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ABSTRACT 

Fast Fourier Transform (FFT) is a widely used digital signal processing technology in a large 

variety of applications. For battery-powered embedded systems incorporating FFT, its physical 

implementation is constrained by strict power consumption, especially during idle periods. 

Compared to the prevailing clocked synchronous counterpart, quasi-delay insensitive 

asynchronous circuits offer a series of advantages including flexible timing requirement and lower 

leakage power, making them ideal choices for these systems. In this thesis work, various FFT 

configurations were implemented in the low-power Multi-Threshold NULL Convention Logic 

(MTNCL) paradigm. Analysis illustrates the area and power consumption trends along the 

changing of the number of points, data widths, and the number of pipeline stages. 
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1. Introduction 

Digital signal processing (DSP) technologies are widely utilized in many everyday 

applications, ranging from thermostats to noise-cancelling headphones. Considering the large 

amount of DSP algorithms, the Fast Fourier Transform (FFT) algorithm is among the most 

commonly used. FFT computes the Discrete Fourier Transform (DFT) of a sequence, converting 

this signal from its original domain (mainly time or space) to a representation in the frequency 

domain, or its inverse (IDFT) from frequency domain to the original domain. FFT does such 

transformations rapidly by factorizing the DFT matrix into a product of sparse factors.  

While for an electronic system, DSP algorithms including FFT can be implemented using 

digital signal processors [1], which are powerful and capable of executing multiple algorithms, 

many embedded systems cannot adopt these processors. Such systems include wearable 

electronics, edge computing devices, distributed sensors, etc., which are normally battery-powered 

and are under strict power/cost budget. Therefore, DSP algorithms implemented in Application-

Specific Integrated Circuits (ASICs) become a top choice for these systems due to their low power 

consumption, low unit cost, and small footprint.  

As the semiconductor technology advances, the feature size of transistors kept shrinking, 

which induces high leakage power as it becomes increasingly difficult to turn off transistors in idle 

mode. For most abovementioned embedded system application, leakage power is critical since 

their work duty cycles are normally low. FinFET and gate-all-around FET (GAAFET) 

technologies [2] have been invented to alleviate this problem. However, these leading 

semiconductor technologies are very expensive, increasing the cost of adoption. Moreover, for 

smaller transistors, process variation becomes more severe, amplifying all clock-related problems 

in synchronous circuits such as clock skew, thereby making timing closure much more difficult to 

achieve. 
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Asynchronous circuits, especially quasi-delay insensitive (QDI) paradigms, use local 

handshaking protocols instead of global clocks to coordinate the circuit operation. Little to none 

timing analysis is needed, making them much more robust to process variations. The Multi-

Threshold NULL Convention Logic (MTNCL) paradigm incorporates high threshold voltage 

transistors inside each logic gate, which substantially reduces leakage power during idle mode. In 

this thesis work, a series of MTNCL FFT configurations have been implemented in the TSMC 

65nm technology. These configurations include 2-, 4-, and 8-point, 4- and 8-bit data widths, and 

1-, 2-, and 3-stage pipelines. Analysis illustrates the trend of area as well as active and leakage 

power consumption along the changing of these design parameters. 

The thesis is organized as follows: Chapter 2 describes the background of asynchronous logic, 

NCL, and MTNCL, as well as FFT algorithm and the previous asynchronous FFT 

implementations; Chapter 3 introduces the MTNCL FFT designs; Chapter 4 shows the results with 

analysis; and Chapter 5 concludes the work. 
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2. Background 

2.1 Asynchronous Logic, NULL Convention Logic, and Multi-Threshold NULL 

Convention Logic 

Asynchronous logic circuits do not have clock; instead, they use handshaking protocols to 

control the circuit behavior. Different from the bounded-delay counterpart in which gate delays 

are bounded and the circuit will malfunction if any gate delay exceeds the bound, delay-insensitive 

(DI) or quasi-delay insensitive (QDI) style asynchronous circuits, such as the NULL Convention 

Logic (NCL) [3], do not assume delay bounds. Individual gate or wire delay has no impact on the 

correctness of the circuit’s output. Since signal propagation is not time-dependent, NCL circuits 

require very little, if any, timing analysis. A NCL system consists of DI combinational logic 

sandwiched between DI registers, as shown in Figure 1(top). The Completion Detection block 

ensures all output bits of the corresponding register are in the same state before generating the 

combined handshaking signal (Ko) to the previous register. 

DI Register

KiKo

DI

Combinational

Logic

DI Register

KiKo

Completion

Detection

DI

Combinational

Logic

DI Register

KiKo

Completion

Detection

DI Register

KiKo

  

m

input 1

input 2

input n

output

 

Figure 1: (top) NCL Pipeline (bottom) Thmn Threshold Gate 

NCL circuits utilize multi-rail signals to achieve delay-insensitivity. The most prevalent multi-

rail encoding scheme is dual-rail. A dual-rail signal, S, consists of two wires, S0 and S1. The 

DATA0 state (S0 = 1, S1 = 0) corresponds to a Boolean logic 0, the DATA1 state (S0 = 0, S1 = 1) 
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corresponds to a Boolean logic 1, and the NULL state (S0 = 0, S1 = 0) corresponds to the empty set 

meaning that data is not yet ready. The invalid state (S0 = 1, S1 = 1) never occurs in normal NCL 

circuit operation; hence, the two rails are typically considered mutually exclusive. NCL logic 

family consists of 27 threshold gates. The standard threshold gate is the THmn gate, where 1mn, 

as shown in Figure 1(bottom). THmn gates have n inputs; at least m of the n inputs must be asserted 

before the output will become asserted. Once asserted, all n inputs must be deasserted for the 

output to be deasserted. NCL circuits communicate using request and acknowledge signals to 

prevent the current DATA from overwriting the previous DATA, by ensuring that the two DATA 

are always separated by a NULL state. 

Originally proposed in 1950’s and born with a series of advantages (e.g., no clock tree, flexible 

timing requirement, high modularity and scalability, high energy efficiency, robust circuit 

operation, low noise/emission), asynchronous logic, however, has not been developing nearly as 

fast as the synchronous counterpart, which dominates the digital IC market. This is due to the 

drawbacks of asynchronous logic, e.g., large area overhead, incompatible with commercial IC 

design CAD tools. For example, NCL requires the designed circuits to satisfy input-completeness 

(i.e., output transitions from DATA to NULL only after all inputs transition from DATA to NULL, 

and vice versa) and observability (i.e., all gate transitions must be observable at the output), which 

cannot be easily implemented in commercial synthesis tools. 

In order to solve these problems, the Multi-Threshold NCL (MTNCL) paradigm was invented 

[4-13], which combines MTCMOS (Multi-Threshold CMOS) power-gating method with NCL. 

MTCMOS power-gating involves using high threshold voltage (high-Vt) transistors to gate the 

power supplies of a low threshold voltage (low-Vt) logic block. When the high-Vt transistors are 

turned on, the low-Vt logic is connected to virtual ground and power, and switching is performed 
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through fast (low-Vt) devices. When the circuit enters the sleep mode, the high-Vt gating transistors 

are turned off, resulting in a very low subthreshold leakage current from VDD to ground.  

In MTNCL paradigm, MTCMOS power-gating structure is incorporated in each threshold 

gate. Due to the fact that floating nodes may result in substantial short circuit power consumption 

at the following stage, the output node of each gate is pulled down to ground during sleep mode. 

When all MTNCL gates in a pipeline stage are in sleep mode, such that all gates output logic0, 

this condition is equivalent to the pipeline stage being in the NULL state. Hence, after each DATA 

cycle, all MTNCL gates in a pipeline stage can be forced to output logic0 by asserting the sleep 

control signal instead of propagating a NULL wavefront through the stage, thereby speeds up the 

circuit. Since the handshaking signal indicates whether the corresponding pipeline stage is ready 

to undergo a DATA or NULL cycle, this signal can be naturally used as the sleep control signal 

for the corresponding combinational block, without requiring any additional hardware, in contrast 

to the complex Sleep signal generation circuitry needed for synchronous MTCMOS circuits. Early 

Completion mechanism [4] is used in MTNCL architecture, as shown in Figure 2, where each 

completion signal is used as Sleep signal for all threshold gates in the subsequent pipeline stage. 

The combinational logic will not be put to sleep until all inputs are NULL and the next stage is 

requesting for NULL; therefore the NULL wavefront is ready to propagate through the stage, so 

that this stage can instead be put to sleep without compromising delay-insensitivity. The stage will 

then remain in sleep mode until all inputs are DATA and the next stage is requesting for DATA, 

and is therefore ready to evaluate. Through this sleeping mechanism, MTNCL eliminates the 

requirements for input-completeness and observability [4], thereby significantly simplifies 

MTNCL circuit design, makes it compliant with standard IC design flow, and reduces area 

overhead. 
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Figure 2: MTNCL Pipeline Architecture using Early Completion 

As stated earlier, MTCMOS structure is incorporated inside each NCL threshold gate, and 

actually results in a number of the original transistors no longer being needed, which also 

contributes to the area overhead reduction. The original NCL threshold gate structure is shown in 

Figure 3(a). The reset/set circuitry is to force the output to be logic 0/1, and the hold0/1 circuitry 

is to keep the output as logic0/1 for hysteresis. For MTNCL, however, the reset circuitry is no 

longer needed, since the gate output will now be forced to logic0 by the MTCMOS sleep 

mechanism. Since all gates in a pipeline stage are forced to sleep by the same sleep control signal, 

NCL gate hysteresis is no longer required. Hence, the hold1 circuitry and corresponding NMOS 

transistor are removed, and the PMOS transistor is removed to maintain the complementary nature 

of CMOS logic. After incorporating the MTCMOS power-gating mechanism, the general gate 

structure is shown in Figure 3(b). During active mode, the Sleep signal is logic0, such that the gate 

functions as normal. During sleep mode, Sleep is logic1, such that the output low-Vt pull-down 

transistor is turned on quickly to pull the output to logic0, while the high-Vt PMOS gating transistor 

in the output inverter and all high-Vt NMOS transistors (since all inputs are logic0) are turned off 

to reduce leakage. As an example, this MTNCL implementation of a TH23 gate is shown in Figure 

3(c), which has four less transistors compared to the regular TH23.  
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Figure 3: (a) Incorporating MTCMOS Power-Gating into NCL Threshold Gates, (b) 

MTNCL Gate Structure, (c) TH23 Implementation (Circled Transistors are High-Vt) 

While retaining the features of NCL, MTNCL offers several unique and significant advantages 

over the MTCMOS synchronous and regular NCL counterparts, including leakage reduction in 

both active and idle modes, reduced area overhead and active energy, improved performance, and 

enhanced compliance with standard IC design flow. These advantages make MTNCL an ideal 

choice for implementing the FFT algorithm on power-constrained devices. 

2.2 Fast Fourier Transform 

The Discrete Fourier Transform (DFT) transforms N coefficients x[n] to N coefficients y[k] 

using the following definition: 

𝑦[𝑘] =  ∑ 𝑥[𝑛]𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

 

The FFT is an efficient way of calculating the DFT to reduce the number of computations from 

to . The goal is to build a big DFT from smaller DFT’s. The DFT can be divided 

into a sum of terms of even and odd indices for n. The indices need to be adjusted as follows: 

{
𝑒𝑣𝑒𝑛: 𝑛 = 2𝑟

𝑜𝑑𝑑: 𝑛 = 2𝑟 + 1
 

where r is in [0, N/2-1]. As a result, the DFT can be written as: 
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𝑦[𝑘] =  ∑ 𝑥[2𝑟]𝑊𝑁
𝑘2𝑟

𝑁
2

−1

𝑟=0

+  ∑ 𝑥[2𝑟 + 1]𝑊𝑁
(2𝑟+1)𝑘

𝑁
2

−1

𝑟=0

  

         =  ∑ 𝑥[2𝑟](𝑊𝑁
2)𝑘𝑟

𝑁
2

−1

𝑟=0

+ 𝑊𝑁
𝑘 ∑ 𝑥[2𝑟 + 1](𝑊𝑁

2)𝑘𝑟

𝑁
2

−1

𝑟=0

 

From 𝑊𝑁
2 =  𝑒

−𝑗2𝜋2

𝑁 =  𝑒
−𝑗2𝜋

𝑁/2 =  𝑊𝑁/2 , it follows that: 

𝑦[𝑘] =  ∑ 𝑥[2𝑟]𝑊𝑁/2
𝑘𝑟

𝑁
2

−1

𝑟=0

+  𝑊𝑁
𝑘 ∑ 𝑥[2𝑟 + 1]𝑊𝑁/2

𝑘𝑟

𝑁
2

−1

𝑟=0

 

=  𝑦𝑒𝑣𝑒𝑛[𝑘] +  𝑊𝑁
𝑘𝑦𝑜𝑑𝑑[𝑘] 

where 𝑦𝑒𝑣𝑒𝑛 is the N/2-point DFT of even samples and 𝑦𝑜𝑑𝑑 of the odd samples. So, the DFT can 

be written as a sum of two N/2-point DFT’s. The splitting continues until , where 

. This leads to the fundamental computation unit of the FFT, known as the butterfly 

unit. In general, this unit computes the following: 

{
𝑦𝑖[𝑠] = 𝑦𝑖−1[𝑠] +  𝑊𝑁

𝑙 𝑦𝑖−1[𝑡]

𝑦𝑖[𝑡] = 𝑦𝑖−1[𝑠] − 𝑊𝑁
𝑙 𝑦𝑖−1[𝑡]

 

where i is the stage number. 

 

2.3 Prior Asynchronous FFT Implementations 

In [14], 16-point and 64-point FFT circuits were implemented in both synchronous and 

asynchronous logic. Bundled data (BD) paradigm was adopted for the asynchronous design with 

a relative-timing based design flow. Due to the nature of BD, timing constraints and analysis were 

needed. All circuits were implemented using the IBM 65nm process. Simulation results showed 
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the advantages of the asynchronous implementations in performance and energy consumption, 

with overheads in power and area. 

A comprehensive FFT/IFFT processor was introduced in [15]. With SRAM and ROM, this 

processor was capable of performing 128-point FFT/IFFT computations on 16-bit data input 

sequence. A 4-phase QDI-like asynchronous handshaking protocol was incorporated. A 

synchronous baseline was also developed using the same 0.35µm CMOS process. Both circuits 

were taped out and the chip testing results showed that the asynchronous implementation 

consumed much lower energy across multiple supply voltages, with overheads in area and 

performance. 

Another asynchronous 128-point FFT design was presented in [16]. QDI handshaking was 

adopted on 16-bit radix-8 data sequence. It also used SRAMs for storing constants. The circuit was 

implemented using a 65nm semiconductor node and compared with a synchronous counterpart, 

exhibiting significant advantages in energy consumption. 

In [17], a GALS (Globally Asynchronous Locally Synchronous) architecture-based FFT 

processor was presented. It was implemented using the BD asynchronous paradigm. The circuit 

was synthesized onto an Altera FPGA. No comparison was provided with any prior work. 

A NCL implementation of 64-point FFT was presented in [18]. It used a serial feedback 

architecture to minimize the logic area. Two single-rail sequencers were incorporated to control 

the feedback loop and output the data at the right time. Input completeness and observability were 

satisfied during the design process. 
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3. Design Methodology 

3.1 Basic Components 

The MTNCL FFT architecture consists of multiple basic dual-rail circuit components, i.e., 

AND function, OR function, XOR function, multiplexer (MUX), full adder, signed multiplier, and 

complex multiplier. 

3.1.1 Basic Logic Functions 

Dual-rail logic functions (e.g., AND) are fundamentally different from the Boolean logic 

counterparts in that their inputs and output are all dual-rail encoded. Therefore, two MTNCL 

threshold gates are needed to implement each function, except for the full adder which is more 

complex, as listed below. 

AND Function 

𝑧1 = 𝑎1𝑏1 = 𝑇𝐻22(𝑎1, 𝑏1) 

𝑧0 = 𝑎0 + 𝑏0 = 𝑇𝐻12(𝑎0, 𝑏0) 

OR Function 

𝑧1 = 𝑎1 + 𝑏1 = 𝑇𝐻12(𝑎1, 𝑏1) 

𝑧0 = 𝑎0𝑏0 = 𝑇𝐻22(𝑎0, 𝑏0) 

XOR Function 

𝑧1 = 𝑎0𝑏1 + 𝑎1𝑏0 = 𝑇𝐻𝑋𝑂𝑅(𝑎0, 𝑏1, 𝑎1, 𝑏0) 

𝑧0 = 𝑎0𝑏0 + 𝑎1𝑏1 = 𝑇𝐻𝑋𝑂𝑅(𝑎0, 𝑏0, 𝑎1, 𝑏1) 

MUX 

𝑧1 = 𝑠0𝑏1 + 𝑠1𝑎1 = 𝑇𝐻𝑋𝑂𝑅(𝑠0, 𝑏1, 𝑠1, 𝑎1) 

𝑧0 = 𝑠0𝑏0 + 𝑠1𝑎0 = 𝑇𝐻𝑋𝑂𝑅(𝑠0, 𝑏0, 𝑠1, 𝑎0) 
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Full Adder  

𝑐𝑜𝑢𝑡1 = 𝑐𝑖𝑛1𝑎1 + 𝑐𝑖𝑛1𝑏1 + 𝑎1𝑏1 

𝑐𝑜𝑢𝑡0 = 𝑐𝑖𝑛0𝑎0 + 𝑐𝑖𝑛0𝑏0 + 𝑎0𝑏0 

𝑠1 = 𝑐𝑜𝑢𝑡0𝑐𝑖𝑛1 + 𝑐𝑜𝑢𝑡0𝑎1 + 𝑐𝑜𝑢𝑡0𝑏1 + 𝑐𝑖𝑛1𝑎1𝑏1 

𝑠0 = 𝑐𝑜𝑢𝑡1𝑐𝑖𝑛0 + 𝑐𝑜𝑢𝑡1𝑎0 + 𝑐𝑜𝑢𝑡1𝑏0 + 𝑐𝑖𝑛0𝑎0𝑏0 

3.1.2 Multipliers 

There are two types of multipliers utilized in the MTNCL FFT architecture: one is a signed 

multiplier and the other is a complex number multiplier. Both multiplier architectures were 

designed in a generic manner to accommodate different data widths. A 4-bit signed multiplier 

structure is shown in Figure 4. It is a Baugh-Wooley multiplier with the OR of the two sign bits 

(i.e., the signal t in Figure 4) controlling the switch between signed and unsigned multiplications.  

t
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Figure 4: A 4-bit Signed Multiplier Structure 



12 

 

Figure 5 shows the structure of a generic N-bit complex number multiplier. The mathematical 

equation for multiplying two complex numbers x and w is: 

(𝑥𝑟 + 𝑖𝑥𝑖)(𝑤𝑟 + 𝑖𝑤𝑖) = 𝑖(𝑥𝑖𝑤𝑟 + 𝑥𝑟𝑤𝑖) + 𝑥𝑟𝑤𝑟 − 𝑥𝑖𝑤𝑖 
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Figure 5: A Generic Complex Multiplier Structure 

As shown in Figure 5, the two N-bit input data go through four separate signed multipliers. 

The products are truncated in half and only the second half (N bits) is passed to subsequent ripple 

carry adders, except the bottom product is converted to 2’s complement (i.e., the 1’s complement 

converter and the “one” carry-in) to implement subtraction. 

3.1.3 Butterfly Units 

As the top-level building block of FFT circuits, a butterfly unit consists of one complex number 

multiplier, two adders, and two subtractors implemented with adders and 1’s complement 

converters. A 4-bit butterfly unit structure is shown in Figure 6 below calculating: 

(𝑧𝑟 + 𝑖𝑧𝑖) = (𝑏𝑟 + 𝑖𝑏𝑖)(𝑤𝑟 + 𝑖𝑤𝑖) 

(𝑥𝑟 + 𝑖𝑥𝑖) = (𝑎𝑟 + 𝑧𝑟) + 𝑖(𝑎𝑖 + 𝑧𝑖) 

(𝑦𝑟 + 𝑖𝑦𝑖) = (𝑎𝑟 − 𝑧𝑟) + 𝑖(𝑎𝑖 − 𝑧𝑖) 
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Figure 6: A 4-bit Butterfly Unit Structure 

3.2 FFT Configurations 

In order to comprehensively evaluate the area and power trend across different FFT 

parameters, a series of FFT configurations were included with three dimensions: number of points, 

data widths, and number of pipeline stages. 

For number of points, 2-point (Figure 7), 4-point (Figure 8), and 8-point (Figure 9) FFT 

configurations were included to study the trend of circuit performance. 
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Figure 7: 2-point FFT 
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Figure 8: 4-point FFT 
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Figure 9: 8-point FFT 

For data widths, 4-bit and 8-bit data inputs and weights were included in each FFT 

configuration. For the number of pipeline stages, all FFT configurations were either not pipelined 

(or 1-stage pipelined) or pipelined with a butterfly unit as the unit stage. Therefore, it is 1-stage 
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pipeline for 2-point FFT, 2-stage or 1-stage pipeline for 4-point FFT, and 3-stage or 1-stage 

pipeline for 8-point FFT. 

Each FFT configuration was implemented in MTNCL using the circuit components described 

in Section 3.1. Figures 10 and 11 show the diagrams of 2-stage 4-point FFT and 3-stage 8-point 

FFT circuits, respectively. The semiconductor technology used was TSMC 65nm bulk CMOS 

process. 
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Figure 10: 2-stage 4-point MTNCL FFT Circuit Diagram 
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Figure 11: 3-stage 8-point MTNCL FFT Circuit Diagram 
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4. Results and Analysis 

4.1 Data Collection Method 

As a comparative analysis, all 10 MTNCL FFT implementations were analyzed for gate count, 

active power, and leakage power. While gate counts come directly from the flattened netlists, the 

other two power numbers were calculated from the Synopsys Liberty file. All MTNCL threshold 

gates, once constructed at transistor level, were characterized using the Synopsys SiliconSmart 

tool, which automatically simulates each gate for all possible input combinations while driving 

different load capacitances. Active (short-circuit) and leakage power are among the 

characterization data recorded in the Liberty file. For each FFT implementation, the power number 

for each type of MTNCL gate is multiplied by the number of this gate in the design; and then all 

power numbers are added together. Although this estimate is not as accurate as the traditional 

power analysis or analog simulations, it is sufficient for this comparative analysis. 

4.2 Results and Analysis 

Table 1 below summarizes active power, leakage power, and gate counts for all MTNCL FFT 

circuits. Note that 1-stage pipeline is the same as non-pipeline. 
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Table 1: Data for MTNCL FFT Circuits 

Data Width # of Point # of Pipeline 

Stage 

Active Power 

(mW) 

Leakage 

Power (µW) 

Gate Count 

4-bit 

2 1 0.214 9.222 611 

4 

1 0.811 34.048 2254 

2 0.866 36.481 2434 

8 

1 2.352 96.815 6390 

3 2.532 109.101 7170 

8-bit 

2 1 0.711 30.451 1969 

4 

1 2.753 116.112 7498 

2 2.833 121.582 7846 

8 

1 8.136 340.158 21966 

3 8.456 362.074 23350 

 

4.2.1 Area (Gate Count) Analysis 

Using the data in Table 1, Figures 12 and 13 show the gate count trends for non-pipelined and 

pipelined MTNCL FFT implementations, respectively. 
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Figure 12: Gate Count Trend for Non-Pipelined MTNCL FFT Implementations 

 

Figure 13: Gate Count Trend for Pipelined MTNCL FFT Implementations 
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As shown in the above two charts, the number of points poses significant impacts on the gate 

counts of MTNCL FFT implementations. For non-pipelined designs, the gate count increases by 

3.68× and 3.81× when going from 2-point to 4-point for 4-bit and 8-bit data widths, respectively; 

and these two numbers are 2.83× and 2.93× when going from 4-point to 8-point. For pipelined 

designs, the gate count increases by 2.95× and 2.98× when going from 4-point to 8-point for 4-bit 

and 8-bit data widths, respectively. Data width is another strong factor impacting the gate count. 

For all MTNCL FFT circuits, when going from 4-bit to 8-bit, the gate count increases from 3.22× 

to 3.44×. 

Pipelining, however, does not affect the gate count nearly as much. As shown in Figures 14 

and 15 below, for 4-point and 8-point designs, pipelining only increases the gate count from 4.6% 

to 12.2%. This is because the added MTNCL registers are much smaller than the original 

computational logic. 

 

Figure 14: Gate Count Trend for 4-Point MTNCL FFT Implementations 
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Figure 15: Gate Count Trend for 8-Point MTNCL FFT Implementations 

 

4.2.2 Active Power Analysis 

Using the data in Table 1, Figures 16 and 17 show the active power trends for non-pipelined 

and pipelined MTNCL FFT implementations, respectively. 
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Figure 16: Active Power Trend for Non-Pipelined MTNCL FFT Implementations 

 

Figure 17: Active Power Trend for Pipelined MTNCL FFT Implementations 
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Similar to that of the gate count, the number of points poses significant impacts on the active 

power of MTNCL FFT implementations. For non-pipelined designs, the active power increases by 

3.78× and 3.87× when going from 2-point to 4-point for 4-bit and 8-bit data widths, respectively; 

and these two numbers are 2.90× and 2.96× when going from 4-point to 8-point. For pipelined 

designs, the active power increases by 2.92× and 2.98× when going from 4-point to 8-point for 4-

bit and 8-bit data widths, respectively. Data width is another strong factor impacting the active 

power. For all MTNCL FFT circuits, when going from 4-bit to 8-bit, the gate count increases from 

3.27× to 3.46×. 

Also similar to that of gate count, the impact of pipelining on active power is even smaller. As 

shown in Figures 18 and 19 below, for 4-point and 8-point designs, pipelining only increases the 

active power from 2.9% to 7.7%. This is also because the added MTNCL registers are much 

smaller than the original computational logic. 

 

Figure 18: Active Power Trend for 4-Point MTNCL FFT Implementations 
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Figure 19: Active Power Trend for 8-Point MTNCL FFT Implementations 

 

4.2.3 Leakage Power Analysis 
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Figure 20: Leakage Power Trend for Non-Pipelined MTNCL FFT Implementations 

 

Figure 21: Leakage Power Trend for Pipelined MTNCL FFT Implementations 
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Leakage power follows the same trends as gate count since area is the most important factor 

of leakage. Therefore, the number of points poses significant impacts on the leakage power of 

MTNCL FFT implementations. For non-pipelined designs, the leakage power increases by 3.69× 

and 3.81× when going from 2-point to 4-point for 4-bit and 8-bit data widths, respectively; and 

these two numbers are 2.84× and 2.93× when going from 4-point to 8-point. For pipelined designs, 

the leakage power increases by 2.99× and 2.98× when going from 4-point to 8-point for 4-bit and 

8-bit data widths, respectively. Data width is another strong factor impacting the leakage power. 

For all MTNCL FFT circuits, when going from 4-bit to 8-bit, the leakage power increases from 

3.30× to 3.51×. 

Also following the trend of gate count, the impact of pipelining on leakage power is small. As 

shown in Figures 22 and 23 below, for 4-point and 8-point designs, pipelining only increases the 

leakage power from 4.7% to 12.7%. This is also because the added MTNCL registers are much 

smaller than the original computational logic. 
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Figure 22: Leakage Power Trend for 4-Point MTNCL FFT Implementations 

 

Figure 23: Leakage Power Trend for 8-Point MTNCL FFT Implementations  
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5. Conclusion 

In this thesis work, 10 MTNCL FFT circuits were implemented using the TSMC 65nm 

technology. These circuits cover a spectrum from 2-point to 8-point, 4-bit to 8-bit, and 1-stage to 

3-stage of pipelines. Power analysis shows that the active and leakage power of MTNCL FFT 

implementations is affected by these parameters differently. The number of points and data width 

pose much more significant impacts to the circuit area, which in turn affects the power 

consumption drastically. Pipelining, on the other hand, does not affect area much because the 

added MTNCL registers only occupy a small percentage of the entire logic. Therefore, pipelining 

is not a strong factor for power consumption. If MTNCL is used for implementing FFT algorithms 

in battery-powered embedded systems, pipelining could be considered for boosting up throughput, 

while using the fewest number of points and shortest data width to minimize active and leakage 

power consumption. 
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