
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

12-2022

Design and Comparison of Asynchronous FFT Implementations Design and Comparison of Asynchronous FFT Implementations

Julie Bigot
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons, and the Signal Processing

Commons

Citation Citation
Bigot, J. (2022). Design and Comparison of Asynchronous FFT Implementations. Graduate Theses and
Dissertations Retrieved from https://scholarworks.uark.edu/etd/4720

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.uark.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholarworks.uark.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholarworks.uark.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4720?utm_source=scholarworks.uark.edu%2Fetd%2F4720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Design and Comparison of Asynchronous FFT Implementations

A thesis submitted in partial fulfillment

 of the requirements for the degree of

Master of Science in Computer Engineering

by

Julie Bigot

University of Arkansas

Bachelor of Science in Computer Engineering, 2020

December 2022

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Jia Di, Ph.D.

Thesis Director

________________________________ ________________________________

Dale Thompson, Ph.D. Brajendra Panda

Committee Member Committee Member

ABSTRACT

Fast Fourier Transform (FFT) is a widely used digital signal processing technology in a large

variety of applications. For battery-powered embedded systems incorporating FFT, its physical

implementation is constrained by strict power consumption, especially during idle periods.

Compared to the prevailing clocked synchronous counterpart, quasi-delay insensitive

asynchronous circuits offer a series of advantages including flexible timing requirement and lower

leakage power, making them ideal choices for these systems. In this thesis work, various FFT

configurations were implemented in the low-power Multi-Threshold NULL Convention Logic

(MTNCL) paradigm. Analysis illustrates the area and power consumption trends along the

changing of the number of points, data widths, and the number of pipeline stages.

ACKNOWLEDGEMENTS

First, I would like to give my deepest gratitude to my mentor Dr. Jia Di. His support and

guidance have been invaluable to shaping me into the person I am now.

I would also like to thank the lab members I worked with, especially Cole Sherrill, Forrest

Tennant, and Chandler Bernard.

I am very grateful to my parents Rita Janssens and Michael Bigot for their love and support

through my graduate studies.

I am also very thankful for having spent this journey with my daughter, Catalina Ubaldo. She

has been my strongest motivation to continue when things became difficult.

TABLE OF CONTENTS

1. Introduction ... 1

2. Background ... 3

2.1 Asynchronous Logic, NULL Convention Logic, and Multi-Threshold NULL

Convention Logic .. 3

2.2 Fast Fourier Transform ... 7

2.3 Prior Asynchronous FFT Implementations ... 8

3. Design Methodology.. 10

3.1 Basic Components .. 10

3.1.1 Basic Logic Functions ... 10

3.1.2 Multipliers ... 11

3.1.3 Butterfly Units... 12

3.2 FFT Configurations.. 13

4. Results and Analysis ... 16

4.1 Data Collection Method ... 16

4.2 Results and Analysis .. 16

4.2.1 Area (Gate Count) Analysis ... 17

4.2.2 Active Power Analysis .. 20

4.2.3 Leakage Power Analysis .. 23

5. Conclusion ... 27

6. References .. 28

1

1. Introduction

Digital signal processing (DSP) technologies are widely utilized in many everyday

applications, ranging from thermostats to noise-cancelling headphones. Considering the large

amount of DSP algorithms, the Fast Fourier Transform (FFT) algorithm is among the most

commonly used. FFT computes the Discrete Fourier Transform (DFT) of a sequence, converting

this signal from its original domain (mainly time or space) to a representation in the frequency

domain, or its inverse (IDFT) from frequency domain to the original domain. FFT does such

transformations rapidly by factorizing the DFT matrix into a product of sparse factors.

While for an electronic system, DSP algorithms including FFT can be implemented using

digital signal processors [1], which are powerful and capable of executing multiple algorithms,

many embedded systems cannot adopt these processors. Such systems include wearable

electronics, edge computing devices, distributed sensors, etc., which are normally battery-powered

and are under strict power/cost budget. Therefore, DSP algorithms implemented in Application-

Specific Integrated Circuits (ASICs) become a top choice for these systems due to their low power

consumption, low unit cost, and small footprint.

As the semiconductor technology advances, the feature size of transistors kept shrinking,

which induces high leakage power as it becomes increasingly difficult to turn off transistors in idle

mode. For most abovementioned embedded system application, leakage power is critical since

their work duty cycles are normally low. FinFET and gate-all-around FET (GAAFET)

technologies [2] have been invented to alleviate this problem. However, these leading

semiconductor technologies are very expensive, increasing the cost of adoption. Moreover, for

smaller transistors, process variation becomes more severe, amplifying all clock-related problems

in synchronous circuits such as clock skew, thereby making timing closure much more difficult to

achieve.

2

Asynchronous circuits, especially quasi-delay insensitive (QDI) paradigms, use local

handshaking protocols instead of global clocks to coordinate the circuit operation. Little to none

timing analysis is needed, making them much more robust to process variations. The Multi-

Threshold NULL Convention Logic (MTNCL) paradigm incorporates high threshold voltage

transistors inside each logic gate, which substantially reduces leakage power during idle mode. In

this thesis work, a series of MTNCL FFT configurations have been implemented in the TSMC

65nm technology. These configurations include 2-, 4-, and 8-point, 4- and 8-bit data widths, and

1-, 2-, and 3-stage pipelines. Analysis illustrates the trend of area as well as active and leakage

power consumption along the changing of these design parameters.

The thesis is organized as follows: Chapter 2 describes the background of asynchronous logic,

NCL, and MTNCL, as well as FFT algorithm and the previous asynchronous FFT

implementations; Chapter 3 introduces the MTNCL FFT designs; Chapter 4 shows the results with

analysis; and Chapter 5 concludes the work.

3

2. Background

2.1 Asynchronous Logic, NULL Convention Logic, and Multi-Threshold NULL

Convention Logic

Asynchronous logic circuits do not have clock; instead, they use handshaking protocols to

control the circuit behavior. Different from the bounded-delay counterpart in which gate delays

are bounded and the circuit will malfunction if any gate delay exceeds the bound, delay-insensitive

(DI) or quasi-delay insensitive (QDI) style asynchronous circuits, such as the NULL Convention

Logic (NCL) [3], do not assume delay bounds. Individual gate or wire delay has no impact on the

correctness of the circuit’s output. Since signal propagation is not time-dependent, NCL circuits

require very little, if any, timing analysis. A NCL system consists of DI combinational logic

sandwiched between DI registers, as shown in Figure 1(top). The Completion Detection block

ensures all output bits of the corresponding register are in the same state before generating the

combined handshaking signal (Ko) to the previous register.

DI Register

KiKo

DI

Combinational

Logic

DI Register

KiKo

Completion

Detection

DI

Combinational

Logic

DI Register

KiKo

Completion

Detection

DI Register

KiKo

m

input 1

input 2

input n

output

Figure 1: (top) NCL Pipeline (bottom) Thmn Threshold Gate

NCL circuits utilize multi-rail signals to achieve delay-insensitivity. The most prevalent multi-

rail encoding scheme is dual-rail. A dual-rail signal, S, consists of two wires, S0 and S1. The

DATA0 state (S0 = 1, S1 = 0) corresponds to a Boolean logic 0, the DATA1 state (S0 = 0, S1 = 1)

4

corresponds to a Boolean logic 1, and the NULL state (S0 = 0, S1 = 0) corresponds to the empty set

meaning that data is not yet ready. The invalid state (S0 = 1, S1 = 1) never occurs in normal NCL

circuit operation; hence, the two rails are typically considered mutually exclusive. NCL logic

family consists of 27 threshold gates. The standard threshold gate is the THmn gate, where 1mn,

as shown in Figure 1(bottom). THmn gates have n inputs; at least m of the n inputs must be asserted

before the output will become asserted. Once asserted, all n inputs must be deasserted for the

output to be deasserted. NCL circuits communicate using request and acknowledge signals to

prevent the current DATA from overwriting the previous DATA, by ensuring that the two DATA

are always separated by a NULL state.

Originally proposed in 1950’s and born with a series of advantages (e.g., no clock tree, flexible

timing requirement, high modularity and scalability, high energy efficiency, robust circuit

operation, low noise/emission), asynchronous logic, however, has not been developing nearly as

fast as the synchronous counterpart, which dominates the digital IC market. This is due to the

drawbacks of asynchronous logic, e.g., large area overhead, incompatible with commercial IC

design CAD tools. For example, NCL requires the designed circuits to satisfy input-completeness

(i.e., output transitions from DATA to NULL only after all inputs transition from DATA to NULL,

and vice versa) and observability (i.e., all gate transitions must be observable at the output), which

cannot be easily implemented in commercial synthesis tools.

In order to solve these problems, the Multi-Threshold NCL (MTNCL) paradigm was invented

[4-13], which combines MTCMOS (Multi-Threshold CMOS) power-gating method with NCL.

MTCMOS power-gating involves using high threshold voltage (high-Vt) transistors to gate the

power supplies of a low threshold voltage (low-Vt) logic block. When the high-Vt transistors are

turned on, the low-Vt logic is connected to virtual ground and power, and switching is performed

5

through fast (low-Vt) devices. When the circuit enters the sleep mode, the high-Vt gating transistors

are turned off, resulting in a very low subthreshold leakage current from VDD to ground.

In MTNCL paradigm, MTCMOS power-gating structure is incorporated in each threshold

gate. Due to the fact that floating nodes may result in substantial short circuit power consumption

at the following stage, the output node of each gate is pulled down to ground during sleep mode.

When all MTNCL gates in a pipeline stage are in sleep mode, such that all gates output logic0,

this condition is equivalent to the pipeline stage being in the NULL state. Hence, after each DATA

cycle, all MTNCL gates in a pipeline stage can be forced to output logic0 by asserting the sleep

control signal instead of propagating a NULL wavefront through the stage, thereby speeds up the

circuit. Since the handshaking signal indicates whether the corresponding pipeline stage is ready

to undergo a DATA or NULL cycle, this signal can be naturally used as the sleep control signal

for the corresponding combinational block, without requiring any additional hardware, in contrast

to the complex Sleep signal generation circuitry needed for synchronous MTCMOS circuits. Early

Completion mechanism [4] is used in MTNCL architecture, as shown in Figure 2, where each

completion signal is used as Sleep signal for all threshold gates in the subsequent pipeline stage.

The combinational logic will not be put to sleep until all inputs are NULL and the next stage is

requesting for NULL; therefore the NULL wavefront is ready to propagate through the stage, so

that this stage can instead be put to sleep without compromising delay-insensitivity. The stage will

then remain in sleep mode until all inputs are DATA and the next stage is requesting for DATA,

and is therefore ready to evaluate. Through this sleeping mechanism, MTNCL eliminates the

requirements for input-completeness and observability [4], thereby significantly simplifies

MTNCL circuit design, makes it compliant with standard IC design flow, and reduces area

overhead.

6

EC DI

Register

KiKoEC

MTNCL Logic

EC DI

Register

KiKoEC

Early

Completion

MTNCL Logic

EC DI

Register

KiKoEC

Early

Completion

Sleep
Sleep

Early

Completion

Sleep

Figure 2: MTNCL Pipeline Architecture using Early Completion

As stated earlier, MTCMOS structure is incorporated inside each NCL threshold gate, and

actually results in a number of the original transistors no longer being needed, which also

contributes to the area overhead reduction. The original NCL threshold gate structure is shown in

Figure 3(a). The reset/set circuitry is to force the output to be logic 0/1, and the hold0/1 circuitry

is to keep the output as logic0/1 for hysteresis. For MTNCL, however, the reset circuitry is no

longer needed, since the gate output will now be forced to logic0 by the MTCMOS sleep

mechanism. Since all gates in a pipeline stage are forced to sleep by the same sleep control signal,

NCL gate hysteresis is no longer required. Hence, the hold1 circuitry and corresponding NMOS

transistor are removed, and the PMOS transistor is removed to maintain the complementary nature

of CMOS logic. After incorporating the MTCMOS power-gating mechanism, the general gate

structure is shown in Figure 3(b). During active mode, the Sleep signal is logic0, such that the gate

functions as normal. During sleep mode, Sleep is logic1, such that the output low-Vt pull-down

transistor is turned on quickly to pull the output to logic0, while the high-Vt PMOS gating transistor

in the output inverter and all high-Vt NMOS transistors (since all inputs are logic0) are turned off

to reduce leakage. As an example, this MTNCL implementation of a TH23 gate is shown in Figure

3(c), which has four less transistors compared to the regular TH23.

7

reset hold0

set hold1

Output

hold0

(High-Vt)

set

(mixed)

Output

Sleep

(a) (b) (c)

B

C

C

A

A

B

B

C

C

C

Sleep

Z

Figure 3: (a) Incorporating MTCMOS Power-Gating into NCL Threshold Gates, (b)

MTNCL Gate Structure, (c) TH23 Implementation (Circled Transistors are High-Vt)

While retaining the features of NCL, MTNCL offers several unique and significant advantages

over the MTCMOS synchronous and regular NCL counterparts, including leakage reduction in

both active and idle modes, reduced area overhead and active energy, improved performance, and

enhanced compliance with standard IC design flow. These advantages make MTNCL an ideal

choice for implementing the FFT algorithm on power-constrained devices.

2.2 Fast Fourier Transform

The Discrete Fourier Transform (DFT) transforms N coefficients x[n] to N coefficients y[k]

using the following definition:

𝑦[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

The FFT is an efficient way of calculating the DFT to reduce the number of computations from

to . The goal is to build a big DFT from smaller DFT’s. The DFT can be divided

into a sum of terms of even and odd indices for n. The indices need to be adjusted as follows:

{
𝑒𝑣𝑒𝑛: 𝑛 = 2𝑟

𝑜𝑑𝑑: 𝑛 = 2𝑟 + 1

where r is in [0, N/2-1]. As a result, the DFT can be written as:

8

𝑦[𝑘] = ∑ 𝑥[2𝑟]𝑊𝑁
𝑘2𝑟

𝑁
2

−1

𝑟=0

+ ∑ 𝑥[2𝑟 + 1]𝑊𝑁
(2𝑟+1)𝑘

𝑁
2

−1

𝑟=0

 = ∑ 𝑥[2𝑟](𝑊𝑁
2)𝑘𝑟

𝑁
2

−1

𝑟=0

+ 𝑊𝑁
𝑘 ∑ 𝑥[2𝑟 + 1](𝑊𝑁

2)𝑘𝑟

𝑁
2

−1

𝑟=0

From 𝑊𝑁
2 = 𝑒

−𝑗2𝜋2

𝑁 = 𝑒
−𝑗2𝜋

𝑁/2 = 𝑊𝑁/2 , it follows that:

𝑦[𝑘] = ∑ 𝑥[2𝑟]𝑊𝑁/2
𝑘𝑟

𝑁
2

−1

𝑟=0

+ 𝑊𝑁
𝑘 ∑ 𝑥[2𝑟 + 1]𝑊𝑁/2

𝑘𝑟

𝑁
2

−1

𝑟=0

= 𝑦𝑒𝑣𝑒𝑛[𝑘] + 𝑊𝑁
𝑘𝑦𝑜𝑑𝑑[𝑘]

where 𝑦𝑒𝑣𝑒𝑛 is the N/2-point DFT of even samples and 𝑦𝑜𝑑𝑑 of the odd samples. So, the DFT can

be written as a sum of two N/2-point DFT’s. The splitting continues until , where

. This leads to the fundamental computation unit of the FFT, known as the butterfly

unit. In general, this unit computes the following:

{
𝑦𝑖[𝑠] = 𝑦𝑖−1[𝑠] + 𝑊𝑁

𝑙 𝑦𝑖−1[𝑡]

𝑦𝑖[𝑡] = 𝑦𝑖−1[𝑠] − 𝑊𝑁
𝑙 𝑦𝑖−1[𝑡]

where i is the stage number.

2.3 Prior Asynchronous FFT Implementations

In [14], 16-point and 64-point FFT circuits were implemented in both synchronous and

asynchronous logic. Bundled data (BD) paradigm was adopted for the asynchronous design with

a relative-timing based design flow. Due to the nature of BD, timing constraints and analysis were

needed. All circuits were implemented using the IBM 65nm process. Simulation results showed

9

the advantages of the asynchronous implementations in performance and energy consumption,

with overheads in power and area.

A comprehensive FFT/IFFT processor was introduced in [15]. With SRAM and ROM, this

processor was capable of performing 128-point FFT/IFFT computations on 16-bit data input

sequence. A 4-phase QDI-like asynchronous handshaking protocol was incorporated. A

synchronous baseline was also developed using the same 0.35µm CMOS process. Both circuits

were taped out and the chip testing results showed that the asynchronous implementation

consumed much lower energy across multiple supply voltages, with overheads in area and

performance.

Another asynchronous 128-point FFT design was presented in [16]. QDI handshaking was

adopted on 16-bit radix-8 data sequence. It also used SRAMs for storing constants. The circuit was

implemented using a 65nm semiconductor node and compared with a synchronous counterpart,

exhibiting significant advantages in energy consumption.

In [17], a GALS (Globally Asynchronous Locally Synchronous) architecture-based FFT

processor was presented. It was implemented using the BD asynchronous paradigm. The circuit

was synthesized onto an Altera FPGA. No comparison was provided with any prior work.

A NCL implementation of 64-point FFT was presented in [18]. It used a serial feedback

architecture to minimize the logic area. Two single-rail sequencers were incorporated to control

the feedback loop and output the data at the right time. Input completeness and observability were

satisfied during the design process.

10

3. Design Methodology

3.1 Basic Components

The MTNCL FFT architecture consists of multiple basic dual-rail circuit components, i.e.,

AND function, OR function, XOR function, multiplexer (MUX), full adder, signed multiplier, and

complex multiplier.

3.1.1 Basic Logic Functions

Dual-rail logic functions (e.g., AND) are fundamentally different from the Boolean logic

counterparts in that their inputs and output are all dual-rail encoded. Therefore, two MTNCL

threshold gates are needed to implement each function, except for the full adder which is more

complex, as listed below.

AND Function

𝑧1 = 𝑎1𝑏1 = 𝑇𝐻22(𝑎1, 𝑏1)

𝑧0 = 𝑎0 + 𝑏0 = 𝑇𝐻12(𝑎0, 𝑏0)

OR Function

𝑧1 = 𝑎1 + 𝑏1 = 𝑇𝐻12(𝑎1, 𝑏1)

𝑧0 = 𝑎0𝑏0 = 𝑇𝐻22(𝑎0, 𝑏0)

XOR Function

𝑧1 = 𝑎0𝑏1 + 𝑎1𝑏0 = 𝑇𝐻𝑋𝑂𝑅(𝑎0, 𝑏1, 𝑎1, 𝑏0)

𝑧0 = 𝑎0𝑏0 + 𝑎1𝑏1 = 𝑇𝐻𝑋𝑂𝑅(𝑎0, 𝑏0, 𝑎1, 𝑏1)

MUX

𝑧1 = 𝑠0𝑏1 + 𝑠1𝑎1 = 𝑇𝐻𝑋𝑂𝑅(𝑠0, 𝑏1, 𝑠1, 𝑎1)

𝑧0 = 𝑠0𝑏0 + 𝑠1𝑎0 = 𝑇𝐻𝑋𝑂𝑅(𝑠0, 𝑏0, 𝑠1, 𝑎0)

11

Full Adder

𝑐𝑜𝑢𝑡1 = 𝑐𝑖𝑛1𝑎1 + 𝑐𝑖𝑛1𝑏1 + 𝑎1𝑏1

𝑐𝑜𝑢𝑡0 = 𝑐𝑖𝑛0𝑎0 + 𝑐𝑖𝑛0𝑏0 + 𝑎0𝑏0

𝑠1 = 𝑐𝑜𝑢𝑡0𝑐𝑖𝑛1 + 𝑐𝑜𝑢𝑡0𝑎1 + 𝑐𝑜𝑢𝑡0𝑏1 + 𝑐𝑖𝑛1𝑎1𝑏1

𝑠0 = 𝑐𝑜𝑢𝑡1𝑐𝑖𝑛0 + 𝑐𝑜𝑢𝑡1𝑎0 + 𝑐𝑜𝑢𝑡1𝑏0 + 𝑐𝑖𝑛0𝑎0𝑏0

3.1.2 Multipliers

There are two types of multipliers utilized in the MTNCL FFT architecture: one is a signed

multiplier and the other is a complex number multiplier. Both multiplier architectures were

designed in a generic manner to accommodate different data widths. A 4-bit signed multiplier

structure is shown in Figure 4. It is a Baugh-Wooley multiplier with the OR of the two sign bits

(i.e., the signal t in Figure 4) controlling the switch between signed and unsigned multiplications.

t

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA FA FAFA

x3
y3

01

y0x0

000 y1x0

y0x1

y2x0

y1x1

y2x0
t

y2x1

y0x2y1x2y2x2

y2x2

y2x1

t

t

y2x3
t

y1x3

t
y0x3

t

y3x3t
0

t

p0

p1

p2

p3

p4p5p6p7

t

Figure 4: A 4-bit Signed Multiplier Structure

12

Figure 5 shows the structure of a generic N-bit complex number multiplier. The mathematical

equation for multiplying two complex numbers x and w is:

(𝑥𝑟 + 𝑖𝑥𝑖)(𝑤𝑟 + 𝑖𝑤𝑖) = 𝑖(𝑥𝑖𝑤𝑟 + 𝑥𝑟𝑤𝑖) + 𝑥𝑟𝑤𝑟 − 𝑥𝑖𝑤𝑖

N×N Signed
Multiplier

N×N Signed
Multiplier

N×N Signed
Multiplier

N×N Signed
Multiplier

1's Complement
Converter

N×N Ripple
Carry Adder

Drop the higher N bits

N×N Ripple
Carry Adder

Drop the higher N bits

Drop the higher N bits

Drop the higher N bits

Zero

One

xi

wr

xr

wi

xr

wr

xi

wi

zi

zr

Figure 5: A Generic Complex Multiplier Structure

As shown in Figure 5, the two N-bit input data go through four separate signed multipliers.

The products are truncated in half and only the second half (N bits) is passed to subsequent ripple

carry adders, except the bottom product is converted to 2’s complement (i.e., the 1’s complement

converter and the “one” carry-in) to implement subtraction.

3.1.3 Butterfly Units

As the top-level building block of FFT circuits, a butterfly unit consists of one complex number

multiplier, two adders, and two subtractors implemented with adders and 1’s complement

converters. A 4-bit butterfly unit structure is shown in Figure 6 below calculating:

(𝑧𝑟 + 𝑖𝑧𝑖) = (𝑏𝑟 + 𝑖𝑏𝑖)(𝑤𝑟 + 𝑖𝑤𝑖)

(𝑥𝑟 + 𝑖𝑥𝑖) = (𝑎𝑟 + 𝑧𝑟) + 𝑖(𝑎𝑖 + 𝑧𝑖)

(𝑦𝑟 + 𝑖𝑦𝑖) = (𝑎𝑟 − 𝑧𝑟) + 𝑖(𝑎𝑖 − 𝑧𝑖)

13

4-bit Ripple
Carry Adder1's Complement

Converter

One

ar

yr

4-bit Ripple
Carry Adder

Zero

ar

xr

4-bit Ripple
Carry Adder

Zero

ai

xi

4-bit Ripple
Carry Adder

One

ai

yi
1's Complement

Converter

zr

zi

4-bit Complex
Number

Multiplier

br

bi

wr

wi

Figure 6: A 4-bit Butterfly Unit Structure

3.2 FFT Configurations

In order to comprehensively evaluate the area and power trend across different FFT

parameters, a series of FFT configurations were included with three dimensions: number of points,

data widths, and number of pipeline stages.

For number of points, 2-point (Figure 7), 4-point (Figure 8), and 8-point (Figure 9) FFT

configurations were included to study the trend of circuit performance.

14

x[0] y[0]

y[1]

wN
e

-wN
e

x[1]

Figure 7: 2-point FFT

c0

c1

c2

c3

d0

d1

d2

d3

e0

e1

e2

e3

w4
0

-w4
0

w4
0

-w4
0

w4
0

-w4
0

-w4
1

w4
1

Figure 8: 4-point FFT

c0

c1

c2

c3

c4

c5

c6

c7

d0

d1

d2

d3

d4

d5

d6

d7

e0

e1

e2

e3

e4

e5

e6

e7

f0

f1

f2

f3

f4

f5

f6

f7

w8
0

-w8
0

w8
0

-w8
0

w8
0

-w8
0

w8
0

-w8
0

w8
0

-w8
0

w8
0

-w8
0

-w8
2

w8
2

-w8
2

w8
2

w8
0

w8
1

w8
2

w8
3

-w8
0

-w8
1

-w8
2

-w8
3

Figure 9: 8-point FFT

For data widths, 4-bit and 8-bit data inputs and weights were included in each FFT

configuration. For the number of pipeline stages, all FFT configurations were either not pipelined

(or 1-stage pipelined) or pipelined with a butterfly unit as the unit stage. Therefore, it is 1-stage

15

pipeline for 2-point FFT, 2-stage or 1-stage pipeline for 4-point FFT, and 3-stage or 1-stage

pipeline for 8-point FFT.

Each FFT configuration was implemented in MTNCL using the circuit components described

in Section 3.1. Figures 10 and 11 show the diagrams of 2-stage 4-point FFT and 3-stage 8-point

FFT circuits, respectively. The semiconductor technology used was TSMC 65nm bulk CMOS

process.

Din Dout

Sleep

Stage 0
FFT

Din Dout

Sleep

Stage 1
FFT

Din Dout

Sleep

Sleep

KiKo

Sleep

KiKo

Sleep

KiKo

Data OutData In

KiKo

Sleep In

Sleep Out

Figure 10: 2-stage 4-point MTNCL FFT Circuit Diagram

Din Dout

Sleep

Stage 0
FFT

Din Dout

Sleep

Stage 1
FFT

Din Dout

Sleep

Sleep

KiKo

Sleep

KiKo

Sleep

KiKo

Data OutData In

KiKo

Sleep In Sleep Out

Stage 2
FFT

Din Dout

Sleep

Sleep

KiKo

Figure 11: 3-stage 8-point MTNCL FFT Circuit Diagram

16

4. Results and Analysis

4.1 Data Collection Method

As a comparative analysis, all 10 MTNCL FFT implementations were analyzed for gate count,

active power, and leakage power. While gate counts come directly from the flattened netlists, the

other two power numbers were calculated from the Synopsys Liberty file. All MTNCL threshold

gates, once constructed at transistor level, were characterized using the Synopsys SiliconSmart

tool, which automatically simulates each gate for all possible input combinations while driving

different load capacitances. Active (short-circuit) and leakage power are among the

characterization data recorded in the Liberty file. For each FFT implementation, the power number

for each type of MTNCL gate is multiplied by the number of this gate in the design; and then all

power numbers are added together. Although this estimate is not as accurate as the traditional

power analysis or analog simulations, it is sufficient for this comparative analysis.

4.2 Results and Analysis

Table 1 below summarizes active power, leakage power, and gate counts for all MTNCL FFT

circuits. Note that 1-stage pipeline is the same as non-pipeline.

17

Table 1: Data for MTNCL FFT Circuits

Data Width # of Point # of Pipeline

Stage

Active Power

(mW)

Leakage

Power (µW)

Gate Count

4-bit

2 1 0.214 9.222 611

4

1 0.811 34.048 2254

2 0.866 36.481 2434

8

1 2.352 96.815 6390

3 2.532 109.101 7170

8-bit

2 1 0.711 30.451 1969

4

1 2.753 116.112 7498

2 2.833 121.582 7846

8

1 8.136 340.158 21966

3 8.456 362.074 23350

4.2.1 Area (Gate Count) Analysis

Using the data in Table 1, Figures 12 and 13 show the gate count trends for non-pipelined and

pipelined MTNCL FFT implementations, respectively.

18

Figure 12: Gate Count Trend for Non-Pipelined MTNCL FFT Implementations

Figure 13: Gate Count Trend for Pipelined MTNCL FFT Implementations

0

5000

10000

15000

20000

25000

2-point 4-point 8-point

G
at

e
C

o
u

n
t

fo
r

N
o

n
-P

ip
el

in
ed

D

es
ig

n
s

4-bit

8-bit

0

5000

10000

15000

20000

25000

4-point 8-point

G
at

e
C

o
u

n
t

fo
r

P
ip

el
in

ed

D
es

ig
n

s

4-bit

8-bit

19

As shown in the above two charts, the number of points poses significant impacts on the gate

counts of MTNCL FFT implementations. For non-pipelined designs, the gate count increases by

3.68× and 3.81× when going from 2-point to 4-point for 4-bit and 8-bit data widths, respectively;

and these two numbers are 2.83× and 2.93× when going from 4-point to 8-point. For pipelined

designs, the gate count increases by 2.95× and 2.98× when going from 4-point to 8-point for 4-bit

and 8-bit data widths, respectively. Data width is another strong factor impacting the gate count.

For all MTNCL FFT circuits, when going from 4-bit to 8-bit, the gate count increases from 3.22×

to 3.44×.

Pipelining, however, does not affect the gate count nearly as much. As shown in Figures 14

and 15 below, for 4-point and 8-point designs, pipelining only increases the gate count from 4.6%

to 12.2%. This is because the added MTNCL registers are much smaller than the original

computational logic.

Figure 14: Gate Count Trend for 4-Point MTNCL FFT Implementations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4-bit 8-bit

G
at

e
C

o
u

n
t

fo
r

4
-P

o
in

t
D

es
ig

n
s

1-stage

2-stage

20

Figure 15: Gate Count Trend for 8-Point MTNCL FFT Implementations

4.2.2 Active Power Analysis

Using the data in Table 1, Figures 16 and 17 show the active power trends for non-pipelined

and pipelined MTNCL FFT implementations, respectively.

0

5000

10000

15000

20000

25000

4-bit 8-bit

G
at

e
C

o
u

n
t

fo
r

8
-P

o
in

t
D

es
ig

n
s

1-stage

3-stage

21

Figure 16: Active Power Trend for Non-Pipelined MTNCL FFT Implementations

Figure 17: Active Power Trend for Pipelined MTNCL FFT Implementations

0

1

2

3

4

5

6

7

8

9

2-point 4-point 8-point

A
ct

iv
e

Po
w

er
 f

o
r

N
o

n
-P

ip
el

in
ed

D

es
ig

n
s

4-bit

8-bit

0

1

2

3

4

5

6

7

8

9

4-point 8-point

A
ct

iv
e

Po
w

er
 f

o
r

P
ip

el
in

ed

D
es

ig
n

s

4-bit

8-bit

22

Similar to that of the gate count, the number of points poses significant impacts on the active

power of MTNCL FFT implementations. For non-pipelined designs, the active power increases by

3.78× and 3.87× when going from 2-point to 4-point for 4-bit and 8-bit data widths, respectively;

and these two numbers are 2.90× and 2.96× when going from 4-point to 8-point. For pipelined

designs, the active power increases by 2.92× and 2.98× when going from 4-point to 8-point for 4-

bit and 8-bit data widths, respectively. Data width is another strong factor impacting the active

power. For all MTNCL FFT circuits, when going from 4-bit to 8-bit, the gate count increases from

3.27× to 3.46×.

Also similar to that of gate count, the impact of pipelining on active power is even smaller. As

shown in Figures 18 and 19 below, for 4-point and 8-point designs, pipelining only increases the

active power from 2.9% to 7.7%. This is also because the added MTNCL registers are much

smaller than the original computational logic.

Figure 18: Active Power Trend for 4-Point MTNCL FFT Implementations

0

0.5

1

1.5

2

2.5

3

4-bit 8-bit

A
ct

iv
e

Po
w

er
 f

o
r

4
-P

o
in

t
D

es
ig

n
s

1-stage

2-stage

23

Figure 19: Active Power Trend for 8-Point MTNCL FFT Implementations

4.2.3 Leakage Power Analysis

Using the data in Table 1, Figures 20 and 21 show the leakage power trends for non-pipelined

and pipelined MTNCL FFT implementations, respectively.

0

1

2

3

4

5

6

7

8

9

4-bit 8-bit

A
ct

iv
e

Po
w

er
 f

o
r

8
-P

o
in

t
D

es
ig

n
s

1-stage

2-stage

24

Figure 20: Leakage Power Trend for Non-Pipelined MTNCL FFT Implementations

Figure 21: Leakage Power Trend for Pipelined MTNCL FFT Implementations

0

50

100

150

200

250

300

350

400

2-point 4-point 8-point

Le
ak

ag
e

Po
w

er
 f

o
r

N
o

n
-

P
ip

el
in

ed
 D

es
ig

n
s

4-bit

8-bit

0

50

100

150

200

250

300

350

400

4-point 8-point

Le
ak

ag
e

Po
w

er
 f

o
r

P
ip

el
in

ed

D
es

ig
n

s

4-bit

8-bit

25

Leakage power follows the same trends as gate count since area is the most important factor

of leakage. Therefore, the number of points poses significant impacts on the leakage power of

MTNCL FFT implementations. For non-pipelined designs, the leakage power increases by 3.69×

and 3.81× when going from 2-point to 4-point for 4-bit and 8-bit data widths, respectively; and

these two numbers are 2.84× and 2.93× when going from 4-point to 8-point. For pipelined designs,

the leakage power increases by 2.99× and 2.98× when going from 4-point to 8-point for 4-bit and

8-bit data widths, respectively. Data width is another strong factor impacting the leakage power.

For all MTNCL FFT circuits, when going from 4-bit to 8-bit, the leakage power increases from

3.30× to 3.51×.

Also following the trend of gate count, the impact of pipelining on leakage power is small. As

shown in Figures 22 and 23 below, for 4-point and 8-point designs, pipelining only increases the

leakage power from 4.7% to 12.7%. This is also because the added MTNCL registers are much

smaller than the original computational logic.

26

Figure 22: Leakage Power Trend for 4-Point MTNCL FFT Implementations

Figure 23: Leakage Power Trend for 8-Point MTNCL FFT Implementations

0

20

40

60

80

100

120

140

4-bit 8-bit

Le
ak

ag
e

Po
w

er
 f

o
r

4
-P

o
in

t
D

es
ig

n
s

1-stage

2-stage

0

50

100

150

200

250

300

350

400

4-bit 8-bit

Le
ak

ag
e

Po
w

er
 f

o
r

8
-P

o
in

t
D

es
ig

n
s

1-stage

2-stage

27

5. Conclusion

In this thesis work, 10 MTNCL FFT circuits were implemented using the TSMC 65nm

technology. These circuits cover a spectrum from 2-point to 8-point, 4-bit to 8-bit, and 1-stage to

3-stage of pipelines. Power analysis shows that the active and leakage power of MTNCL FFT

implementations is affected by these parameters differently. The number of points and data width

pose much more significant impacts to the circuit area, which in turn affects the power

consumption drastically. Pipelining, on the other hand, does not affect area much because the

added MTNCL registers only occupy a small percentage of the entire logic. Therefore, pipelining

is not a strong factor for power consumption. If MTNCL is used for implementing FFT algorithms

in battery-powered embedded systems, pipelining could be considered for boosting up throughput,

while using the fewest number of points and shortest data width to minimize active and leakage

power consumption.

28

6. References

[1] https://www.ti.com/microcontrollers-mcus-processors/processors/digital-signal-

processors/overview.html

[2] https://www.asml.com/en/news/stories/2022/what-is-a-gate-all-around-

transistor#:~:text=In%20FinFET%20transistors%2C%20the%20gate,of%20current%20t

hrough%20the%20transistor.

[3] K. M. Fant and S. A. Brandt, “NULL Convention Logic: A Complete and Consistent

Logic for Asynchronous Digital Circuit Synthesis,” International Conference on

Application Specific Systems, Architectures, and Processors, 1996.

[4] S. C. Smith and J. Di, Designing Asynchronous Circuits using NULL Convention Logic

(NCL), Morgan & Claypool Publishers, 2009

[5] L. Zhou, R. Parameswaran, F. A. Parsan, S. C. Smith, and J. Di, “Multi-Threshold NULL

Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design

Methodology,” Journal of Low Power Electronics and Applications, vol. 5, issue 2, pp.

81-100, May 2015

[6] L. Men and J. Di, “Asynchronous Parallel Platforms with Balanced Performance and

Energy,” Journal of Low Power Electronics, Vol. 10, No. 4, pp. 566-579, 2014

[7] L. Men and J. Di, “An Asynchronous Finite Impulse Response Filter Design for Digital

Signal Processing Unit,” IEEE Midwest Symposium on Circuits and Systems, Aug. 2014

[8] L. Men and J. Di, “Framework of Scalable Delay-Insensitive Asynchronous Platform

Enabling Heterogeneous Concurrency,” IEEE Midwest Symposium on Circuits and

Systems, Aug. 2014

[9] L. Men, B. Hollosi, and J. Di, “Framework of an Adaptive Delay-Insensitive

Asynchronous Platform for Energy Efficiency,” IEEE International Symposium on

VLSI, July 2014

[10] A. Bailey, A. Al Zahrani, G. Fu, J. Di, and S. Smith, “Multi-Threshold Asynchronous

Circuit Design for Ultra-Low Power,” Journal of Low Power Electronics, Vol. 4, NO. 3,

pp. 337-348, December 2008

https://www.ti.com/microcontrollers-mcus-processors/processors/digital-signal-processors/overview.html
https://www.ti.com/microcontrollers-mcus-processors/processors/digital-signal-processors/overview.html
https://www.asml.com/en/news/stories/2022/what-is-a-gate-all-around-transistor#:~:text=In%20FinFET%20transistors%2C%20the%20gate,of%20current%20through%20the%20transistor
https://www.asml.com/en/news/stories/2022/what-is-a-gate-all-around-transistor#:~:text=In%20FinFET%20transistors%2C%20the%20gate,of%20current%20through%20the%20transistor
https://www.asml.com/en/news/stories/2022/what-is-a-gate-all-around-transistor#:~:text=In%20FinFET%20transistors%2C%20the%20gate,of%20current%20through%20the%20transistor

29

[11] L. Zhou, S. Smith, and J. Di, “Bit-Wise MTNCL: an Ultra-Low Power Bit-Wise

Pipelined Asynchronous Circuit Design Methodology,” 2010 IEEE Midwest Symposium

on Circuits and Systems, August 2010

[12] A. Alzahrani, A. Bailey, G. Fu, and J. Di, “Glitch-Free Design for Multi-Threshold

CMOS NCL Circuits,” 2009 Great Lake Symposium on VLSI, May 2009

[13] A. D. Bailey, J. Di, S. C. Smith, and H. A. Mantooth, “Ultra-Low Power Delay-

Insensitive Circuit Design,” 2008 IEEE Midwest Symposium on Circuits and Systems,

Aug. 2008

[14] “Design of Low Energy, High Performance Synchronous and Asynchronous 64-Point

FFT,” W. Lee, V. S. Vij, A. R. Thatcher, and K. S. Stevens, 2013 IEEE Design,

Automation and TEst in Europe Conference (DATE)

[15] “Energy-Efficient Synchronous-Logic and Asynchronous-Logic FFT/IFFT Processors,”

K. S. Chong, B. H. Gwee, and J. S. Chang, IEEE Journal of Solid-State Circuits, Vol. 42,

No. 9, pp. 2034-2045, September 2007

[16] “Low Power QDI Asynchronous FFT,” B. Tang and F. Lane, 2016 IEEE International

Symposium on Asynchronous Circuits and Systems

[17] “Implementation of an Asynchronous FFT Processor,” R. Seshasayanan, S. K. Srivatsa,

and V. Sugavaneswaran, 2005 IEEE Annual India Conference

[18] “Implementation of Fast Fourier Transform Processor in NULL Convention Logic,”

Zhen Song, M.S. thesis, University of Arkansas, 2011

	Design and Comparison of Asynchronous FFT Implementations
	Citation

	tmp.1678121283.pdf.OrCyA

