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ABSTRACT 

The purpose of this thesis is to develop a reference design for a base level 

implementation of an intrusion detection module using artificial neural networks that is deployed 

onto an inverter and runs on live data for cybersecurity purposes, leveraging the latest deep 

learning algorithms and tools. Cybersecurity in the smart grid industry focuses on maintaining 

optimal standards of security in the system and a key component of this is being able to detect 

cyberattacks. Although researchers and engineers aim to design such devices with embedded 

security, attacks can and do still occur. The foundation for eventually mitigating these attacks 

and achieving more robust security is to identify them reliably. Thus, a high-fidelity intrusion 

detection system (IDS) capable of identifying a variety of attacks must be implemented. This 

thesis provides an implementation of a behavior-based intrusion detection system that uses a 

recurrent artificial neural network deployed on hardware to detect cyberattacks in real time. 

Leveraging the growing power of artificial intelligence, the strength of this approach is that 

given enough data, it is capable of learning to identify highly complex patterns in the data that 

may even go undetected by humans. By intelligently identifying malicious activity at the 

fundamental behavior level, the IDS remains robust against new methods of attack. This work 

details the process of collecting and simulating data, selecting the particular algorithm, training 

the neural network, deploying the neural network onto hardware, and then being able to easily 

update the deployed model with a newly trained one. The full system is designed with a focus on 

modularity, such that it can be easily adapted to perform well on different use cases, different 

hardware, and fulfill changing requirements. The neural network behavior-based IDS is found to 

be a very powerful method capable of learning highly complex patterns and identifying intrusion 

from different types of attacks using a single unified algorithm, achieving up to 98% detection 



 
 

accuracy in distinguishing between normal and anomalous behavior. Due to the ubiquitous 

nature of this approach, the pipeline developed here can be applied in the future to build in more 

and more sophisticated detection abilities depending on the desired use case.  

 The intrusion detection module is implemented in an ARM processor that exists at the 

communication layer of the inverter. There are four main components described in this thesis 

that explain the process of deploying an artificial neural network intrusion detection algorithm 

onto the inverter: 1) monitoring and collecting data through a front-end web based graphical user 

interface that interacts with a Digital Signal Processor that is connected to power-electronics, 2) 

simulating various malicious datasets based on attack vectors that violate the Confidentiality-

Integrity-Availability security model, 3) training and testing the neural network to ensure that it 

successfully identifies normal behavior and malicious behavior with a high degree of accuracy, 

and lastly 4) deploying the machine learning algorithm onto the hardware and having it 

successfully classify the behavior as normal or malicious with the data feeding into the model 

running in real time. The results from the experimental setup will be analyzed, a conclusion will 

be made based upon the work, and lastly discussions of future work and optimizations will be 

discussed. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation  

Providing electricity through power grids is a crucial component for the function of 

society in terms of comfort, leisure, and functionality. As technology has advanced, grid 

connected devices have also evolved in their levels of complexity and computation. Grid 

connected devices have been put on a network that allows for more communication and analyses 

of the devices. The benefits of integrating such devices on a network connected to the internet 

include efficient communication to alter settings and system output and being able to monitor 

inverter behavior more easily. However, securing the inverters has now become of paramount 

importance because they may now be vulnerable to cyber-attacks such as interference, 

modifications, and damage. Some of the cyber-attacks include spoofing the data, denial of 

service, or alterations of data to damage the inverter. For instance, a section of the grid in 

Ukraine during 2016 was shut down by cyber attackers [1]. The metrics of confidentiality, 

integrity, and authenticity need to be maintained when implementing security strategies for grid 

connected devices.  

Cyber-attacks can come in different forms and at various levels for grid-connected 

devices. Inverters generally have multiple layers such as the communication layer, control layer, 

and hardware layer where each layer has its own vulnerabilities [2]. Attackers can gain access at 

the communication layer, which is the top layer of the inverter, through means such as Man in 

the middle, spoofing, phishing, Denial of service, Structured Query Language injection, and 

other types of methods. After gaining access at the communication layer, the attacker can deploy 

various attacks by sending malicious commands to the inverter or by sending faulty data to the 
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inverter, which may result in damaging the power electronic device. There are various 

approaches to addressing attacks and vulnerabilities at the inverter level. Many cybersecurity 

methods attempt to mitigate such vulnerabilities by initially designing the inverter in a secure 

manner. However, with the rapid advancement of technology and new methods, additional 

vulnerabilities are always a threat.   

In recent years, there was a cyberattack on IT service provider Solar Winds and of its 

victims were electricity and oil companies. The Ukraine attack on the power grid in 2016 and 

even this recent attack on Solar Winds both demonstrate the importance of cybersecurity, as such 

attacks affect not only the companies themselves but large portions of the population. With the 

advancements of IOT devices, grid connected devices have now been put on a network, and 

although that has brought immense benefit it has also made these devices vulnerable to 

cyberattacks. Moreover, while researchers and engineers will always attempt to make their 

designs secure, there is no guarantee that the inverter will not be attacked. There is additionally 

no guarantee that the existing security systems will be able to handle the attack, due to the 

evolving nature of technology. As a result, a crucial step in addressing security issues involves 

intrusion detection, and in particular an intrusion detection approach that will be adaptable to 

newly discovered attacks without having to re-implement the base algorithm.  

This work attempts to help secure grid-connected devices by implementing a machine 

learning based intrusion detection system at the communication layer of the inverter. A neural 

network behavior-based detection algorithm serves as the base of this work, due to its wide 

applicability in computer science in learning to perform a wide variety of identification tasks 

using data. The deployment of the neural network algorithm is to make intrusion detection more 

efficient at identifying a diverse range of anomalous behavior that could have resulted from an 
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adversary. The goal of this research is to detail the process of training and deploying a neural 

network to detect and learn behaviors that could result from various types of attacks on an 

inverter without the operator having to consistently monitor the inverter, along with 

implementing an intrusion detection algorithm that is robust to new cyberattacks because new 

attacks are always being developed and as a result the solution needs to be adaptable as well as 

modular.   

1.2 Intrusion Detection  

Cybersecurity involves numerous principles in order to sustain the standards necessary 

for secure practices. If a system is methodically secure, then undesired influences would have a 

minimal impact on the system. However, no matter how secure a system is, an intrusion or attack 

is always a real threat. Therefore, in order to be able to mitigate attacks it is of paramount 

importance to understand the intrusion event and be able to detect such an event should it occur. 

In order to be able to detect malicious behavior, one security method deployed is implementing 

an intrusion detection system. An intrusion detection system, also known as an IDS, is a software 

application or a device that monitors a network for malicious activity or cyberattacks [3]. 

Generally, any malicious activity or violation would be reported or flagged in the system.  

There are multiple types of intrusion detection depending on the application of the 

device. Two types of intrusion detection systems are signature-based detection and behavior-

based detection. Signature-based detection is the traditional approach, which generally involves 

observing the packet’s signature or length of the bytes in network traffic. More recent is the 

second type of intrusion detection: a behavior-based approach, wherein machine learning is used 

to observe patterns and trends in the behavior of a certain metric in order to detect an attack. This 

technique uses a machine learning algorithm that is trained to identify the range of what 
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constitutes normal behavior. If incoming behavior does not possess qualities considered normal, 

this is then classified as an anomaly and potentially malicious. This approach is superior to the 

signature-based approach as it determines anomalies based on trends and behavior, and not just 

packet length or size, and can therefore detect more complex attacks and also attacks that bypass 

signature-based detection. Furthermore, there is a need for this approach because there are 

always newer types of cyberattacks that are being developed and a behavioral based approach 

offers a solution that is adaptable and robust to newer technology. The intrusion detection 

method implemented in this work is a behavior-based approach that detects anomalies in a 

voltage time series from a photovoltaic inverter.  

1.3 Machine Learning and Neural Networks 

Machine learning has been at the forefront of the artificial intelligence boom in recent 

years. Machine-learning algorithms analyze statistics on tremendous amounts of data in order to 

find patterns, often matching and even surpassing human pattern recognition abilities [4]. The 

type of data can range from alphabets, numerical values, words, images, clicks, voltages, and 

even more types of data. Most modern intelligent systems on the Internet such as “Duck Duck 

Go” or “Bing” use machine learning extensively. Additionally, voice assistant modules found in 

various phones and devices also use machine learning in assisting their users. Each of these 

systems leverage large amounts of data collected from users and other sources to fuel their 

performance.  

Neural networks and deep learning form a key branch of machine learning that has 

enabled many of the newest advancements in artificial intelligence. Artificial neural networks 

consist of node layers that include an input layer, additional hidden layers depending on the 

complexity of the algorithm, and an output layer [5]. Deep learning uses many layers of these 
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computational nodes working in conjunction to sift through data and yield a final result that is a 

prediction. A deep learning algorithm fundamentally consists of multiple neural networks or a 

single network with many layers [6]. Neural network layers are composed of neurons, 

connections and weights. The neuron, a type of node based loosely on a biological neuron, 

computes the weighted average of the data input and passes that information through a non-linear 

function [6]. The connection and weights connect the neurons in the same layer and to other 

layers and each one has a weight value that represents the strength of the connection. The goal is 

to tweak the weights such that the output produces low error relative to the desired task. There 

are two propagation functions; a forward propagation function that delivers a predicted value, 

and a backward propagation function that yields the error value [6]. The learning rate is a tunable 

metric that is used to determine how quickly the value of the weights should be updated. The 

weights are used to decrease the amount of loss that is incurred when the model attempts to make 

a prediction based on its data inputs. Furthermore, there are other machine learning algorithms 

that can be used for intrusion detection and the one chosen for this research is the recurrent 

neural network approach because of its highly accurate detection rate, ability to accept multiple 

metrics, and additional factors that will be elaborated upon in Chapter 2.  

This thesis utilizes the artificial neural network approach for the research considered 

because it can learn complex patterns from any arbitrary dataset and continually improve its 

ability to distinguish between normal and anomalous behavior. Identifying attacks in 

cybersecurity is of paramount importance and although there are various ways of identifying 

threats, neural networks are particularly powerful due to their quality of being universal function 

approximators, meaning that they can learn any arbitrary function – and hence almost all pattern 

recognition tasks – given enough data. Additionally, since the model learns based on behaviors, 
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it can detect different types of attacks, independent of the way the attack was caused. 

Furthermore, using this type of software approach allows for the algorithm to be built upon to 

and improved with varying metrics without having to make modifications to the hardware. As a 

result, adopting a behavioral based approach to intrusion detection offers a robust solution to 

cyberattacks. Attacks that result in a breach of any of the members of the CIA triangle can be 

identified with an artificial neural network. For example, in the case of a man-in-the-middle data 

spoof attack wherein an attacker spoofs the data at the communication layer, the integrity of the 

data has been violated [7]. The attacker might be sending hazardous commands to the inverter, 

altering the voltage to damage the hardware, or shut it down. The behavior-based IDS would 

identify that the behavior is abnormal and malicious, concluding that an intrusion has occurred 

and flagging it as such. This approach aids in the process of mitigating a cyberattack by 

identifying the attack and notifying the system that a breach has occurred. Additionally, the 

behavior-based detection is not dependent upon the hardware, and hence is flexible to different 

types of inverters. Lastly, it addresses the need for a solution that is adaptable to detecting newer 

types of attacks. 

1.4 Thesis Objectives 

The purpose of this thesis is to investigate and explore a method for intrusion detection of 

cyberattacks for a power electronics device and an ARM processor using an artificial neural 

network algorithm in real time. This work is a reference design that incorporates collecting data 

to train and test a neural network algorithm to detect malicious behavior, deploys the neural 

network model onto an ARM processor, and also updates the algorithm on the hardware in a 

manner similar to patching. This reference design will portray the process of collecting data, 

simulating data, training the neural network, deploying it onto hardware and updating the 
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algorithm. This thesis is divided into sections including the background information necessary to 

understand the concepts in this research, the approach of the design and the selection of the 

specific algorithm over others, the implementation of the security concepts, and the experimental 

results that analyze the features of the design.  

1.4.1 Thesis Organization 

The thesis is organized sequentially based on the listing below:  

- Chapter 1 serves as an introduction to the concepts associated with this research such 

as the chosen approach which includes intrusion detection and neural networks, and 

the objectives.  

- Chapter 2 provides an explanation of the background concepts needed to understand 

the functionality of the intrusion detection system at the inverter level using neural 

networks, the inverter layers, where the neural network sits in the design, the chosen 

algorithm, and the attack vectors considered.  

- Chapter 3 explains the system implementation, including the process of collecting and 

simulating data, training the model, and fine-tuning its performance. Additionally, it 

outlines the process of deploying the neural network onto the hardware and being 

able to update the code.  

- Chapter 4 summarizes the results and evaluates the neural network based on 

performance metrics. It analyzes the datasets and the efficacy of the model used for 

intrusion detection and explains the CPU usage incurred by the algorithm when 

deployed on hardware. 
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- Chapter 5 summarizes the conclusion and introduces potential future work and 

recommendations for building upon the current neural network implementation of the 

intrusion detection system at the inverter level.  

1.5 References 

[1]    Q. Wang, W. Tai, Y. Tang and M. Ni, "Review of the false data injection attack against the 
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[3] B. Networks, “Barracuda Networks,” What is an Intrusion Detection System? | Barracuda 
Networks. [Online]. Available: https://www.barracuda.com/glossary/intrusion-detection-
system. [Accessed: 01-Jul-2021].  

[4] K. Hao, “What is machine learning?,” MIT Technology Review, 05-Apr-2021. [Online]. 
Available: https://www.technologyreview.com/2018/11/17/103781/what-is-machine-
learning-we-drew-you-another-flowchart/. [Accessed: 01-Jul-2021].  

[5] By: IBM Cloud Education, “What are Neural Networks?,” IBM. [Online]. Available: 
https://www.ibm.com/cloud/learn/neural-networks. [Accessed: 01-Jul-2021].  

[6] Larry Hardesty | MIT News Office, “Explained: Neural networks,” MIT News | 
Massachusetts Institute of Technology. [Online]. Available: 
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414. [Accessed: 02-
Jul-2021].  

[7] S. Deepika and P. Pandiaraja, "Ensuring CIA triad for user data using collaborative filtering 
mechanism," 2013 International Conference on Information Communication and Embedded 
Systems (ICICES), Chennai, 2013, pp. 925-928. 
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CHAPTER 2  

BACKGROUND 

2.1 Introduction  

It can be noted from the first chapter that the motivation for this research is to implement 

intrusion detection using a neural network as a reference design for a grid connected device. It 

was mentioned in the previous chapter that a key part in maintaining the security of a device -- 

namely confidentiality, integrity, and authenticity -- is to be able to detect cyberattacks. 

Cyberattacks can occur at different links in the communication of the inverter or device. The 

primary focus of this intrusion detection approach is at the communication layer of the inverter. 

The concepts related to the artificial neural network algorithm chosen for this intrusion detection 

implementation will also be mentioned and elaborated upon. This chapter will detail the 

architecture of the inverter, the various layers that are relevant to the intrusion detection process, 

and the location of the intrusion detection system in the design of the inverter. Furthermore, the 

communication path of the inverter will be shown and the protocol it uses will be explained in 

this chapter. A focus on the communication layer of the inverter will be explained and elaborated 

upon, while the other various layers will be mentioned briefly to explain the architecture of the 

complete device. Additionally, the attack vectors considered for training the neural network will 

be mentioned to setup up the explanation for it in the following chapter.  

2.2 The Inverter Architecture Overview 

The development of smart inverters with embedded computing has added many useful 

features for increased utility. However, adding these features has also increased the complexity 

of the design as additional layers will have varying components depending on design decisions 

made by engineers. The architecture chosen for the implementation of this research is an inverter 
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with three layers, as can be seen below in Figure 2.1, including the communication layer, control 

layer, and hardware layer. 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.1. Reference design architecture of the topology of the inverter. 

The top layer, known as the communication layer, consists of an ARM processor -- in 

this case the Raspberry Pi 4 -- which hosts an Intrusion Detection Module, a Password Security 

module, an External Device connected through Ethernet, and a Trusted Platform Module that is 

connected via serial. The next layer is the control layer which consists of a Complex 

Programmable Logic device, Digital Signal Processor 1, and a Digital Signal Processor 2 that are 

accessed through serial communication. The bottom layer consists of the Power Electronics 

Hardware and a Hardware Authentication Module. The physical components of each layer will 

be described in further detail below to understand the design. However, since the intrusion 

detection module exists at the top layer, the communication layer will be the primary focus.  
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For a more demonstrative understanding of the physical makeup of the reference design 

architecture, the components within the system are displayed in Figure 2.2. As can be seen here, 

the Raspberry Pi is separate from the UCB controller which hosts the digital signal processors as 

well as the field programmable logic device. The intrusion detection module that exists inside the 

Raspberry Pi communicates to the DSP through Modbus TCP, which is flashed with C code that 

configures and maps the appropriate registers to then send commands to adjust the values of the 

power electronics, along with receiving values that contain the updated metrics of the device. 

 

 

Figure 2.2. Physical device architecture of the inverter. 

2.2.1 Communication Layer 

Within the inverter or grid connected device, a method of communication typically exists 

in order to communicate aquired data into the system as well as out of the system in order to be 

processed and utilized. It is crucial to verify that the data reported from within the device is 

correct and realistic. The data delivers opportunities of growth for companies within the power 

industry that are aiming to develop a robust smart grid [1]. This occurs by observing the data 
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received from the rest of the layers of the system to address any needs or concerns. Any issues 

that arise from within the system can then be documented and addressed by correcting the issue 

in the current system with an update or by developing a revision that corrects the design. In order 

to have better data mangement, data analysis, visualization, and processing of the data, having a 

specific communication layer is crucial. Figure 2.3 defines the communication layer topology 

used for this inverter. Some of the components such as the TPM or External device can be 

swapped out depending on the designer’s needs, and even the Raspberry Pi could be swapped out 

depending on the implementation strategy. The key factor to remember, however, is that the 

device chosen must be able to sustain an intrusion detection module that implements a real time 

neural network algorithm. The main features of the Raspberry Pi will be described below, 

followed by why it is an effective device for implementing a machine learning algorithm for 

intrusion detection.  

 

 

Figure 2.3. Communication layer topology. 

  

The Raspberry Pi is the primary component of the communication layer in this inverter 

topology. The Raspberry Pi consists of multiple inputs and outputs for the user to interface with 

such as a keyboard and mouse for input and outputs, along with being able to directly access the 

General Purpose Input/Output (GPIO) registers to the central processor. Additionally, the 
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Operating System for the Raspberry Pi is Linux based, however it has its own name which is 

known as Raspbian. The GPIO registers provide direct communication with the processor over 

numerous standardized protocols in order to connect other devices such as the Trusted Platform 

Module or other devices. In order to understand what the Raspberry Pi looks like it can be seen 

in Figure 2.4. The primary reasons for choosing the Raspberry Pi 4 in this instance are because 

of the quad core ARM processor that can run a neural network algorithm, the Linux kernel, 

Gigabit Ethernet port, serial interface, being able to host a web-based server, and extensive 

documentation found in the community.  

 

Figure 2.4. Raspberry Pi 4 Model B board layout. 

 For the communication layer, other ARM processors could be used that support a Linux 

kernel. The Linux kernel is a vital component for the communication layer and the artificial 

neural network algorithm because the kernel is compatible with the Python libraries used for 

implementing neural networks. The kernel is the base foundation of an operating system, which 

the particular operating system is the software implemented for the supporting the computer’s 

base functionality. The Raspbian operating system with the Linux kernel is used because it is 
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open source, compatible with data collection software, extremely well documented, and is 

versatile enough to accommodate different modules that can run simultaneously.  

 The core feature of the kernel is to serve as a hub for the required communication link 

between the inverter and the outside world. The kernel provides the necessary setup to allow the 

system to execute programs for inputting commands and transferring data. Furthermore, it has 

the necessary packages and libraries that are used by various algorithms, including collecting 

data, intrusion detection, communicating with register, and hosting a webserver. Being able to 

access the data from the control and hardware layers efficiently is important for the intrusion 

detection algorithm because that data is what will be fed into the artificial neural network 

algorithm. Before being able to access the raw data it must be scaled and formatted correctly to 

be comprehensible to both the user and the algorithm. This formatting occurs when 

communicating with the lower level registers in the system. The webserver, along with other 

scripts that are running within the system manage and manipulate the data. The webserver is a 

hub that routes the critical data to the correct destination. The webserver can then be used to 

display the data in various ways and provide the user with the ability to send and receive 

commands to and from the device. Additionally, the webserver ensures the data is accessible 

through an external communication device, such as the computer. The data that is sent is 

securely encrypted using a TLS encryption protocol. Also, the webserver has username and 

password required for a user to be able to access the Graphical User Interface for accessing the 

data. Additionally, the password management module allows the admin to control what type of 

users can be created to be able to read and write to the server, as well as ensuring that a strong 

password is selected for the user. Other forms of authentication such as multi-factor 

authentication are being researched as protecting passwords from attacks is important, however 
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this is not the focus of this paper. The intrusion detection machine learning model runs in a 

Python script and it monitors the data entering the Raspberry Pi from the DSP in real time to 

determine whether the behavior of it is malicious or normal.  

2.3 The Intrusion Detection Module 

The intrusion detection module exists at the communication layer of the inverter and is 

running inside the Raspberry Pi. The intrusion detection module exists at this layer because 

typically an attacker will attempt to intercept communication at this layer as this is where the 

data is processed and managed. As a result, it is crucial to be able to detect an intrusion at this 

layer because an attack at this layer could result in downstream effects to the remaining layers in 

the topology. As mentioned in Chapter 1 there are multiple types of intrusion detection methods 

and algorithms that can be deployed. Signature based intrusion detection relies on the signature 

of the packets, packet length or byte size of the data, but is less robust as these can be falsified by 

a skilled attacker. On the other hand, behavior-based intrusion analyzes the behavior of the data 

it is monitoring and uses metrics and patterns in the data to determine whether that behavior is 

malicious or not and flag it as an intrusion if the behavior does not match what the model has 

been trained to understand as normal [2]. As can be seen in Figure 2.5 below any sort of 

malicious behavior could occur at the communication link from the grid or even during the data 

collection process. To account for this, the intrusion detection module has been implemented at 

the corresponding level in the design. The intrusion detection module deploys an artificial neural 

network algorithm that serves as the base of the intrusion detection system. This algorithm is fed 

data, is trained on that data, and then is deployed to run in real-time on a stream of data from the 

inverter. The details of the algorithm implementation will be elaborated upon in the next section. 
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From a high level design perspective, it is sufficient to note that the artificial neural network is 

the core component of the intrusion detection module. 

 

Figure 2.5. Intrusion Detection module. 

The intrusion detection module is currently implemented in Python 3 because Python has various 

libraries for implementing machine learning algorithms and is also compatible with the 

Raspberry Pi 4. The script is consistently running on the Raspberry Pi 4, collecting data and 

analyzing it through its neural network algorithm. However, deploying this algorithm onto the 

Raspberry Pi is the last step. First, data needs to be collected, processed, and prepared for 

training. The model must then undergo a training scheme to optimize its parameters. Afterwards, 

the artificial neural network algorithm is fed a test dataset to validate that its performance. Once 

it has been validated, it is then saved and loaded onto hardware for deployment. It is at this stage 

that the model no longer takes in datasets but rather is fed real time data and then classifies the 

behavior as malicious or normal. This is merely a fundamental outline of how the intrusion 
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detection algorithm works; it is important to understand which attack vectors were considered 

when implementing the intrusion detection module and how that influenced the design. This will 

be detailed in the next chapter.   

2.3.1 Threats Considered and Modeling the Attack 

There are numerous approaches that an assailant might deploy when looking to attack a 

system. Having a communication layer in the inverter topology allows for efficient data 

management and monitoring, yet this added benefit comes at a cost of a larger attack surface. As 

a result, when designing a smart inverter and implementing an intrusion detection module, it is 

important to consider various attack vectors. Cyberattacks are aimed at violating one or all 

components of the CIA triangle, namely confidentiality, integrity, and availability. One of the 

approaches of assessing the risk of potential attacks is to model that behavior using what is called 

a STRIDE Model [3]. As can be seen in Table 2.1 below, a table of the potential threats, the 

STRIDE Model consists of spoofing, tampering, repudiation, Information Disclosure, Denial of 

Service, and Elevation of Privilege. 

Table 2.1. STRIDE Table Definitions 
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This model is used to help find threats and determine what is the goal for a particular type 

of attack. A denial-of-service attack for example is when the attacker attempts to shut down the 

application of the service. In the case of a smart grid connected device, an attacker might want to 

shut down the power completely so the user is unable to access the device. In another instance, 

an attacker might tamper with the data and modify it to result in a denial of service or to damage 

the hardware of the device.  Each threat listed in the STRIDE model is a violation of a particular 

security property, as can be seen below in Table 2.2. 

Table 2.2. STRIDE Threat Model [4] 

 

Each security property mentioned in the table above is aimed at preserving a particular 

component of security. Authenticity is the property of being able to verify that the data that is 

transmitted is valid and unaltered from the trusted source [5]. Spoofing would violate that as the 

data could be altered to cause the inverter to behave in a manner that is detrimental to the device. 

Additionally, the data is no longer verifiably from the intended sender. Integrity refers to 

guarding against improper tampering of the data or even preventing the destruction of it [6]. 

Non-repudiability refers to the principle that the owner or sender of the message cannot deny that 

they have sent the data and this is used to prove that the receiver received the data from specified 
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sender. Confidentiality refers to ensuring that the data is known only by the authorized parties 

and no other entities. This policy is even more crucial than others as any secure link of 

communication must ensure this policy is fulfilled. Availability is ensuring that the data is 

accessible to the authorized users and in the case of a denial of service this policy would be 

violated. Authorization refers to the fact that only users authorized to access the data can access 

data, and for instance, if a non-admin user gains access to administrative data then this policy is 

violated. Although there are five security principles mentioned, generally only three are 

mentioned with the CIA triangle, as some of these policies are subsets of Confidentiality, 

Integrity, and Availability. 

Different types of attacks can result in different policies being violated. One such attack 

would be a man in the middle data spoof attack. In such an attack, a third party can listen in on 

the communication link and alter the data before it arrives on the receiving end. This is an 

important attack vector to consider as some threat intelligent agencies state that 35% of 

exploitation activities involve these attacks [7]. When implementing the intrusion detection 

module this is the main attack vector to consider and this attack violates both policies of 

authenticity and integrity. The attacker could disrupt the communication link and alter the data. 

The next attack vector that is considered is the false data injection attack, which could result 

from an attacker injecting false data into the communication link to show incorrect data 

monitoring. This type of attack is different from merely a man in the middle attack, as the false 

data involves altering the data and attempts to deceive the operator. Additionally, detecting this 

type of attack is impossible using a signature-based intrusion detection approach, as the behavior 

of the data has been altered, while the packets, bytes, and other such traits remain the same [8]. 

As a result, implementing an artificial neural network that is trained to detect cyberattacks based 
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on malicious behavior is crucial and this is one of the primary justifications for implementing an 

artificial neural network machine learning algorithm for intrusion detection instead of 

implementing signature-based detection. The final attack scenario considered is the Denial-of-

Service attack, which acts with the intention of shutting down the data needed to keep the device 

operating. The following section will detail the specifically chosen artificial neural network 

algorithm that serves as the core of the intrusion detection module. 

2.3 The Chosen Neural Network Algorithm 

There are various types of machine learning algorithms that exist in the world of 

information technology. As mentioned in Chapter 1, an artificial neural network is a specific type 

of machine learning algorithm. Artificial neural networks consist of node layers, containing an 

input layer, multiple inner hidden layers, and an output layer as can be seen below in Figure 2.6. 

 

Figure 2.6. Neural Network Nodes [9]. 
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One of the key advantages to using a neural network for the behavior-based intrusion detection 

task, as opposed to other machine learning methods, is that neural networks can fulfill the 

Universal Approximation Theorem. This means that with certain caveats, for any arbitrary 

function, a neural network configuration exists that can approach it. In practice, this suggests that 

even very complex input-output mapping can theoretically be accomplished by a neural network. 

In the context of the IDS, this is favorable because it implies that there are little to no inherent 

limits to the complexity of the behavior that can be analyzed and classified. Thus, it should be 

possible to use this single algorithm to train the IDS to be able to encapsulate normal and 

anomalous activity of arbitrary complexity.  

Neural networks improve their accuracy through training on diverse datasets that 

encompass a wide range of possible examples. In this work, we use a neural network for a 

supervised learning task. This means that data is provided in the form of the raw data itself 

consisting of many examples of the data relevant for the given task, i.e. voltage trend examples 

in this case, as well as a corresponding label that denotes which category each example falls into, 

i.e. normal or anomalous in this case. The network then learns to match raw data to the correct 

classification based on the examples it has seen. It is only after they have been trained to a 

satisfactory degree of accuracy with data from the real world can neural networks then be 

deployed onto hardware to be used in real time to perform predictions on data points they have 

not been trained on. Each node in the neural network consists of a linear regression model and it 

consists of input data, weights, a threshold, and an output [9]. After the input layer is determined, 

weights are assigned. These weights are used to help determine the importance of a variable and 

the larger weights serve as a larger factor than inputs with smaller weights. All the inputs are 
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multiplied by their individual weights and are summed together as can be seen in the neural 

network equation below in Figure 2.7 [9].  

            

Figure 2.7. Equation for input node [9]. 

The output of that node is then passed through an activation function which yields a specific 

output. If that particular output exceeds the chosen threshold, it activates the node, and then 

passes the data to the next layer in the network. The general equation of the output function can 

be seen below in Figure 2.8 where it yields a binary 1 or 0 to classify the value based on the 

calculation of the function [9]. 

 

Figure 2.8. Equation for output node [9]. 

 This description is of a feedforward neural network which is the more common neural network, 

however there are also neural networks that propagate data backwards as well. When trained 

successfully, the neural network must simply feed forward and compute the values at the output 

layer. These values then represent the prediction it made.  

 When training neural networks it is crucial to be able to evaluate the accuracy of the 

model by using an equation. A fundamental component of the training process is an equation that 

calculates the loss, which quantifies the correctness of the model. The model adjusts its weights 

and biases to optimize this loss function towards a minimum, also known as a point of 

convergence. This optimization is done through gradient descent, an efficient technique for 
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optimizing high-dimensional multivariable functions, as loss functions typically have a 

dimensionality that scales with the number of features in the network. Gradient descent 

calculates the gradient vector with respect to the different variables in the cost function and 

tweaks the parameters such that the function moves in small jumps towards a minimum, as can 

be seen in Figure 2.9. The size of these “jumps” is quantified as the learning rate and is a key 

hyperparameter to consider in the training of a neural network. A lower learning rate is 

tantamount to smaller steps taken by gradient descent, which usually results in better long-term 

optimization of the function but slower and more computationally taxing training. A high 

learning rate means larger gradient descent steps and faster training, but a higher chance to get 

stuck in a suboptimal state for the network.  

 

Figure 2.9. Illustration of gradient descent method [9]. 
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 The goal is to decrease the value of the loss with each epoch until it reaches the point of 

convergence seen in Figure 2.9, as that is where the model will be the most accurate. An epoch 

refers to training the neural network with all of the training data for a single cycle [9]. Gradient 

descent is used for optimization and the reason this model is chosen is because it is 

computationally too expensive for thousands of inputs in the model and hence gradient descent is 

used for this model.Training for different numbers of epochs will result in varying accuracy of 

the model. Typically, the larger and more diverse the training dataset, the less epochs are needed 

to achieve reasonable performance. 

 There are various other machine learning algorithms that can be implemented to detect 

anomalies in a time series data and some of the most recent algorithms with their benefits and 

costs can be seen below in Table 2.3.  

 Table 2.3. List of Machine Learning Algorithms Benefits and Costs. 

 
 

 The first algorithm known as the ARIMA algorithm consists of two primary components 

known as known as the Auto Regressive component and Moving Average component [11]. The 

first component is used to depict the regression of the prediction the model, while the second 
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component is used to model the error of the algorithm with each iteration. The SARIMA 

algorithm builds upon the ARIMA algorithm with the added support of being compatible with 

seasonal data, meaning that unlike ARIMA, it can perform detection upon data that is not likely 

to repeat.  

 The algorithm chosen for the intrusion detection module is part of a class of neural 

networks known as recurrent neural networks. These network architectures use a recurrent 

feedback memory loop to handle time series data. Within this class, the specific algorithm is 

known as the Long Short-Term Memory (LSTM) Autoencoder. This algorithm was chosen for 

this research over the other algorithms for a variety of reasons. When compared to the ARIMA 

model, the LSTM autoencoder has been shown to be more accurate at identifying complex data 

patterns when analyzing power consumption data [12]. Additionally, for each training iteration 

the LSTM autoencoder has also been shown to be 85% more accurate [13]. When both 

algorithms are compared the ARIMA model has much lower accuracy and for the 

implementation of intrusion detection for voltage behavior at the grid-edge, being able to 

accurately identify behavior with more complex datasets is of paramount importance as voltage 

patterns can vary greatly. The SARIMA algorithm could also be used for implementing an IDS 

at the grid edge, however its added structure for factoring in seasonal data is not relevant for the 

task at hand. The goal is to detect cyber-attacks, not to merely predict voltage trends, and as a 

result the added feature of seasonal data adaptation is not of benefit. The LSTM autoencoder 

does need more data to be trained when compared to these other algorithms, however that added 

cost is not an issue for training the IDS, because training the dataset will not occur on the ARM 

process of the inverter, but at a separate device. The LSTM autoencoder algorithm is chosen over 

the other mentioned algorithms because of its high accurate detection rate, it has the ability to 
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factor in multiple metrics and thus can be expandable for future implementations, and it is 

successfully able to work on complex data sets.   

Neural networks use memory and add the ability to learn from data of a temporal nature 

and recognize patterns therein. This makes it possible to perform analysis on time series data 

such as speech, as well as voltage in this case. An autoencoder is a type of neural network that 

learns a compressed representation of an input [10]. It can be seen in Figure 2.9, that an LSTM 

Autoencoder consists of an encoder that takes an input and compresses it and then a decoder that 

attempts to reconstruct the data as an output.  

 

Figure 2.10. LSTM Auto-encoder Model.  

The LSTM autoencoder uses two layers for compressing the input data and then two 

layers for decoding the data and reconstructing it [10]. The LSTM Autoencoder is a useful 

algorithm for data that is represented as a series. For this intrusion detection system it is 

particularly useful for detecting malicious behavior in the time series of voltage behavior. Each 
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example for the autoencoder is not merely a voltage point but a voltage series of data points, and 

as a result the LSTM autoencoder is able to detect more complex patterns than other neural 

network algorithms that are not able to be trained through time series data. The autoencoder is 

then used to classify the input behavior as normal or malicious. This is done by characterizing 

loss. Since the autoencoder is trained to reproduce data with low loss, when trained on normal 

data one can detect anomalies simply by checking the loss value. If an arbitrary input time series 

is reconstructed with low loss, one may consider this to be normal behavior as the model, which 

has seen normal behavior, recognizes it quite well. However, if the loss is much higher than it 

typically is when processing a normal sequence, it can be concluded that this particular sequence 

is anomalous. However, it is important to note that the LSTM Autoencoder is a powerful and 

ubiquitous method that can be used in multiple ways to perform the intrusion detection; the 

aforementioned approach is simply one of several possible approaches. Users may adapt how the 

system uses the losses or learned features of the LSTM Autoencoder to classify the data 

according to their needs.  
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CHAPTER 3  

TEST SETUP AND EXPERIMENTAL RESULTS 

3.1 Introduction 

The purpose of this section is to detail the process of training the neural network 

algorithm to be able to detect malicious behavior and then deploy the algorithm onto hardware to 

run on real-time data. The procedure and the tools used to collect the data, process it, and feed it 

into the model will be explained in this section. The implementation of the graphical user 

interface that is used to monitor the data will also be explained. Additionally, the process of 

designing and simulating the various datasets to train the neural network algorithm for optimal 

detection of malicious behavior will be explained in this chapter, along with the training process 

itself. Lastly, the procedure for saving the model and successfully deploying it onto the hardware 

such that it is able to run in real time will be explained along with the libraries and dependencies 

needed for implementing the intrusion detection module.   

3.2 Data Collection Process 

As mentioned earlier in the previous section, in order to implement an artificial neural 

network algorithm, adequate data needs to be collected and processed before the data is fed to 

the model. For the IDS to continue to update and improve, the data collection and preparation 

process is a crucial piece of the overall pipeline. The communication layer consists of all the 

necessary components necessary to collect the data because this layer is responsible for 

managing and processing the data. In particular, the Raspberry Pi serves as the core component 

of the communication layer and since the data is collected here, this is where the intrusion 

detection module exists. There are various communication and protocols that can be 

implemented when designing the communication link. For this research, the Modbus TCP 
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protocol is implemented for the communication from the DSP to the Raspberry Pi. Modbus TCP 

is a protocol used to assign ways of managing data between various layers. It is important to 

have a protocol so that the data is transmitted in a consistent manner. The communication path 

and protocol of the inverter for this reference design can be seen in the illustration in Figure 3.1. 

The controller at the control layer is flashed with DSP code in C, and it will obtain the values 

from the power-electronics layer and communicate them back to the communication layer that 

will then process the data and display it on the GUI. Sending commands from the Raspberry Pi 

works in a similar manner in that the user would write values to a script running on the computer 

interface, which values will then be sent to the designated registers in the control layer. Finally, it 

will update the values at the hardware layer. 
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Figure 3.1. Communication path diagram. 

There are a variety of packet sniffing tools that can be used to collect data. For this 

research, Wireshark was used to collect the data because it is open source, well documented, and 

widely known in the world of information technology. A sample of the data being collected can 

be seen in Figure 3.2 of the Wireshark packets. 
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Figure 3.2. Wireshark capture. 

The timestamp, protocol, packet length and information can be seen in the screenshot. Once the 

packets arrive into the Raspberry Pi, they are written into variables and stored in a Python script. 

Thereafter, they are published to the webserver through JavaScript. JavaScript is a language used 

for frontend web development and for formatting the data appropriately. Hence in the figure 

above JavaScript can be seen above the variables that are being read from the inverter, such as 

VDCin, Va, Vb, and other variables that are being read from the power electronics. Once the 

data is collected here, it is then exported into a text file. This text file will not be used to feed the 

model but rather it is to ensure that all the packets collected are stored in one location. Following 

this step, another Python script will be used to filter through the data looking for a key metric, 

such as Voltage A, and then store the values into a comma separated values file. This step is 

crucial because the neural network cannot simply be fed a text file with various packets and 

different types of data. The data needs to be formatted in a specific manner in order for it to be 

comprehensible to the machine learning model [1]. Different algorithms will require various 
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methods of preprocessing the data and for the LSTM autoencoder used in this research, the data 

will be in the format of a voltage time series of a given sequence length. This means that each 

row of the data table will be one trend of a voltage time series, with the columns corresponding 

to different time steps in this series. For the purposes of how the IDS model considers data, each 

of these rows corresponds to one “example” of either normal or anomalous behavior to the 

model. It is important to note that when a single metric is being used as the input, one data point 

is not an example, but rather a list of data points is considered to be one example as can be seen 

below in Figure 3.3. If multiple metrics were being used, such as current or an additional voltage, 

each extra metric would increment the dimensionality of this input data. For example, for two 

metrics each example would be a two-dimensional data structure, and for three metrics each 

example would be a three-dimensional data structure, etc.  

 

Figure 3.3. Example of a dataset. 

Although only 14 points are being shown in the figure, each row in total has 150 data points and 

that individual row is one example of what constitutes normal voltage behavior, meaning that 

these data points were collected when the power electronics device was running under normal 

operating conditions with an acceptable frequency of 50 Hz. Collecting the data, filtering it from 

the packets, and then storing it into a comma separated file in the correct format are the main 

steps involved before the data can be fed into the model. Furthermore, it is important to store the 

data into what is known as a Pandas DataFrame when it is read from the csv file because this is 
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the format that the neural network system is configured to understand in this implementation [1]. 

Also, the larger the dataset the more accurate the model’s detection results are after training. This 

dataset collected 94 examples over 12 hours which is still a relatively small sample size when it 

comes to machine learning. Ideally, there should be thousands of examples when training the 

model for robust results. To the end of increased performance, such data can be obtained by 

creating simulations based on transformations of the real data that was collected. Simulating the 

data is an important part of the machine learning pipeline in order to achieve the best possible 

overall performance. While the model was initially trained on these 94 examples, more data 

examples were needed for better results and also for thoroughness and robustness of the model. 

When simulating the data, it must be ensured that the data matches closely with the real world 

collected data. As a result, the data simulations were constructed based on the real world 

collected data. The normal operating conditions chosen for this data set range from 1100 to 1500 

millivolts as can be seen in the plot below in Figure 3.4. This is real data collected from the 

hardware, visualized to help inform the simulation methods.  A crucial component to understand 

is that the voltage here is scaled down as it is being tested on a power-electronics board and not a 

full-scale inverter in order to make testing and prototyping easier. Additionally, when deploying 

onto the inverter in the field, the only change would be scaling.  
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Figure 3.4. Normal collected data plot. 

Furthermore, it is important to understand that whatever data is chosen to feed the inverter, that 

will be the data that the inverter will interpret as normal and as result, even if there are minor 

oscillations in the data from 1100 to 1500 mV, the neural network will be able to understand that 

such oscillations do not constitute malicious behavior as the data for the anomalous dataset will 

be different in comparison to normal data. Additionally, it can be seen that the collected data is 

noisy, however since the algorithm trains on the data that is collected, the noise will not 

negatively affect the detection. The LSTM Autoencoder algorithm implemented in this work is 

able to distinguish variances in data that the human eye cannot, a fact that can be leveraged by 

providing access to large amounts of data. Once the initial dataset has been collected it can be 

used to train the model, or more data can be simulated and the model can be trained with a larger 

dataset. Along with the normal data set, a malicious dataset was also labelled and data for it was 

collected as well. There are multiple reasons to collect and identify an anomalous data set in the 

development process. The first reason is to be able to train the model and verify that it can 

distinguish between what is considered normal and malicious. The second reason is to be able to 

run predictions on input data – known as inference -- using the model once the training is 

complete and use that to configure its process of using the loss values to distinguish between 
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normal and malicious behavior [2]. Finally, these can be used to quantify the performance of the 

model, tracking how often it makes correct predictions. Training and testing the model will be 

detailed in later sections of the model; for now it is sufficient to understand that the anomalous 

dataset is used throughout the development process in training the model and validating its 

performance before deploying it onto hardware to operate on real-time data. A sample of what is 

considered unacceptable voltage behavior can be seen below in Figure 3.5, where data was 

collected from the inverter with values from the DSP which the power electronics board shut off.  

 

Figure 3.5. Malicious collected data plot. 

This dataset is labelled as anomalous and the neural network algorithm will classify any data that 

matches this data to be identified as malicious. The goal here is for the algorithm to understand 

that the given data would not be considered as normal. An attacker may for instance, suddenly 

drop the voltage values below the threshold to interfere with the application of the power 

electronics device. This collected data is an example of one of the various examples that was 

used in the anomalous dataset when training and testing the model. The data simulation sets will 

be elaborated upon later in the following section.  
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3.2.1 Normal and Malicious Data Simulation 

Having a large dataset is a key factor in training machine learning algorithms for 

deployment [3]. After collecting normal and anomalous data, the next step is to simulate data and 

generate larger and higher quality datasets using the collected samples. The example of the 

normal dataset simulation can be seen below in the plot of the data in Figure 3.6. It stays within 

the range of the collected normal data set that was shown in the previous section. 

 

Figure 3.6. Simulated normal behavior. 

This data was generated via a simulation that extrapolated from the collected data with the goal 

of adding a larger quantity of more diverse examples for the model to learn from. It can be 

compared to the collected normal data plot in Figure 3.7, and it can be seen qualitatively that the 

simulated dataset matches closely to the collected normal dataset.  
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Figure 3.7. Normal collected data. 

After simulating the normal datasets, multiple examples were simulated for the malicious 

dataset. The attack vectors considered when simulating the malicious data were mentioned in 

Chapter 2 and they included a denial-of-service attack, a faulty data injection attack, and a man 

in the middle attack.  

The simulated behavior of the denial-of-service attack can be seen in Figure 3.8 below. In 

this scenario the voltage drops to an extremely low value that would not allow the inverter to 

function correctly. We simulate the behavior of the inverter if it were to suddenly turn off, 

dropping from its normal operation mode. In order to train the model to be able to recognize this 

type of attack in a diverse range of scenarios, we generate a variety of different examples in 

which this may occur. These examples start with normal behavior and then turn off at a random 
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point. Moreover, the "off" behavior is a randomly sampled sequence of points from the above 

"off" dataset. This ensures diversity in the dataset such that the model is able to correctly 

recognize the behavior in all cases. 

 

Figure 3.8. Denial of Service Attack data. 

The next example for the malicious dataset considers the faulty injection data attack by writing 

voltage values that oscillate to high voltage values beyond the acceptable range, in this case up to 

2000 mV, then such behavior would be considered malicious and can be seen in Figure 3.9. It is 

important to understand that both these types of attacks could result from a man in the middle 

data spoof attack as well, therefore such malicious behavior could result from multiple attack 

vectors. The examples chosen for this intrusion detection algorithm are to demonstrate the 

machine learning capabilities and the advantages of using behavioral based intrusion detection. 



40 
 

As can be seen, these types of attacks do not alter the signature of the packets, but alter the 

values of the data being read, hence a behavior-based detection tool is crucial [3]. This example 

demonstrates two different attack vectors being identified via the same method. Since this attack 

can happen in a variety of ways, we create a diverse dataset of scenarios by randomizing the 

number of spikes/oscillations, the amplitude of each one, its duration, and where they occur. 

 

 

Figure 3.9. Faulty Injection Data Attack.  

A faulty data injection attack could take myriad other forms. However, this form of altering the 

voltage to beyond the acceptable threshold demonstrates the neural network can distinguish 

between normal behavior and different types of malicious behavior.  
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The third example that was simulated considered the man in the middle data spoof attack, 

in which the attacker shoots the voltage far above the threshold to damage the hardware as 

shown in Figure 3.10. The timing and intensity of the spikes are randomized across examples in 

the simulated data.  

Each of these attacks contribute to the number of examples in the anomalous dataset that 

number approximately 9000 in the largest data set and 2500 in the smaller dataset. There are 

other attack vectors that can be simulated as well, however these three scenarios are sufficient to 

demonstrate the efficacy of the artificial neural network as these examples differ from one 

another and can portray the algorithm’s ability to be able to identify varying complex patterns. 

 

Figure 3.10. Sudden Voltage Spike Attack data. 



42 
 

 After simulating all the various datasets, they are written into a comma separated file in 

order to be able to feed into the artificial neural network. There were a total of 9000 normal data 

examples, and 9000 anomalous data examples in the largest dataset which sums to 18000 

examples. The next section will briefly explain the webserver implementation used to 

communicate with the inverter, as this was the primary means of monitoring and collecting data 

for training the algorithm. After that the process of training and testing the neural network will 

be explained.  

 

3.2.2 Webserver Implementation and Overview 

 
As mentioned in the previous section, the web server within the communication layer is a 

graphical user interface in which the control layer can communicate information to the computer 

interface. It is also a vital component of the inverter as it is used to collect the data. Running the 

webserver on the Raspberry Pi 4 was a choice made because of the documentation that is 

available as well as the compatibility of the device with Modbus TCP and Python 3. The 

Webserver is implemented using the Apache HTTP server that hosts the back end, with the 

Django web framework, which is in charge of the higher-level web design that interfaces with 

html and JavaScript [4].  Users can view the webserver through any modern web browsers such 

as Firefox, Google Chrome, and Safari. A screenshot of the web server user interface can be seen 

in 3.11 below.  
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Figure 3.11. Webserver GUI. 

The data that is displayed is split into two different types of variables known as read and write 

variables. The read only variables consist of sensory data that is not modified manually by the 

operator but results in a modification from the manipulation of the write variables to manage the 

inverter in real time. These variables consist of the switching frequency, PI gain parameters, ac 

frequency and amplitude, and other parameters. Additionally, the read only variables are being 

updated every second and this is important as the data that is collected for training the neural 

network is updated with that same metric. Furthermore, the method used to collect the data is 

adaptable to a designer who wants to collect different metrics or even additional metrics. The 

versatility of Django allows the web interface to be flexible to the developer as they can display 

data in various ways while also allowing for additional features to be added.  

 The two core components, Apache and Django, are critical in the implementation in order 

to communicate and display data to the user. Apache is an HTTP server host for modern 

operating systems that meets current HTTP standards [5]. There are numerous standard 

configuration parameters that were listed before that allow the user to interface with the inverter. 

Additionally, the Apache server also has an HTTPS configuration that is utilized in this system. 

The HTTPS configuration encrypts the communication in order to protect the user and the server 
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communication link. The encryption algorithm used is a TLS v1.3 encryption. Although the 

communication is encrypted, an intrusion detection module is implemented because a threat 

could always occur if something malfunctions or the attacker gains access to the link through 

other means. As a result, a conservative approach when implementing security is preferred as 

opposed to a more lax one. The webserver also contains a password authentication and other 

features that are extraneous and beyond the scope of this research. It is sufficient to know that the 

webserver takes the data from Python and renders it into a format that is easily understandable 

through JavaScript, and those JavaScript packets are what appear when collecting data for 

training the Intrusion Detection Module. The data can be collected through other means such as 

LabView, however, such software is not necessarily compatible with the Raspberry Pi, and hence 

this webserver is implemented to allow for the designer to be able to collect data on the same 

device that the neural network will be deployed on. The next section focuses on training and 

testing the neural network with the collected and simulated datasets.  

3.3 Implementing the Neural Network Model 

Implementing the model for the neural network consists of three primary functions: the 

encoder function, the decoder function, and the autoencoder function. After the data has been 

processed it is then converted into tensors, which are multi-dimensional arrays that represent the 

data. These tensors are then fed into the LSTM autoencoder. The first function is the encoder 

function and its job is to compress the data. The arguments for the encoder function consist of a 

sequence length and the number of input features. In the case of this implementation the number 

of input features is 1, as the analysis is being performed on one metric. The sequence length is 

150, as 150 voltage points were collected for one example of a voltage time series. The job of the 

encoder function is to compress the data and so the tensor of the data is taken and reshaped to a 
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compressed data representation. The decoder has similar arguments in that it takes in a sequence 

length and a number of input features. The decoder has an additional layer that is used to 

decompress the data, and this is done by altering the shape of the tensor, and reconstructing the 

compressed data based on the input size and sequence length. The autoencoder function calls the 

encoder and decoder functions and passes the data through those two functions.   

3.4 Training and Testing the Neural Network 

Once all the data has been collected, simulated, processed into the correct format, the 

machine learning model now needs to be trained and tested. The dataset is split into two sections: 

a train dataset and test dataset, and this is done to ensure the model detects accurately. For the 

normal dataset, the test size was 15% of the data, which is 1350 examples, while 85% was used 

for training. The anomalous dataset had a test size of 33% of its data, which is 2970 examples. 

Typically the train dataset is larger because it requires more iterations to train the algorithm than 

it does to test it [6].  

The next key component is the implementation of the function that trains the model, 

which takes in the train and test datasets and feeds it into the model to train for a certain number 

of epochs. Depending on the specific task, dataset, and network architecture, the requisite 

number of training epochs can vary. It is only by training the model multiple times that the 

correct epoch amount can be determined. An analysis of the various datasets and epochs will be 

explained in Chapter 4. For this dataset, the model was first trained with 50 epochs. For each 

epoch, the training function feeds the model with all the training examples in the dataset, and it 

then evaluates the model on the test dataset. For each individual epoch an optimizer function is 

used. This optimizer function is used to adjust the weights of the neural network in order to 

decrease the losses that incur from the model [7].  The loss function is used to calculate the 
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prediction error that is yielded from the neural network. In this implementation, the loss function 

was the L1loss from PyTorch’s neural network module, which computes the mean absolute error 

between each element in the input and target. This is well suited to a time series task that needs 

to extract out a relatively small set of relevant features. The optimizer used is the adaptive 

moment estimation optimizer, also known as Adam. This is one of the most reliable optimizers 

used in recent works in deep learning. The train function then stores the losses for the train and 

test datasets and calculates the mean of those datasets. Those values are then compared to 

determine which dataset yields the lowest loss result. Then the loss values of the train and test 

data sets are printed in order to determine how many epochs it takes to incur a lower loss value 

for the datasets. From Chapter 2, it is known that the goal is for the losses to decrease with each 

successive epoch. Once the model has completed training for the designated number of epochs it 

needs to be saved and it is then ready for deployment.  

3.5 Deploying the Neural Network Onto the Hardware 

The leading focus of this section is to detail the process of deploying the neural network 

onto hardware and explain the process of saving and loading different models. Not all machine 

learning models are compatible with every hardware device and this was one of the reasons that 

the Raspberry Pi was chosen for implementing the machine learning intrusion detection module. 

There are various libraries that are used to implement neural networks such as Pytorch or Tensor 

Flow. However, Pytorch was chosen because it is a widely used library that has considerable 

amount of documentation, it includes efficient native implementations of fundamental neural 

network functions that are helpful in inference, and it is useful for rapid prototyping and 

deployment. In order to deploy the model successfully it needs to be saved in a specific state. 

PyTorch has two primary functions for the saving models, one function saves the model without 
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saving the weights and biases of the module, and another method that saves it as a state 

dictionary. The second method is preferred as the first version requires the same version of 

PyTorch to be operating on the hardware used for deployment. The state dictionary is a Python 

dictionary object that maps each layer to its parameter tensor [8]. Tensors are the data structure 

that the values of the model’s parameters are converted to, in order for the model to understand 

the parameters. The state dictionary offers modularity as this method allows for the model to 

saved, updated, and altered without having to retrain a neural network on the device that it is 

being deployed on. This is extremely beneficial and can save time when training a model as 

engineers could train the model on more powerful devices and can then deploy them onto the 

communication layer of the inverter for quicker deployment because training models is taxing on 

the CPU and is time dependent. For larger datasets, training the model for each epoch takes 

significantly longer. Using the PyTorch save state approach allows for rapid prototype 

deployment of neural network algorithms. Once this model is saved, it is then loaded onto the 

Raspberry Pi with the load state dictionary function. After the model is loaded, it is then time to 

feed the model data in real time and run the predict function on it. This is the core 

implementation of the intrusion detection module. The data is read from the register and is then 

appended to a list, reshaped for use in the model, and then fed in sequentially in sequences of 

150 points each, the length of each example in training. It is then fed into the predict function. 

The predict function will calculate the losses incurred by the model for each entry of the data. A 

threshold value is chosen to determine if the behavior is anomalous or malicious. The threshold 

value is chosen based on the losses incurred by the model and it will vary depending on the exact 

dataset used to train the model. The correct threshold value is determined by the amount where 

the losses begin to decrease rapidly.  If the loss is less than the threshold then the data is 
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considered normal, otherwise it is identified as malicious and the script will flag the behavior as 

such. When the neural network is running in real time, the normal data trends will correspond to 

a certain loss value and the malicious data trends will correspond to a particular loss value, and 

the threshold value distinguishes between the two. At this point, the intrusion detection algorithm 

is running on hardware and is monitoring the data and using this configuration to distinguish 

anomalous behavior from normal behavior.   
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CHAPTER 4  

EVALUATION OF THE NEURAL NETWORK BASED IDS 

4.1 Introduction 

This research focuses on implementing a behavior-based intrusion detection module 

using an artificial neural network by training it with various datasets and deploying it onto 

hardware. This design consists of an intrusion detection algorithm being implemented at the top 

layer of a power electronics inverter topology. This reference design is focused on the core 

concepts of training a neural network to detect malicious behavior and then deploying that 

intrusion detection algorithm onto an ARM processor. This section will explain the results of the 

experimental setup that examines the effectiveness of the cybersecurity approach implemented in 

this research. The numerous datasets with varying attack vectors that were used to train the 

neural network will be examined, followed by comparing and contrasting the accuracy of the 

model after being trained with various datasets. Also, the number of epochs used to train the 

model that yielded varying detection rates with different datasets will also be explored and 

explained. Lastly, the CPU performance costs induced by the intrusion detection algorithm will 

be analyzed. This design focuses on training a base intrusion detection algorithm to identify 

malicious behavior from varying attack vectors and deploying it onto hardware while allowing 

for the code to be updated without redesigning the base algorithm. Hence, the implementation is 

not dependent on the lower levels of the hardware and is thus a flexible overall approach.  

4.2 Evaluation of the Train and Test Datasets 

 The primary concern once the model is trained is the accuracy of the detection algorithm. 

This will be used to determine whether the model needs to be trained more or it is detecting at an 

accurate rate, and it can be deployed. In Chapter 3 the process of training and testing the model 
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was explained. In this section, the detection accuracy of the train and test datasets, the number of 

epochs it took to train them, and the value of losses that occurred for each training. The intrusion 

detection algorithm was trained multiple times with different datasets. For the initial training a 

dataset of 4500 examples was used. In this dataset 2000 examples were used to represent normal 

behavior while 2500 examples were used to represent the malicious behavior. This was the first 

dataset used to train the model and it is not the dataset that was used when deploying the model 

onto the hardware. This will become clear when the detection rate is discussed briefly. This 

dataset was trained on 100 epochs and the loss function is shown below in Figure 4.1. 

 

Figure 4.1. Losses over each epoch. 

As it can be seen in the first few epochs of the model the losses are high initially but quickly 

drop throughout the training and remain relatively stable. Around the 80 epoch mark we see 

some signs of overfitting. Overall, however, the network converges quite well, despite the fact 
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that this first dataset was somewhat flawed in its representation of inverter behavior. The train 

and test datasets both did similarly in that the losses were high in the beginning but they tapered 

down in towards the 100 mark.  

The neural network model successfully identified the normal examples at 55% while 

identifying the anomalous examples at a 96% accuracy, meaning that of the total examples that 

were fed to the intrusion detection algorithm, 55% of them were successfully identified as 

normal and 96% of them were successfully identified as malicious [4]. This indicates that the 

model is somewhat biased towards yielding false positives in flagging attacks. While the ideal 

case is high detection in both, for this use case erring on the side of flagging too many things as 

attacks is preferable to missing actual attacks. This is because in security, a more conservative 

approach for additional safety is preferred. Additionally, the malicious dataset identification rate 

is much higher and this is because there were multiple types of examples chosen for the 

malicious dataset, and also the behavior was drastically different when compared to the normal 

dataset. The accuracy in correctly identifying normal behavior was low because this dataset did 

not effectively capture true normal behavior and did not have the correct, diverse data profile 

needed to do so. This example also illustrates the importance of using multiple metrics to 

evaluate the performance of the model. Seeing a high anomaly detection rate, one might be 

tempted to observe that the model is performing excellently at its task. However, this is 

misleading, as further measurement via checking the accuracy of normal predictions shows that 

this model is achieving that score by calling most examples anomalies instead of truly 

generalizing well. The next dataset and training iteration aimed to correct this issue.  

The next dataset we will look at is a dataset that uses only real collected data for the 

normal behavior case and a more representative simulation protocol for the anomalous case. As 
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can be seen in Figure 4.2, this dataset was trained for about 200 epochs. Although the model 

takes more epochs to reach a low level of loss, performance on both the train and test datasets 

converge to low loss quite smoothly. The loss decreased at a much steadier rate, indicating that 

the patterns took more training to learn, which is indicative of a more representative dataset of 

normal behavior. Moreover, training and test loss align very closely, indicating that the model 

performs almost exactly the same on data it has never seen before as on the data it has seen. This 

means that the model has converged to a very robust general understanding of the task, but also 

implies that the model can handle more complex tasks than the one it was given as well, since it 

was able to perform this one relatively easily with the given data. Additionally, for this dataset 

the model identified normal behavior at an accuracy of 98% and it identified malicious behavior 

at an accuracy of 98%, meaning of all the examples provided of normal behavior and malicious 

behavior, it identified 98% of the examples successfully, which is an accuracy that is much 

higher than what was yielded by the previous dataset. Furthermore, the previous dataset was 

largely simulated and was not based on a large amount of real time collected data. The collected 

data in this dataset, on the other hand, was obtained over-night, whereas the previous dataset was 

simulated based on a smaller number of datapoints obtained from a different device. As a result, 

the importance of collecting real time data and simulating data based on that to then train the 

model is a key factor in yielding accurate detection. This shows the stark effect of data on the 

performance of the algorithm, since this drastic improvement was achieved simply by more 

carefully having the data represent the desired task.  
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Figure 4.2. Losses over each epoch for improved dataset. 

To further test, a more difficult dataset was created in which the simulated behavior for 

both the normal and attack scenarios were more complex. In this dataset, the simulated normal 

behavior was more varied and included positive and negative amplitude offsets of differing 

amounts to represent normal variations in a photovoltaic inverter, perhaps due to weather or 

other conditions that could elicit such effects.  

This additional difficulty in the dataset was offset by greatly increasing the amount of 

training data from hundreds of examples to thousands. 4000 samples of each case were included 

in this dataset. The resulting loss-epoch curve is shown below in Figure 4.3.  
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Figure 4.3. Losses over each epoch for first dataset. 

With this drastic increase in the dataset size, the model was able to handle even the more 

complex behavior relatively easily, again reaching 98% accuracy as it did on the easy dataset. 

This shows that the model is able to learn more complex features and compensate for more 

difficult tasks simply by simulating more data, provided this simulated data is based on and 

closely matches the real data. Another point to note is that even in this case, it converges within 

only a few epochs of training.  

This again hint at the algorithm’s potential to identify more complex behavior. Some of 

the reasons this dataset performed better is that the dataset is much larger, so the model has more 

examples to learn from. Additionally, the normal examples numbered 4000 and the malicious 

examples numbered 4000, hence both examples are symmetrical, so this may have contributed to 

a similar detection rate by eliminating bias from statistical factors relating to sample size. Lastly, 
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the epochs required for convergence were less, although each epoch took longer to run. This is 

expected as the model needs less cycles to decrease losses because the dataset contains many 

more examples. These results indicate the power of the model to learn more sophisticated 

behavior and features in identifying diverse attacks, making it encouraging for further 

development, as will be discussed in Chapter 5. 

4.3 Results of the Attack Simulated On the Deployed Model  

Once the neural network was deployed onto the hardware, an attack was simulated in 

order to verify the validity of the detection model. While the model was already validated 

extensively before deployment based on malicious datasets, ensuring that neural networks 

maintain their same performance when deployed on hardware for real-time inference is in 

general a non-trivial task. This attack was executed in real time to portray the model successfully 

identifying the malicious behavior. A man in the middle data spoof attack was simulated where 

the voltage was dropped below the acceptable range for normal operating conditions. As can be 

seen in the Figure 4.4. below the algorithm successfully identified that the voltage behaved in a 

manner fulfilling one of the anomalous cases it was trained to identify, i.e. a sudden voltage drop 

below the acceptable threshold to the off state and successfully flagged it as malicious. This 

indicates that its performance as evaluated rigorously on the anomalous datasets in the training 

environment transferred over to its real time performance.   
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Figure 4.4. IDS detection screenshot.  

Furthermore, as explained in Chapter 3 the algorithm is not merely looking at one data point but 

a trend of the data. Once the behavior was altered, it flagged the behavior as malicious. Another 

point to note is that the losses are high, over 100,000. This means that the behavior detected does 

not fall within the loss value that corresponds to the normal behavior. The threshold for normal 

behavior was around 8000, and the loss value shown here is much greater than that and hence an 

intrusion had occurred. An additional point to note, is that the malicious behavior conducted was 

the result of a man in the middle data spoof attack, however this behavior could also result from 

a faulty data injection attack. The benefit of using a behavior-based artificial neural network for 

intrusion detection, is that it can identify newer types of malicious behavior that could result 

from varying attacks because such attacks would not match normal behavior [1]. 
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4.4 Hardware Usage of the Artificial Neural Network Algorithm  

Like any algorithm that uses software there will be trade-offs to consider when 

implementing the algorithm on real-time data on the selected ARM processor. In the field of 

cybersecurity it is also important to consider the impact of the specific solution on the system. It 

is important that the algorithm chosen does not hinder the other tasks necessary for the module 

where neural network is implemented. There are different libraries that support machine learning 

algorithms and different types of ARM processors that are compatible with those algorithms [2]. 

The top layer of the inverter consists of the Raspberry Pi 4 that has 8 GB of RAM, that runs a 

webserver with apache as its host, Django as the implementation of the GUI, and it also runs the 

machine learning intrusion detection module using Python. The CPU usage of the incurred by 

the neural network ranged from 60%-79.5% with a memory usage of 1.8%. The intrusion 

detection script itself was running and it used 0.14 GB of RAM. Machine learning algorithms are 

much more CPU intensive than conventional code and this is because of the analysis that is run 

on the data and analytics the algorithm performs in order to make accurate predictions [3].  

However, the added benefit is that such algorithms can detect malicious behavior that does not 

alter the signature of the packets. With the current implementation, the Raspberry Pi is not taxed 

heavily as only two primary scripts are running and the algorithm only uses 0.14 GB of RAM, 

and thus this algorithm can be implemented without extensively taxing the RAM of the ARM 

processor. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions  

This intrusion detection system using neural networks design is developed to assist power 

electronics engineers and computer engineers in developing a ubiquitous intrusion detection 

system that uses machine learning to detect malicious behavior of several kinds at the inverter 

level. Detecting cyberattacks is of paramount importance for being able to develop sound 

mitigation strategies for threats. With the advancement of technology, it is important to be able 

to employ intrusion detection methods that are efficient at detecting malicious attacks resulting 

from different types of threats as well as addressing the need of being able to detect newer 

threats that could be discovered in the future. This design proposes a method to detect 

cyberattacks effectively by training a recurrent neural network to detect attacks based on various 

datasets that encapsulate normal and malicious behavior, deploying the neural network algorithm 

onto hardware, and then being able to update the algorithm to allow for future features to be 

integrated. The LSTM-Autoencoder algorithm was chosen over other mentioned algorithms due 

to its highly accurate detection rate, ability to be expanded as it can take additional features, and 

it is an algorithm that does not need to be retrained for newer attacks. Although the LSTM 

autoencoder requires larger datasets for training in comparison to other algorithms, its higher 

accurate detection rate makes it superior as accuracy is crucial in the field of cybersecurity. 

Numerous attack scenarios were considered when training the model to detect malicious 

behavior such as man-in-the-middle data spoof attacks, denial of service attacks, and malicious 

data injection attacks. Once the model was trained to detect malicious voltage behavior at a high 

degree of accuracy, it was then deployed onto the hardware to collect data real time. The various 
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malicious datasets used to train the model are evaluated, along with the algorithm’s detection 

rate, to verify that the model identified malicious examples successfully. Results showed that the 

model is able to scale well with identifying complex patterns, achieving up to 98% detection 

accuracy for normal and anomalous behavior and demonstrating the potential for being trained to 

analyze more and more sophisticated behavior.  

In conclusion, the IDS developed has a high degree of accuracy, is adaptable to varying 

types of hardware, and is robust to new types of attacks. This is an important contribution 

because this technology can be leveraged in the field of cybersecurity with solar inverters, 

because the algorithm deployed does not require re-implementation for adding additional 

features and it is flexible to different devices. Additionally, the model is robust to new types of 

attacks because it learns based on normal data, and as a result, it would not need to be re-trained 

in the field for identifying newer attacks. This is another key benefit as a newer implementation 

will not be required for newer attacks, and patching the algorithm would only be done for edge 

cases, adding additional features, and optimization. This work sets up a pipeline for future 

researchers to forego concerning themselves with the hardware, but rather focus on building 

more sophisticated intrusion detection without having to deconstruct the base implementation 

and exploring additional possibilities for improving the detection module. 

5.2 Recommendations and Future Work 

This reference design was developed as a base intrusion detection module for integrating 

a machine learning algorithm with a grid connected device. Potential recommendations can be 

implemented with this base algorithm for future work. Currently, the neural network algorithm 

takes in one metric and detects malicious behavior based on that metric. Additional metrics such 

as different voltages or current could be collected and added to the module to expand upon the 
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intrusion detection capabilities without having to change the base algorithm. With the modular 

design, this would be relatively straightforward to implement. The model would simply be 

initialized with a higher number of input features, which comes down to changing a single 

variable in the code. One would then collect the data for the additional metrics, shape it into 

tensor form, and feed it into the model. The training process would be the same as described in 

Chapter 3. Finally, after completing training, inference could be performed by using the losses to 

classify anomalous and normal behavior just as described in this work. The main challenge 

would be to collect enough diverse data to encapsulate all of the different ranges of normal 

behavior for the additional metrics.  

Additionally, more data could be collected and simulated to both better cover normal 

modes of operation as well as account for newer attack scenarios in the field to continually 

improve as cyberattacks evolve to surmount existing security measures. This could be beneficial 

as the intrusion detection algorithm could be expanded for the grid connected device without 

having to make modifications for the current topology of the inverter. Collecting data in a variety 

of different conditions that would affect the photovoltaic inverter would also make performance 

more robust in a real-world scenario. For example, if data from somewhat abrupt voltage drops --

such as from a cloud passing over the solar inverter, for example – is incorporated into the 

normal dataset, the model could learn to distinguish these voltage drops from malicious attacks 

using its powerful pattern recognition and feature extraction abilities. Another approach to this 

method is to consider using a seasonal model for the data collection, where the normal data 

consists of varying examples for each season. The same algorithm could be used, but the only 

difference would be the normal dataset would have examples from each season. Alternatively, 

the SARIMA model could be used but this may drop accuracy however the trade-off would be 
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that the algorithm itself has inputs for seasonal data. This approach could be explored and 

compared to the current approach to see which process is more optimal. The LSTM has high 

accuracy and would only need to be retrained with data from different seasons, whereas the 

SARIMA might have lower accuracy but will have the inputs for seasonal data. 

Another recommendation for future work would be to expand the current training and 

deployment pipeline to automatically update the model. Training could be hosted on an online 

server, which the device could communicate with. As the model runs inference, it could collect 

the data and periodically send it to this server, where the model could be trained on the cloud 

with cloud computing resources. Upon completion of training, the Raspberry Pi could pull the 

new parameters from the updated model and use this better-trained model for inference as well. 

In this way, the IDS could iteratively improve in an automated manner. Another possibility is 

that this could exist in the digital twin. Such a feat has not been done before, but it can be 

explored and researched. However, the benefit from the cloud is different from the benefit that a 

digital twin could offer. The cloud is used for updating the model and it has more resources for 

training the model and improving it without interfering with the rest of the system. The digital 

twin is not concerned with utilizing resources to train the model, but to serve as a digital 

representation of the system, and hence may not have the functionality necessary to train the 

model.  

Furthermore, this reference design could be applied to other projects with different 

metrics as the process for collecting, simulating, and packaging the data to train and test the 

model with a current metric has been explained and implemented. This reference design 

implements the intrusion detection algorithm at the communication layer of the inverter, which is 

at the Raspberry Pi, and obtains the metrics from the lower layers through Modbus TCP packets. 
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If another protocol is used, training the algorithm or simulating the data would not change; only 

a portion of the data collection process would need to be updated. As a result, this reference is 

design is transferable for use with other communication protocols. 
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