forward rate in a similar way to temperature, the concentration of

the constituent tiles plays a much larger role than temperature in influencing how

often those tiles randomly collide. An increase in concentration increases the colli-
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sion frequency of both correct and incorrect pairings, but whether those collisions

result in double helix bonds and whether those bonds remain for a meaningful

amount of time are dependent on the lengths and sequences of the oligonucleotide

“glues” and temperature [1]. The length of oligonucleotides, if relatively small,

is assumed to have negligible affect on the rate of collisions between tiles and is

not a factor in the forward rate equation of the kTAM [1]. Concentration is as-

sumed to have no impact on how often bonds break and is not a factor in the

dissociation equation of bonds. Three parameters of the kTAM express the effect

of temperature, concentration, and glue length on the association and dissociation

of tiles:

Gmc, Gse, kf

Gmc generally describes the free energy cost of positioning a tile for at-

tachment and is highly dependent on tile concentration as well as a term α that

describes the entropic loss of attaching to the assembly among other factors. Higher

values of Gmc make it harder for tiles to attach to an assembly while lower values

make it easier. Gse describes the free energy cost of singular bond dissociation [1]

[5] and is linearly proportional to the free energy stored in a single bond as well

as inversely proportional to the temperature of the system. kf describes the time

scale of simulation and is an experimentally determined constant. It is related to

physical time and is influenced by concentration, temperature, and oligonucleotide

length. Tile systems have been simulated with a wide range of these parameters

to map out which combinations give no growth due to a prohibitively high cost of

association or too cheap a cost of dissociation, tumorous growth due to an unnat-

urally low cost of association or a high cost of dissociation, and a region of ideal

growth where the formation of desired seed-initiated, error-free aggregates occurs

[1] [5]. The specific kTAM equations [5] behind each of the three parameters listed

are:
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Gmc = α− ln(
[c]

u0

) Gse =
−∆H◦ + T∆S◦

RT

k̂f = u0kfe
α

Both Gmc and Gse are related to the free energy of bonds. α is “a constant

unitless free energy change from other factors, such as the loss of rotational entropy

during binding” [5]. [c] is the concentration of tiles, and u0 is a constant used for

unit conversion. ∆H◦ and ∆S◦ represent the change in enthalpy and entropy

respectively from the standard definition of Gibbs free energy and for Gse describe

the thermodynamics of dissociation of bonds. T is temperature, and R is the

universal gas constant. The kf referred to throughout this thesis is actually k̂f , the

effective rate constant, which is dependent on an actual forward rate constant called

kf which has been experimentally calculated to be around 106 for the crisscross

slat ribbons used in [2], but this constant is highly dependent on the kind of tiles

used and how they are implemented in DNA. The forward and reverse rates of a

kTAM system, rf and rr,b, are described by the following equations in terms of

the previously defined parameters and b, “the total strength of the correct bonds

between the tile and adjoining tiles” [1] [5]:

rf = k̂fe
−Gmc rr,b = k̂fe

−bGse

It has been shown that the ratio of Gmc to Gse roughly corresponds to the

system temperature from the aTAM [1] [5]. The melting point, the point at which

the cost of tile attachment is too great relative to a tile’s ability to remain bound

resulting in prohibitively difficult growth, is defined as the point at which this

ratio exceeds cooperativity. When the ratio of Gmc to Gse is less than about half

the cooperativity, defined as the precipitation point, the cost of bond dissociation

is too high for accumulated errors to detach, leading to inaccurate growth. Only

between approximately half the cooperativity and the cooperativity does the ratio

of parameters generally produce measurable, accurate growth.
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Figure 1.2: Slats composing a macrotile

1.2.3 DNA Slats

DNA origami slats are an approach to polyominos, a generalization of the

logic of square tiles, that envisions functional or logical “macrotiles” constructed

of individual slats bound together [2] (Figure 1.2).

Slats attach to a superstructure, and when enough have arranged them-

selves in the proper geometry, additional slats can begin to bind on the newly

exposed frontier. This is a major difference from square tiles, whose individual at-

tachments each immediately expose available frontier for subsequent attachments.

While traditional square tiles are limited to cooperative growth requiring two or

three other tiles to be in place, slats have no theoretical limit to the amount of
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Figure 1.3: Cooperativity of a slat system visualized.
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possible cooperativity. The limit of cooperativity is only bounded by the manu-

facturing limitations associated with designing ever-longer slat motifs. Slats bind

together into units generally referred to as macrotiles, which can be thought of

as a basic logical or functional unit of an assembly while individual slats com-

prise the basic structural unit of an assembly. A macrotile consists of multiple

slats, the arrangement of which will allow other slats to attach and form the next

macrotile in the superstructure. In theory, this additional cooperativity should

allow much stronger error correction capability than that afforded by traditional

square tiles, as slat cooperativity and reliance on logical macrotiles forces multiple

errors to accumulate before such errors become locked in place and trapped in the

superstructure. Hypothetically, for cooperativity N , the only way for an erroneous

macrotile to propagate is if N matching, erroneous slats remain attached simulta-

neously. Because erroneous slats are more likely to detach than remain, the chance

of N matching, erroneous slats remaining attached long enough for a macrotile to

propagate becomes exponentially low with increasing levels of cooperativity. The

limits on slats in real-world experimentation are largely limits of cost and time,

while the main limiting factor in simulation is computational complexity. Thus a

core goal of this project was to evaluate a kinetic model designed for use with slat

tiles as well as develop methodology for conducting kinetic simulations in a timely

manner, with the ultimate purpose of further evaluating the potential of slat tiles

for use in algorithmic self-assembly.

1.2.4 RodSim

Just as the kTAM and kTAM simulators, such as xgrow [6] and ISU TAS

[7], have allowed for accurate simulation of systems not yet physically designed,

a mathematical model and computer program capable of simulating the kinetics

of slat self-assembly are highly desirable. Building on the assumption that the

kTAM equations or variations of them could describe the kinetics of slat self-

assembly, a simulator called RodSim has been created by Dr. Matthew Patitz

9



Figure 1.4: Functionality of RodSim: The configuration file and the starting
.xml file containing the slat types, the seed assembly, and other system parameters
are fed into rodsim cli, which outputs the current assembly in regular intervals
throughout the simulation.

and Daniel Hader to attempt to model this. An xml file containing a description

of the system to be simulated is fed into the program. The xml file contains the

description of unique slat types, the cooperativity of the system, the Gmc, Gse,

and kf parameters, and the starting seed assembly. During program execution,

the current step of the assembly process can be output in regular intervals to xml

files which can be interpreted as images using other software. It is not known,

however, if the ratios of Gmc and Gse from the kTAM hold for the slat model that

RodSim is built on.

1.2.5 Slats and Kinetics Terminology

This paper will use a few terms to describe slats, here defined. Firstly,

cooperativity refers to the number of binding domains a slat must attach to

to be considered stable and correct growth. A cooperativity of 16 means that a

10



slat attaches to 16 other slats, and itself most likely propagates 16 open domains

for other slats to bind to. Slats can generally only arrange themselves such that

vertically-oriented slats bind only to horizontally-oriented slats and vice versa.

Secondly, slat count refers to the number of vertical and horizontal slats that are

considered unique. A binding domain consists of a nucleotide glue onto which

a complementary glue binds. Slat count most specifically refers to the uniqueness

of slats within a given macrotile, and can thus be thought of as specifying the

range of possible errors in a macrotile or assembly. This term is generally defined

relative to cooperativity, so for a cooperativity of 16 (denoted v16), a slat count

of 2 means that the slats require 16 binding domains to attach and there are two

unique slat types comprising a full macrotile, that is a full horizontal or vertical

stretch. Further subdivision consists of auto-correlation, or self-correlation, and

cross-correlation. Auto-correlation refers to the maximum number of bonds with

which a slat of a given direction can bond incorrectly, while cross-correlation

refers to the maximum number of bonds with which a slat of a given direction can

bond with a slat of the opposite direction. While cross-correlation is not handled

by the simulator used for this paper, auto-correlation corresponds to cooperativity

and slat count as cooperativity
slatcount

; thus, a system with cooperativity 16 and slat count

of 2 would have an auto-correlation of 8.

In reference to kinetic simulation, there are three parameters of interest:

• Gmc - a free energy representation of primarily tile concentration that is

defined generally as the amount of energy required for a tile to attach to an

assembly.

• Gse - a free energy representation of primarily temperature that is defined

generally as the amount of energy required to break a 1-strength bond be-

tween tile glues.

• kf - an abstract constant representative of the units of a simulation’s time

axis.

11



2 Methodology

2.1 Approach

Starting from the equations defined for the kTAM in an earlier section, we

test a hypothesis made by Dr. Matthew Patitz’s lab group that the only difference

between those equations and ones applying to a system of slats is the value α.

This variable, partially describing “the loss of rotational entropy during binding,”

[5] is thought to be much higher for systems of slats, where the unwieldy length

and additional binding domains make alignment to a superstructure slower.

To generate a broad map of how the three parameters Gmc, Gse, and kf

affect the assembly of slat systems, and to narrow the ranges of parameters to those

that facilitate realistic, accurate growth, a myriad of simulations run at different

combinations of parameters is needed. We describe a software pipeline that can

be used to facilitate these simulations and analyze the results. By “realistic”

growth, we refer to assemblies which have been tested in a lab setting and have

experimental evidence to validate RodSim and a given choice of parameters. As

such, for the purpose of tuning a simulator to match experimental outcomes, we

were generally not looking for the values of Gmc, Gse, and kf that produced the

best results. Instead, we generally looked for parameters that produced results

most closely resembling data found in physical experimentation.

2.2 Pipeline Architecture

2.3 Description of Software

The following is a description of the software pipeline used to conduct simu-

lations, along with various utility scripts used for organizational or other purposes.

12



Figure 2.1: High-level architecture of the Python scripts used to automate sim-
ulations on the server.
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Main Pipeline

rodsim cli - C++ kinetic simulator written by Daniel Hader of Dr. Patitz’s

research group. Operates on configuration files specifying simulator arguments

along with xml files describing tile systems. Xml files specify one set of Gmc, Gse,

and kf , and thus one xml file and one configuration file is needed for each set of

parameters tested. The simulator outputs xml files at preset intervals and can also

be run in an abstract mode for aTAM simulation.

simulation.py - the primary controlling Python script for simulations. Takes a

range of each parameter of interest to be run on a given assembly, along with

varying arguments for the other programs in the pipeline. For the purposes of

parallelization, this was the root script from which any simulation was launched.

It has three primary modes of operation: Full, Partial, and Analyze. Full means a

full instance of the simulation pipeline, with input file variation, simulation, and

analysis steps. Partial includes only the simulation step and is designed to run on

a list of configuration files. Analyze runs only the analysis step and is designed to

run on a directory containing simulation results.

sim varied params.py - Python script designed to be executed by simulation.py

as the variation step of the pipeline. Takes an input xml file and inclusive range

of parameters and generates input files and file structure for the simulation step.

analysis.py - Python script designed to be exectued by simulation.py as the anal-

ysis step of the pipeline. Takes two xml files, one input and one ’golden’ key file, as

inputs and produces separate csv files for each set of parameters. This script also

calculates the accuracy and growth rate of the simulation, as well as identifying

some notable features in the assembly such as trapped slats or premature slats.

Utility Scripts

exponential kf.py - Allows for a set of systems to be generated over non-linear

increments of parameters.

slurm gen.py - Additional grandparent script used only for server purposes in

generating the Slurm scripts that submit batches to the queue. This script also

serves as the outermost layer of work distribution for parallelization, as it controlled

14



dividing a set of parameters into smaller chunks to be distributed amongst Slurm

jobs. Takes the same arguments as simulation.py along with some Slurm-specific

arguments.

collater.py - Recursive csv merger. Takes a target directory and concatenates

every csv below that directory. Used for gathering results from individual csv files

generated by the simulation pipeline.

marker.py - Script for marking incomplete simulations from a batch of simulations

that timed out or otherwise failed. Produces a list of configuration files that can

be used as input by the Partial mode of simulation.py. Determines completion of

a simulation by the presence of final output files (output files that have reached

the maximum number of steps for the simulation) or of csv files.

query.py - Retrieves information for specific simulation runs matching parameter

criteria, exactly or in a range, writing the new results to a .csv if a flag is asserted;

retrieves the final .xml assemblies of the runs requested and groups those into an

output directory also.

matplot viewer.py - Basic framework for viewing results using matplot 3d graphs.

Set up for using filters on dataset and reconfigurable axes, colors points based on

accuracy and optionally also growth rate.

3D plotter.py (created by Dr. Patitz) - More powerful 3D viewing of systems;

less lag, better visualization, and more freedom to move, zoom, and view individual

simulation run values; both this and the previous script can be used to identify

“shells” or regions with correct growth at desired growth rates.

2.4 Pipeline Details

The general pipeline used for simulation was a multithreaded process de-

signed to run hundreds of individual simulations at once on a computing clus-

ter. This project utilized resources from the AHPCC (Arkansas High Performance

Computing Center) to accomplish this. As individual simulations can take hours

to complete to any significant depth, large-scale parallelization of the process was

15



the best option for producing a large volume of data to work off of in a reasonable

amount of time.

The pipeline’s general input consisted of a set of xml files, one input file that

serves as the base assembly and one ’golden’ or key file that serves as an example

of correct growth for the purpose of comparison. These golden files were generated

using the same input assembly and rodsim cli executed in abstract modeling mode.

The only other strictly required input was a range of values for each of Gmc,

Gse, and kf respectively to be tested, with the pipeline generating all necessary

rodsim cli configuration files and the necessary input files.

The pipeline’s output would be periodic printouts of the assembly at regu-

lar step intervals, these xml files being produced by rodsim cli itself. Additionally,

when all simulations have completed, the pipeline’s analysis step would then pro-

duces separate csv files for each individual set of parameters, these csvs to be

collated together after program execution and outside the main pipeline. Csvs

store a variety of information about the assemblies. The features stored consisted

of:

• Process - this is essentially the name of the simulation that produced this

specific point, stored as the path to the source xml file.

• Key - this is the name of the golden file used for comparison.

• Assembly - this is a general name given to the assembly being tested.

• Steps - this is the number of steps that had been simulated at the time the

source xml file was outputted.

• Min Bind - this is the minimum binding threshold needed for rodsim cli to

consider possible attachment to a superstructure. Set as a command line

argument.

• Max Attachments - this is the maximum number of attachments to the su-

perstructure rodsim cli will allow before terminating. Set as a command line
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argument.

• Time - this is the elapsed time calculated by rodsim cli that estimates the

amount of real time that would have passed in a physical experiment.

• Gmc - this is the value of Gmc used for the simulation that produced this

output file.

• Gse - this is the value of Gse used for the simulation that produced this

output file.

• kf this is the value of of kf used for the simulation that produced this output

file.

• Total Slats - the total number of slats, including the seed, attached to the

assembly.

• Correct - the number of slats in the assembly considered to be correct, ex-

cluding the seed. This is calculated by comparing the position and identity

of slats between the output file and the golden file.

• Incorrect - the number of slats in the assembly considered to be incorrect.

This is calculated as the Total Slats - seedSlats - correctSlats.

• Trapped - the number of slats in the assembly considered to be trapped. A

trapped slat is defined as a slat which is both incorrect and which has a

binding strength greater than or equal to Gmc

Gse
.

• Premature - the number of slats in the assembly considered to be premature.

A premature slat is defined as a slat which is both correct and which has an

initial binding strength less than Gmc

Gse
.

• Accuracy - calculation of growth accuracy as a decimal. Calculated as

correctSlats
totalSlats−seedSlats

.
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• Growth Rate - calculation of growth rate as a float. Calculated as correctSlats
time

.

• Date - the date this output file was processed for record-keeping purposes.

• Termination - the reason for a simulations termination. If a simulation did

not terminate, this is set to ’CONTINUES’. If it terminated, it will be

set to either, ’MAX ATTACHMENTS REACHED,’ or to, ’MAX STEPS

REACHED.’
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3 Results and Analysis

3.1 Data and Introduction

With the software architecture in place, this section describes the iterations

of simulations run, their results, and the analysis leading to each subsequent set

of simulations. While the experimental data set used as a basis of comparison

utilized 32-length slats (cooperativity 16 or “v16”) [2], other cooperativities were

tested as well. Additionally, while each slat in a given macrotile was essentially

unique in the physical slat experiments [2], our simulations covered a wider variety

of slat counts. Aside from variation of the target parameters Gmc, Gse, and kf ,

sets also varied greatly in the number of simulation steps and values of slat count

and cooperativity. The cooperativity and slat count for any experiment run are

shown in Table 3.1.
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Set Name Description Purpose

v4 All v4 ribbon sets with slat count 4
Kf estimation and

framework testing

ribbon-rect-v6-d6 v6 ribbon sets with slat count 6
Kf estimation and

framework testing

ribbon-rect-v8-d8 v8 ribbon sets with slat count 8
Kf estimation and

framework testing

ribbon-rect-v16-

d16
v16 ribbon sets with slat count 16

Kf estimation, Gmc

and Gse narrowing

v16 d2
v16 ribbon sets with slat count 2

and broad range
slat count testing

v16 d2 50-70Gmc
v16 ribbon sets with slat count 2

and Gmc 50-70

Gmc and Gse narrow-

ing

v16 fine
v16 ribbon sets with slat count 16

and finer grain Gmc and Gse

Gmc and Gse narrow-

ing

v16 d2-deep
v16 ribbon sets with slat count 2

and large step depth

slat count testing and

ranging

v16 d4-deep
v16 ribbon sets with slat count 4

and large step depth

slat count testing and

ranging

v16 d8-deep
v16 ribbon sets with slat count 8

and large step depth

slat count testing and

ranging

v16 d16-deep
v16 ribbon sets with slat count 16

and large step depth

slat count testing and

ranging

v16 d4 gse9-21
v16 ribbon sets with slat count 4

and larger Gse range

slat count testing and

ranging

v16 d8 gse9-21
v16 ribbon sets with slat count 8

and larger Gse range

slat count testing and

ranging

Table 3.1: List of Simulation Sets
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3.2 Lower Cooperativity Simulations

The first simulation batches completed were at cooperativities below v16,

particularly v4, v6, and v8. This was largely due to lower cooperativity simulations

resulting in much quicker computation time, giving quicker results for testing the

simulator and software framework meaning results pertaining to testing the sim-

ulator and framework would come sooner. It also allowed early evaluation and

estimation of parameters based on general rules rather than specific values, as it

allowed confirmation of some important assumptions about the general relation-

ship between the parameters such as the significance of the proportion between

Gmc and Gse.

Due to the quicker computation of lower cooperativity systems, a v4 set slat

system was tested first to get the most comprehensive parameter mapping. Gmc

values from [0 - 200] and Gse values from [0 - 200] were tested in increments of 10,

while kf values from [500 - 90500] were tested in increments of 10,000. The upper

boundary for Gmc and Gse were selected primarily from realistic ceilings explored

by previous works with kinetic models [1] [5]. Because kf was much more nebulous,

it had to be tested more thoroughly over a parameter range with no fixed upper

bound. The value of α calculated earlier gives us a clue to kf ’s possible values,

but a broad range was tested regardless. Figure 3.1 shows the results of the first

run of the pipeline. Visualization software created by Dr. Matthew Patitz built

on top of the plotly Python library plots simulation results along the three axes of

the specified parameters. The dependent variables (accuracy and growth rate) are

visualized as the color and size of data points. Green dots represent simulations

which meet a threshold accuracy, which is defined as the fraction of assembled slats

which match the placement of slats in the golden reference system; the threshold

value used here is 90%. Red dots represent simulations that did not meet this

accuracy threshold. Larger dots represent higher growth rates, while smaller dots

represent lower growth rates.

These initial results, besides proving the effectiveness of the pipeline, appear

21



Figure 3.1: Initial test of v4 simulations and software

Figure 3.2: Comprehensive test of v6 system testing over an exponential range
of kf
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to confirm that 1) kf is independent ofGmc andGse, 2) there are identifiable regions

of accurate growth, and 3) a kTAM-analogous relationship between Gmc and Gse

appears to hold for slats as well as tiles.

The next system tested was a v6 system over a larger data set of simulations.

These were still quick enough to be run locally over several hours and did not have

a significant need for additional computing resources. Figure 3.2 shows the results

of this simulation, which match the pattern of v4 results.

3.3 Calculating kf to Simplify Parameter Ranges

The next set of experiments leaped to cooperativity 16. At a glance, these

simulations appear to hold to the same pattern of a single area of tangible, accurate

growth surrounded by areas of tumorous growth or no growth at all. However, the

slope of the ratio between Gmc and Gse appears to be different in Figure 3.4. The

slopes of each cooperativity generally matched the assumption that the ratio ofGmc

to Gse corresponds to the cooperativity of a system, which is itself representative

of the melting temperature beyond which growth rate decreases dramatically.

Once again though, the value of kf does not appear to affect the overall

relationship between Gmc and Gse. To determine a realistic value for kf moving

forward, it is necessary to revisit the kTAM equations and discuss their applica-

bility to kinetic simulations of slat systems. Recall that what we are referring to

as kf is actually k̂f in the following equation:

k̂f = u0kfe
α

Because u0 and kf on the right side of the equation are predetermined

constants, only α is necessary to calculate our effective rate constant. α appears

in another equation stated before:

Gmc = α− ln(
[c]

u0

)
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Figure 3.3: Cooperativity-16 system to be tested.

This equation can be solved for α while also substituting in the definition

of Gse after relating Gmc to Gse by a factor of cooperativity, corresponding to the

melting point of the ribbon slats, following from the ratio discovered by the coarse

parameter mapping:

Gmc = 16(Gse) Gse =
−∆H◦ + T∆S◦

RT
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Figure 3.4: First test of cooperativity-16 systems to determine if the relationship
between variables holds when cooperativity is scaled up significantly.

α = ln(
[c]

u0

) + 16(
−∆H◦ + T∆S◦

RT
)

Remember that [c] is the concentration of tiles (here slats), and it has been set to

20 nM in past lab experiments. u0 is a constant used for unit conversion and is

equal to 1 M. This means that the first term of our alpha equation is a constant.

In the kTAM, the values of ∆H◦ and ∆S◦ are calculated using the nearest neigh-

bor model, and we use −45kcal
mol

and −0.135 kcal
mol(K)

as typical values for nucleotide

handles of length 7 based on Dr. Shih’s slat ribbon data [2]. The optimal growth

temperature (Topt) and melting temperature (Tmelt) were calculated to be 30◦C

and 42◦C respectively. As stated in a previous section, the main hypothesized dif-

ference between the kTAM and slat kinetics is the value α. Now that all values of

the right side of that equation are known, we find that α ≈ 40. It should be noted

that this method of calculating α is very rough, and is only meant to produce a
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reasonable value of α that can be used to simulate results that are reasonably close

to Dr. Shih’s experimental data.

Figure 3.5: Example ribbon growth for a system of v16 slats.

3.4 Higher Cooperativity Simulations

For the rest of the experiments performed, kf will assume a fixed value of

2.4∗1023. The simulation speedup accompanying this decision is significant! Now,

combinations of parameters from only two variable ranges need to be selected

rather than from three, reducing the number of possible combinations to be tested
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by an order of magnitude.

With kf fixed, the next set of v16 simulations proceeds over the following

parameter range: Gmc ∈ [50, 70], Gse ∈ [1, 9]. Because of the computational time

savings that accompany a fixed value of kf , the other two parameters may be varied

at a finer granularity to generate a more extensive map of assembly characteristics.

Given a fixed value of kf , it is much quicker to run simulations for very

fine-grained ranges of Gmc and Gse, so the focus of simulations shifted towards

creating thorough maps of the ranges for these parameters that produced accurate

growth.

Figure 3.6: First large-scale simulations with a fixed value of kf . The computation
time saved allows for finer-grained testing of the remaining parameters.

3.5 Slat Count Experiments

Following the determination of an appropriate value for kf and the identifi-

cation of good ranges for Gmc and Gse, the focus of simulations shifted to compar-

isons of the range of Gse at varying slat counts within the same cooperativity at

a fixed Kf and Gmc. The previous ranges for Gmc and Gse were calculated under

the general assumption of slat count 16, meaning that the only realistically possi-
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Figure 3.7: System with only 4 unique slats in each direction.

ble errors in slat attachment have a binding strength of only 1 as long as enough

unique glue handles are used. This generally means that higher slat counts are

more accurate as the range of possible errors they can produce are guaranteed to

be weaker than those possible in a lower slat count, and thus are more likely to

detach from the superstructure. This can result in a wider range of values of Gmc

and Gse which produce accurate growth.

However, there are a few advantages to be found in lower slat counts as

well. It is generally expected intuitively that lower slat counts would assemble
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more quickly due to fewer unique types of slats. Because the forward rate is the

same for correct and incorrect attachments alike, lowering the number of slats that

must attach and detach before finding a correct match is hypothesized to increase

the growth rate while having negligible affect on error rate. The reduction in the

number of unique slats also reduces the monetary cost of physical experimentation,

as well as the computational cost of simulation. Slat counts were tested in, at first,

identical ranges of Gmc and Gse and the same set value of kf at slat counts of 2,

4, and 8.

Figure 3.8: Example of v16 system with fewer unique slats post-simulation.

Therefore, there is strong reason to want to study the differences between

slat counts of the same cooperativity. Although the differences in accuracy and

growth rate are generally expected to be marginal, a much wider variance in the

good ranges of Gmc and Gse was expected.
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Figure 3.9: Simulation results for various v16 slat counts over a fixed range of
parameters.

As seen in Figure 3.9, many of the general assumptions about the effect

of slat count seem to hold. While the impact on accuracy is marginal at best,

the most important thing to glean from the figures is the apparent narrowing of

the good range of Gse observed in slat count 2. It was also thought that a lower

slat count would increase the growth rate since any given tile, comprising a larger

fraction of the slat types, would be more likely to find its correct match. Initially,
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Figure 3.10: Extended results for various v16 slat counts when the error-resilient
zone of accuracy was larger than expected.

this does not appear to occur to a significant extent. As shown in Figure 3.10,

simulations were then run with wider ranges for Gmc and Gse, with this narrowing

now becoming apparent also at slat count 4. The “dupX” in these figures is an

older naming convention for the slat count discussed today.
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4 Conclusion

This project determined through simulation and comparison to experimen-

tal data appropriate ranges for the values of Gmc, Gse, and kf primarily at a cooper-

ativity of v16 using polyomino slats. Additionally, methodologies for repeating this

procedure for different cooperativities were established. The ultimate conclusion

of these simulations is that many of the assumptions and relationships established

by previous definitions of the kinetic model generally hold for polyomino slats,

with deviations caused by variation in the value of α and, by extension, kf . After

a proper value of α and kf were calculated, suitable ranges of Gmc and Gse that

produce accurate, controlled growth were found in ratios similar to those predicted

by the kTAM.

Further work would consist of more extensive testing of other cooperativities

as well as testing of different assemblies aside from Shih’s ribbons. Additionally, an

assessment of the simulator’s predictive power by recreating physical experiments

with conditions corresponding to simulator parameters could be explored.
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