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ABSTRACT 

 

Finding rising stars in academia early in their careers has many implications when hiring 

new faculty, applying for promotion, and/or requesting grants. Typically, the impact and 

productivity of a researcher are assessed by a popular measurement called the h-index that grows 

linearly with the academic age of a researcher. Therefore, h-indices of researchers in the early 

stages of their careers are almost uniformly low, making it difficult to identify those who will, in 

future, emerge as influential leaders in their field. To overcome this problem, we make use of 

social network analysis to identify young researchers most likely to become successful.  We 

assume that the co-authorship graph reveals a great deal of information about the potential of 

young researchers. We built a social network of 62,886 researchers using the data available in 

CiteSeer
x
. We then designed and trained SVM and Naïve Bayes classifiers to learn how to 

identify emerging authors based on the personal and social aspects of a set of 3,200 young 

researchers, who had an h-index of less than or equal to four in 2005. We concluded that the 

success of young researchers largely depends on the number of their early citations, the number 

of their collaborators, and the impact and recent research activity of their collaborators. 
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1. INTRODUCTION  

 Problem 1.1

Finding rising stars in academia is an interesting problem. When departments hire new, 

young faculty, they need a way to assess which of the many candidates show the best potential.  

When funding agencies or companies want to award funding, they want to send to researchers 

with the highest potential for having an impact on their field.  Typically, the impact and 

productivity of a researcher are assessed by a popular, widely used metric called the h-index that 

is defined as follows: “a scientist has index h if h of his/her Np papers have at least h citations 

each, and the other (Np − h) papers have no more than h citations each” [1]. Despite many 

criticisms, this simple measurement is being taken into account when a researcher is applying for 

promotion, requesting grants, or being interviewed for a new position. Often, new graduate 

students even choose their professors based on this score. 

The h-index grows linearly with the academic age and productivity of researchers [2].  

Although it can be reasonably accurate for established researchers, it fails to identify rising stars 

from among a group of young researchers. In the early stages of their careers, every researcher 

has an almost identical, low, h-index.  

Social network analysis has gained considerable interest in recent years as a way of 

studying inter-relationships among individuals.  In most approaches, the relationships between 

social actors are modeled as a graph, allowing a variety of new and existing graph algorithms to 

be applied. Applying social networks to a research community, co-authorship graphs have been 

widely studied, wherein nodes represent researchers, and edges represent co-authorship between 

pairs of nodes. 
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Properties of social graphs are described with respect to two levels: „global graph 

metrics‟ and „local graph metrics‟. Global graph metrics consider the characteristic of the graph 

as a whole e.g., its diameter, mean node distance, betweenness, size of the giant component, 

clusters, small-worldness [8], etc., whereas the „local metrics‟ relate to the features native to 

individual nodes such as degree, neighborhood, etc. [9].  Although they are well-defined, little 

work has been done to study the ability of these metrics to identify an author‟s impact. 

 Objective 1.2

We argue that the co-authorship graph reveals a great deal of information about the 

potential of young researchers. The basic idea is that young researchers with strong social 

connections to established researchers are more likely to have successful research careers.  Our 

intuition is that these young researchers benefit from superior mentoring, and/or have strong 

colleagues who will continue to work with them as they establish their own, independent 

research careers.  In this work, we will evaluate the ability of a variety of local graph metrics to 

identify, from among a set of new researchers, those who have the most potential to have an 

impact on their field.  This addresses a weakness of the existing h-index, its inability to predict 

future success. 

 Approach 1.3

In this thesis, we study a social network of authors in Computer Science.   To do so, we 

build a weighted, undirected graph in which authors are nodes, co-authorships, and the weights 

represent the number of papers on which the authors have collaborated. We focus our study on 

new authors within the social network, i.e., those with few publications and a low h-index.  Our 
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goal is to identify which of the authors within that set emerge as influential researchers within a 

few years.   

In this work, we define two classes for these new authors, namely „emerging‟ and „non-

emerging‟ in terms of their h-index 6 years later. Then, we study the members of the two groups 

to identify which features of the authors and their social networks allow us to distinguish 

between the two classes of authors.  With the class definitions and features in hand, we train a 

Support Vector Machine (SVM) classifier using the historical data available in CiteSeer
x
 

database. Once the SVM is trained, it is used to predict the potential impact of unseen, young 

researchers.  

In a nutshell, our contributions are as follows: (1) we offer a list of individual and social 

factors that are important for success in an academic position; and (2) we create a classifier to 

find emerging researchers from among a set of low-impact researchers. 

 Organization 1.4

The rest of the paper is organized as follows. In Section 2, we present the existing works 

on h-index and social network analysis in different use cases. Section 3 describes our system. 

Section 4 contains experimental results, and Section 6 summarizes our findings and offers 

suggestions for possible future improvements. 
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2. BACKGROUND 

 H-Index 2.1

In 2005, Hirsch proposed the h-index measure to characterize the cumulative impact of 

the research works of individual scientists [1]. Since then, it has been drawing widespread 

attention of the scientific community, policy makers, and the public media. It has been 

enthusiastically received by scientific news editors (e.g., Ball [11]), and researchers in various 

fields of science (e.g., Popov [12], Batista et al [13], etc.). At the same time, the concept of h-

index has been criticized as well. Some of the criticisms are as follows:  the h-index relies on 

pure citation counts treating all citations as equal and ignores the context of citations [3, 4]; 40% 

of citations were found to be irrelevant [5]; it never decreases, and does not account the number 

of co-authors of a paper [1].  

However, in a study on committee peer review, Bornmann & Daniel found that, on 

average, the h-index for successful applicants for post-doctoral research fellowships was 

consistently higher than for non-successful applicants [14]. This particular result justifies our 

assumptions: although h-index does not accurately measure the productivity of young 

researchers, after a 5- or 6-year window, it is can be considered as an important success 

indicator. 

 Social Network Analysis 2.2

Social network analysis (SNA) is not a formal theory, but rather a wide strategy for 

investigating social structures. Wetherell et al. [24] defined SNA as follows: 

“social network analysis (1) conceptualizes social relationships as a network with ties 

connecting members and channeling resources, (2) focuses on the characteristics of the 

ties rather than on the characteristics of the individual members, and (3) views 



5 

 

communities as „personal communities‟, that is, as networks of individual relations that 

people foster, maintain, and use in the course of their daily lives”.  

As pointed by many researchers such as Watt (2001), Scott (2000), Wasserman and Faust 

(1994), etc., SNA borrows most of its core concepts from sociometry, group dynamics, and 

graph theory [8, 9, 6]. Some of those borrowed notions and metrics are discussed in the 

following sections. Throughout our discussion, we use the terms graph and network 

interchangeably; same goes for node, actor, and author.  

2.2.1 Common Concepts in Network Analysis 

A component of a graph G (V, E) is a sub-graph G’ (V’, E’), where          , and 

there exists a path between any nodes in V’. If the whole graph forms one component, it is said to 

be fully connected. 

The path length between two vertices is simply the count of intermediate edges between 

them. 

The characteristic path length of a graph G is defined as the average shortest path length 

between every pair of vertices in G.  

The clustering coefficient indicates how well the direct neighbors of a vertex are 

connected among themselves. For a given node v, let G’ (V’, E’) be the sub-graph where V’ is the 

set of direct neighbors of v, and E’ is the set of edges from E between the nodes in V‟. Then, the 

clustering coefficient of v is defined as  
|  |

 |  |  |  |  ))  
 , or in words, it measures the number of 

edges between the direct neighbors of v as a fraction of all edges that could possibly exist 

between them. The average clustering coefficient over all nodes in G is the clustering coefficient 

of G. 
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A graph G (V, E) is called random graph if edges E are randomly selected from the set of 

all possible edges. 

A graph G (V, E) is said to be a small-world graph if it has the following two properties: 

it has (i) a much higher clustering coefficient than similarly sized random graph, (ii) only a 

slightly larger characteristic path length than similarly sized random graphs. 

A graph/network G (V, E) is scale-free if its degree distribution follows a power law, at 

least asymptotically. Mathematically, the probability distribution function    ) of the degree k 

of scale-free networks is described by:    )    , where            ) is called the scale-

free exponent.  

2.2.2 Centrality Measurement 

Centrality measurements are used to describe the cohesion of a network, and the role 

played by particular nodes in that network. The most important centrality measures are as 

follows: (i) degree centrality, (ii) closeness centrality, (iii) betweenness centrality, and (iv) 

eigenvector/eigenvalue centrality. 

Degree centrality of a node in an undirected graph is simply the number of edges 

adjacent to this node. For a node i, the degree centrality d(i) is defined by    )  ∑     , where 

      if there is an edge between nodes i and j, and 0 otherwise. For directed graphs, it 

becomes in-degree and out-degree centralities depending on the edge direction. In a co-

authorship graph the degree centrality of a node is just the number of authors in the graph with 

whom he or she has co-authored at least one article.  

Closeness centrality of a node i is equal to the total distance of i from all other nodes in 

the graph. Mathematically, closeness centrality,    ), of node i can be written as,    )   ∑     , 
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where     is the number of edges in a shortest path from node i to node j. It is an inverse measure 

of centrality since a larger value indicates a less central node while a smaller value indicates a 

more central. Individual closeness measures can be averaged to define global measure reflecting 

the cohesion of the entire network. 

Betweenness centrality is defined as the number of shortest paths that pass through a 

given node. The mathematical expression for betweenness centrality of node i, denoted as b(i) is  

   )   ∑            , where     is the number of shortest paths from node j to node k (j,k ≠ i), 

and      is the number of shortest paths from node j to node k passing through node i. 

Betweenness is an indication to which a node facilitates the flow in the network. 

Eigenvector/eigenvalue centrality is a measure of the „importance‟ of a node in a 

network. It simply says if my neighbors are important, then I am important too. In other words, it 

assigns relative scores to all nodes in the graph based on the principle that connections to high-

scoring nodes contribute more to the score of the node in question than equal connections to low-

scoring nodes.  

2.2.3 Applications of Social Network Analysis 

Social Network Analysis (SNA) has a history of at least half a century, and it has 

produced many results related to disease and epidemic propagation; diffusion and information 

flow; social influence, inequality, groupings; and „indeed almost every topic that has interested 

20
th

 century sociology‟ [6, 7,  9, 19] 

SNA has been applied in epidemiology to reveal how patterns of human contact aid or 

inhibit the spread of diseases (e.g., Gonorrhoea) in a population [33]. Similarly, diffusion of 

innovations theory explores social networks and their role in influencing the spread of new ideas 
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and practices. By simply changing agents and opinions, leaders often play major roles in spurring 

the adoption of innovations, although factors inherent to the innovations also play a role [34]. 

According to Shishkin et al. (2009), human social networks may have a genetic basis 

[35]. Using a sample of twins from the National Longitudinal Study of Adolescent Health, they 

found that in-degree, transitivity (the probability that two friends are friends with one another), 

and betweenness centrality are all significantly heritable. Since existing models of network 

formation cannot handle this intrinsic node variation, they proposed an alternative "Attract and 

Introduce" model to explain heritability and many other features of human social networks. 

In one study, Mark Granovetter (2007) found „the strength of weak ties‟ as they can be 

important in seeking information and innovation. According to him, since cliques (connected 

components) exhibit homophilic tendency and share many ideas and many common traits, to find 

new information or insights, members of the clique should have to look beyond the clique to its 

other friends and acquaintances [36].  

Diverse phenomena can spread within social networks. For example, there exists a 

number of scientific evidence that suggests that „influence‟ can induce behavioral changes 

among the agents in a network. In 2007, Fowler, and Christakis conducted an intriguing study to 

determine whether obesity might also spread from person to person [17]. They concluded that a 

person‟s chances of becoming obese are increased by 57% if he or she had a friend who became 

obese in a given interval.  

In another study (2008), the same researchers [37] have found that happiness also tends 

to be correlated in social networks: when an individual is happy, his or her nearby friends have a 

25% higher chance of being happy themselves. Moreover, people at the center of a social 

network are more likely to be happier in the future than those at the periphery. Interestingly 
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enough, they also found that a person's happiness was associated with the level of happiness of 

their friends' friends' friends.  

In 1967, Stanley Milgram [8] conducted one of the most widely discussed small-world 

experiments: he selected 296 US individuals as volunteers and asked them to dispatch a message 

to a specific person, a stockholder living in the Boston suburb of Sharon, Massachusetts. The 

volunteers were not supposed to send the message directly to the target person, but they should 

route the message along a chain of acquaintances.  Milgram found that the average length of 

successful chains turned out to be about five intermediaries or six separation steps, which later 

gave birth to the famous phrase „six degrees of separation‟.  

More recently, the emergence of online social networking services such as Facebook
1
, 

LinkedIn
2
, Twitter 

3
etc. have revolutionized how social scientists study the structure of human 

relationships. These days, SNA techniques are constantly evolving to measure larger and larger 

representations of social networks. People do social networking for many reasons, ranging from 

collaboration between and/or within organizations, pursuit of interests, spending quality times, 

forming romantic relationships, or finding the right person for the right job, etc. 

Currently, academic researchers continue to explore small-world phenomena within large 

online social networks. Using the entire Facebook network of active users (~721 million users, 

~69 billion friendship links), Backstrom et al. (2012) carried out the largest Milgram-like 

experiment ever performed [38]. By applying HyperANF (an algorithm to study the distance 

distribution of very large graphs), graph compression, and the idea of diffusive computation, they 

                                                 

1
 www.facebook.com 

2
 www.linkedin.com 

3
 www.twitter.com 
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were able to compute the characteristic path length of Facebook graph, which was 4.74, 

corresponding to 3.74 intermediaries or “degrees of separation”. Their result clearly indicates 

that the world is being smaller than before (six degree separation).  

Another recent trend in online social networking is to build a social network for 

professionals (e.g. LinkedIn, ResearchGate
4
, etc.) by encouraging users to construct an 

abbreviated CV and establishing “connections” [39]. These networks enable one to keep a 

relationship alive by maintaining awareness of others‟ activities. Among all professional 

networks, LinkedIn has the edge over others. Employers use LinkedIn for recruiting new 

employees or finding vendors; to learn more about people they have met or going to meet; or to 

get quick answers to professional questions from LinkedIn Groups. 

 Co-authorship Networks 2.3

Co-authorship networks, in which two researchers are considered, connected if they have 

co-authored one or more scientific papers together, are one of the most extensively studied social 

networks. In 1979, Garfield conducted early work in this area under the guise of citation network 

analysis [18]. In comparison to citation, co-authorship implies a much stronger social bond, since 

it is likely that pair of scientists who have co-authored a paper together are personally known to 

each other [19]. Currently, the publication record of scientists is well documented by a variety of 

publicly available electronic databases; and unlike citation data, co-authorship data are available 

immediately after the publication of a paper. This allows for the construction of large and 

relatively complete networks via automated means.  

                                                 

4 www.researchgate.net/ 
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One of the early examples of a co-authorship network is the Erdös Number Project, 

wherein the smallest number of co-authorship links between any individual mathematician and 

the Hungarian mathematician Erdös are calculated [25].  

Newman (2001) studied co-authorship graph of four major databases (arXiv, Medline, 

SPIRES, and NCSTRL) and calculated different statistical properties such as the average 

numbers of papers per author, the average number of authors per paper, and the average number 

of collaborators per author in the various fields [19]. He found that distributions of these values 

roughly followed a power-law form, although there were some deviations that may be, according 

to him, „due to the finite time window used for the study‟. Besides distribution, it was shown that 

researchers in experimental disciplines were found to have more collaborators on average than 

those in theoretical disciplines. In second part of his work [20], he showed that those networks 

form a “small world”. Additionally, he proved that for most authors the chunk of the paths 

between them and other authors in the network go through just one or two of their co-authors -- 

an effect called „„funneling‟‟ [20]. 

Co-authorship analysis was further conducted by numerous researchers in different 

digital libraries, conferences, and journals with different flavors. For example, Smeatonet et al. 

(2002) constructed a co-authorship graph among authors of the 853 SIGIR conference papers to 

determine which author is the most „central‟: the one who has the shortest average path length 

(closeness centrality) to all other authors in the graph.  Their definition of „central‟ was 

equivalent to find the „Paul Erdös‟ in SIGIR community; and at that time, it was Chris Buckley 

(path length 3.65), followed by Gerry Salton (3.76), James Allan (3.791), and Clement Yu 

(3.862) [21]. An almost similar study was conducted by Nascimento et al. (2003) on SIGMOD 

community from 1975 to 2002. By computing the clustering coefficient and average 
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characteristic path length, they concluded that SIGMOD's co-authorship graph is just another 

“small world” [22]. 

 Farkas et al. (2002) also analyzed the co-authorship networks derived from the data in 

mathematics and neuroscience, and modeled them as deterministic scale-free networks. 

Afterwards, they demonstrated the application of „spectral graph theory‟ for the categorization of 

small measured networks [10].  

Luong et al. (2012) suggested using co-authorship networks to recommend publication 

venues to the unpublished paper‟s authors based on the ‟social similarity‟ they have with (i) 

conference Program Committee (PC) members, and/or (ii) with other authors who have 

publications in the conferences. After analyzing the co-authorship network over the data 

collected from the ACM digital library and Microsoft Academic Search [28], they showed that 

the recommendations generated by the second similarity measurement outperformed the baseline 

content-based recommender by a wide margin [40].  
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 Influential and Emerging Authors 2.4

A large body of work has been dedicated to finding the „influential‟ or „center‟ nodes in 

co-authorship networks. From the preceding section, it is evident that the early efforts exploited 

different relatively simple graph metrics such as degree centrality [10], betweenness centrality 

[20], closeness centrality [21, 22], etc. to figure out „social superstars‟ in the networks.  More 

recently, a series of recursive algorithms that utilize the eigenvalue centrality are being used to 

measure the „prestige‟ of the nodes in social network analysis [26]. Algorithms that fall into this 

category are heavily inspired by either of the two seminal works: (i) PageRank [41] or (ii) HITS 

[42]. 

PageRank [41] was originally developed by Page and Brin (1998) to rank web pages by 

their importance within the Google search engine. Although it was applied to a network in which 

nodes represented web pages and links hypertext references, one of its variants has been applied 

by Xiaoming et al. (2005) to a co-authorship network. In their work, called AuthorRank, they 

converted the binary undirected co-authorship graph into a weighted, directed one by the 

following means: (i) every undirected edge is replaced by two, symmetrical directed edge, (ii) 

authors that frequently co-author with each other receive higher edge weigh, and (iii) if an article 

has many authors, each individual co-author gets less weight. They applied their approach on a 

variety of conference PC members in the same period and found that AuthorRank outperformed 

degree, closeness and betweenness centrality metrics in identifying PC members, i.e., influential 

members of the research community [26]. 
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Independent from PageRank, Kleinberg‟s (1999) HITS algorithm offers an improved 

notion of the importance of a web page by assigning two scores: a hub score and an authority 

score [42]. Adali et al. (2011) extended the original idea to propose another prominence ranking 

in heterogeneous, tri-partite networks wherein actors (authors) collaborate with each other to 

create artifacts (e.g., papers) that show up in some groups (e.g., conferences). Furthermore, they 

utilized the concept that when a social tie between actors is inferred by their participation in 

some artifact, the properties and relations between those artifacts can significantly improve the 

ranking (as opposed to only using the co-authorship ties among the actors). When the results 

were validated against the citation count (collected externally) of individual actors, the algorithm 

showed off a clear advantage over other well-known ranking methods [16]. 

More recently, Irfan et al. (2013) took a somewhat different, game theoretic approach to 

the study the influence in large, finite networks (e.g., the network of the U.S. Supreme Court 

Justices and the network of U.S. senators) that capture the strategic aspects of complex 

interactions. While comparing with equivalent random graph, they showed that their „influence 

game‟ algorithm can not only predict stable behavior of the actors, but also compute the most 

influential actors and its variants (e.g., identify a small coalition of senators that can prevent 

filibuster) [15].  

We have summarized several existing projects that apply social network analysis to co-

authorship graphs; they all focus on finding the most influential authors.  Although this is an 

interesting problem, it is also a problem that the existing h-index does reasonably well in 

academic environment. Our goal is not to find the influential nodes but rather to tackle a problem 

for which the h-index is poorly suited.  We show that social network analysis can be used to 
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identify „rising-stars‟ from among a group of new authors. While influence is a global 

phenomenon in a graph that previous work identifies using the global graph metrics such as 

betweenness, closeness, and eigenvalue centralities, emergence is purely a local aspect of a node 

(degree centrality).  Thus, we focus our approach on calculating, and evaluating, local node 

metrics. 
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3. ARCHITECTURE  

In this chapter, we present our system for identifying emerging authors.  Figure 1 

diagrams the main components of system architecture. It consists of an Author Database, a 

persistent, huge digital library of scientific works; a Social Network Builder; an Author Impact 

Rater; and an Emerging Author Identifier module. In the following sections, we will discuss each 

of these modules in more detail. 

 

Figure 1: High level Block Diagram 

 Author Database 3.1

One difficulty in building a social network of authors is to accurately identify all of their 

papers.  Author names may appear in many different formats, so we need to normalize the names 

and collect information on a per-author basis rather than a per-name basis.  The main purpose of 

this module is to provide fully qualified name of the researchers together with their publications 

and citations record. It also contains a rich set of metadata associated with each scientific paper 

Emerging Authors 

Author Impact  

Rater 

Emerging Author Identifier 

Author Database 

Social Network 

Builder 
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such as publication year, venue, bibliography, citations by year, etc. Figure 2 depicts the 

subcomponents of Author Database module. 

 

Figure 2: Author Database Module 

3.1.1 CiteSeer
x
 Database 

Our primary source of data is CiteSeer
x
, a well-known scientific document digital library. 

It is an automatic citation indexing system that indexes academic literature in electronic format 

(e.g. Postscript files on the Web) [27]. After locating and downloading Postscript files that are 

available on the internet, CiteSeer
x
 analyzes and extracts bibliographical information from the 

downloaded files. As of now (2013), it contains 308,116 authors from different academic 

disciplines; 2,190,179 entries for papers; and 25,982,373 citation records. Since the whole library 

is built in automated manners, there are many identity (e.g., name, paper) duplications, 

ambiguities, and noise.  Thus, we need to disambiguate the names using another source of 

information. 

Metadata Unique Authors 
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X 

Database 

MAS Name 

Crawler 

Name Filter 

Author Database 



18 

 

3.1.2 MAS Name Crawler 

Microsoft Academic Search (MAS) [28] provides services almost similar to CiteSeer
x
, 

and it is less noisy.  Papers are associated with authors, regardless of the format in which the 

name appears in the paper. MAS also provides a list of authors sorted by „Field Rating‟ which is 

similar to h-index but limited to within a specific field of study.  Although we use CiteSeer
x
 as 

the basis of information for our social network, we make use of the disambiguated author names 

available in MAS, using a crawler to collect the 99,982 canonical names of researchers in the 

field of Computer Science.
 

3.1.3 Name Filtering  

Our next goal is to identify unique authors from ambiguous names in the CiteSeer
x
 

database.  We have two sets of names: 99,982 canonical names („first name‟, „middle 

name/initial‟,‟ last name‟) from MAS and 308,116 noisy names from CiteSeer
x
. To identify 

unique authors in CiteSeer
x
, we take the intersection of these two sets, ending up with 62,884 

names (exact matches). We expect each of these names represent unique authors, although there 

might be some homonymous authors. 

 Social Network Builder 3.2

This module (Figure 3) takes input from Author Database module and builds co-authorship 

multigraph. Afterwards, this multigraph representation allows us to generate any instance of co-

authorship graph at any specific time/year, t.  
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Figure 3: Social Network Builder Module 

3.2.1 Co-authorship Multigraph Builder  

Our co-authorship network is basically an undirected, multigraph G (V, E) where each 

edge represents a temporal co-authorship relationship. Therefore, it is obvious that a node-pair in 

G can have multiple temporal edges depending on the number of papers they‟ve co-authored 

with. Keeping the magnitude and the scalability of this graph in mind, we choose to use Neo4j, 

an open source graph database that can handle number of nodes as many as 32 billion [29]. The 

multigraph generation steps are given in Table 1. 

  

 

time, t 

Metadata Unique Authors 

Co-authorship Multigraph 

Snapshot Graph Generator 

Co-authorship Graph at time t 

Social Network Builder 

Interactive Graph Viewer 
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Table 1: Co-authorship Multigraph Generation Algorithm 

1: Input: A = Set of Authors 

2: Set of nodes, N = Ф; Set of edges, E = Ф 

3: for each author a in A: 

4: (i) create a‟s representative node n in Neo4j DB 

(ii) N = N   {n} 

5: for each n in N: 

 (i) grab the list of papers, P written by n with metadata (e.g., publication year) from the 

CiteSeer
x
 

(ii) for each paper p in P: 

 a. extract the list of co-authors, C of p 

b. for each pair of nodes (n1, n2) in C such that n1 C, n2 C, n1 N , and  n2 N:  

 create an edge e(n1, n2) with the attribute ‘publication year’ of p in Neo4j 

E = E   {e} 

6: return multigraph G (V, E) 

 

Using the above algorithm on the 278,904 papers authored by our disambiguated authors, 

we build a social network that contains 62,886 nodes (authors) and 795,594 links (co-authorship 

relationships).  As we mentioned earlier, this social network is stored in a NoSQL graph database 

called Neo4j. 
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3.2.2 Snapshot Graph Generator 

To generate a snapshot of multigraph G at a particular time requires only the merging of 

multiple edges between each pair of nodes under certain condition(s). For example, to get a co-

authorship graph up to the year 2005, we simply (i) count the number of edges between each pair 

of nodes in G with property „publication year‟ ≤ 2005, and (ii) replace those edges with a single 

one having weigh equal to the count. Therefore, the snapshot graph is an undirected weighted 

graph. Figure 4 shows a 2-level deep co-authorship graph as of 2005 for an arbitrary author, 

Konstantina Papagiannaki. The graph is rendered by our graph viewer, described in the next 

section. 
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Figure 4: Co-authorship Graph for an Arbitrary Author (Konstantina Papagiannaki) 
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3.2.3 Interactive Graph Viewer 

We also developed an online, interactive co-authorship graph viewer
5
 with many useful 

features. Figure 5 shows the internal components of this sub-module. Briefly, it is comprised of 

two entities: server and client, each of which has several logical components. 

 

Figure 5: Interactive Graph Viewer Sub-module 

3.2.4 Server-side Entity 

We use open source Apache Tomcat
6
 as web server and servlet container developed by 

the Apache Software Foundation (ASF). It provides a "pure Java" HTTP web server environment 

for Java code to run in.  

Web Service Provider:  

We offer RESTful web services by implementing JAX-RS API introduced in Java SE 5. 

Some of our web services are given below:  

                                                 

5
 http://citeseer.uark.edu:8480/graphs/pages/graph.htm 

6
 http://tomcat.apache.org/ 
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1. Search authors by name (either first name or last name of both),  

2. Get an author‟s profile (e.g., name, number of publications, h-index, number of 

collaborators, etc.) either by his citeseer_id (primary key in CiteSeer
x
 database) or 

node_id 
7
(primary key in Neo4j graph database),  

3. Get an author‟s co-authorship graph by her citeseer_id or node_id, together with 

depth 
8
(how many hops to fetch from that author) and year (which snapshot?) 

parameters.  

Our web services are public and any web client can make requests and consume one or 

more of them. To carry out any service request, the provider contacts the Social Network Builder 

module to get the appropriate graph data in JSON format.  

Gephi SDK
9
:  

Gephi is an open-source network analysis and visualization software package written in 

Java [43]. It supports multiple graph layout algorithms such as Force Atlas, Yifan Hu [44], etc.; 

it calculates graph centralities such as degree, betweenness, closeness, etc., and allows 

node/edge‟s size and color to be proportionate to a measurement. For our interface, we use the 

Gephi API prior to sending graph data to the clients.  Currently, we applied Yifan Hu layout on 

our graphs, and the nodes‟ colors and sizes are proportional to their degrees and h-indices, 

respectively.  

                                                 

7
 citeseer.uark.edu:8480/graphs/rest/graphs/node/{node_id} 

8 citeseer.uark.edu:8480/graphs/rest/graphs/path/coauthor/{node_id}/{depth} 
9
 https://gephi.org/ 
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All of our Java classes, servlets, 3
rd

 party libraries (e.g., Gephi API, Neo4j API etc.), Web 

pages (HTML and related files), and configuration files are bundled into a single .WAR (Web 

Application Archive) file and deployed into the Tomcat‟s webapps directory.  

3.2.5 Client-side Entity 

We used HTML and Java Script libraries to develop our web interface. User requests are 

translated into Ajax (Asynchronous JavaScript or XML) calls, minimizing the data exchange 

between server and client. 

 



26 

 

 

Figure 6: Screenshot of our Interactive Graph Viewer 

 

 

Web UI:  

A screenshot of our interactive User Interface (UI) is displayed in Figure 6. The functions 

supported by the UI (highlighted in Figure 6) are given below:  

1 

2 

4 

3 

5 

6 
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1. Autocomplete Search Box: Users can search for an author by starting to type his or her 

first name or last name, or both. The autocomplete box suggests a list of possible names 

from Graph database that match fully or partially to the typed text. 

2. Graph Parameters: Currently there are only two parameters available for the users: node 

depth (1 to 3) and snapshot year (2005 or 2013) 

3. Display Parameters: The visibility of the labels of the nodes is tunable. Similarly, the 

Year filter controls the visibility of nodes and edges by time period.   

4. Author’s Profile: This displays quick information about an author. 

5. Author Cloud: This show the most recently viewed authors for quick re-selection and 

display. 

6. Visual Panel: This panel displays the preprocessed co-authorship graph (received from 

the server). We incorporate the following user interactions: (i) zoom in/out (by mouse 

wheel), (ii) graph scrolling i.e., left-right and up-down (either by keyboard arrows or 

mouse drag), and (iii) popup menu (by left-click on a node), and (iv) the popup menu 

contains several useful actions and links. 

 

JS (Java Script) Library:  

We also use two Java Script (JS) libraries. Descriptions of those are given below. 

1. jQuery
10

: it is an open source cross-browser JS library designed to simplify the client-

side scripting of HTML. Our UI segments 1, 2, 3, and 5 are geared by jQuery. 

                                                 

10
 http://jquery.com/ 
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2. sigma.js
11

: it also an open-source lightweight JS library to draw graphs on HTML 

canvas element. Our Visual Panel (segment 6) is mechanized by this library.  

 

 Author Impact Rater 3.3

The primary purpose of this module (Figure 7) is to compute the impact factors (h-index) of 

the authors in the „Author Database‟ module, as of a given year.  Then, based on the impact 

scores, it generates a list of low-impact authors at time t for the next module.  

 

Figure 7: Author Impact Rater Module 

3.3.1 H-Index Calculator 

We calculate the h-index of individual author using the metadata available in CiteSeer
x
. 

For a particular author, we grab all the papers he or she has, and sort those papers by their 

citations. Publications and citation data are collected from CiteSeer
x
.  The detailed algorithm is 

given in Table 2. 

                                                 

11
 http://sigmajs.org/ 
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Table 2: H-index Calculator 

1: Input: a = author id, t = time/year 

2: h-index = 0; hash-table ht = Ф; 

3: for each paper p written/co-authored by a 

if p‟s publication year     : 

ht[p] = number of citations of p 

4: sort ht by value 

5: for p in sorted ht: 

if        h-index 

h-index++ 

6: return h-index 

 

3.3.2 Low Impact Author Selector 

According to Bornmann et al. [14], h-index of 5.15 is an indication of a successful 

researcher. Based on their work, we define „low-impact‟ authors as authors having h-index   

 . Therefore, this sub-module outputs a collection of authors having h-index     as of year t. 

 Emerging Author Identifier 3.4

From the feeds of „Social Network Builder‟, „Author impact rater‟, and „Author Database‟ 

modules, this module performs all the tasks necessary to predict emerging authors, i.e., those 

whose research impact is likely to increase substantially in the years to come.  It consists of a 

class labeler, feature extractor, dataset builder, and classifier (Figure 8).  
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Figure 8: Emerging Author Identifier Module 

3.4.1 Class Labeler 

We try to identify whether or not a low-impact author is likely to emerge as a successful 

researcher based on his or her historical data available in CiteSeer
x
. For a researcher r, we define 

 -        ) as r‟s h-index at time t. Then, in a 6-year window, we define „emerging‟ and „non-

emerging‟ authors as follows:  

Table 3: Class Labels for Low-impact Authors 

Class  Label Definition 

E Emerging  -        )    , and  -           )    -        )   , 

where            

NE Non-emerging  -        )    , and   -           )    -        )   , 

where            
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3.4.2 Feature Extractor 

After defining the classes, the next step is to represent each class member as vector of 

features. In order to understand the nature of emerging authors, we generate a snapshot of the co-

authorship graph at t = 2005; compute the author impact at t = 2000, 2005, and 2011.  Thus, for 

the authors whose social networks are known as of 2005, we can look at publication productivity 

for the 4years prior and the 6 subsequent years.   

To build our intuition about the relationship between a low-impact author‟s social 

network and their future research success, we randomly selected 15 low-impact authors at t = 

2005 and extracted their 1-level deep neighborhood graphs (see Figure 9 to Figure 25). In each 

of these graphs, the center node is the author being studied, i.e., Engin Kirda (Figure 9), 

Konstantina Papagiannaki (Figure 10), Byron Cook ((Figure 11), Marco F. Duarte (Figure 12), 

Sven Apel (Figure 14), etc. The size of each node represents the change in h-value from 2005 to 

2011 (∆h2011), and the color represents the h-index value as of 2005.  Thus, a large, dark circle 

indicates a researcher who had high h-index as of 2005 and whose h-index (or number of 

citations and publications) grew from 2005 to 2011. 

In the next 3 tables, Tables 4 through 6, we present the co-authorship graphs of 15 

authors in 2005 who, by 2011, either fit our definition of emergence (Table 4) or not (Table 5 

and Table 6). Each of the nodes is labeled by the following order: author‟s name -- number of 

publications at 2005 -- h-index at 2000 – increase of h-index from 2000 to 2005 -- increase of h-

index from 2005 to 2011. 
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Table 4: Social Networks of Emerging Nodes (highly active authors) 

 

Figure 9: Engin Kirda 

 

Figure 10: Konstantina Papagiannaki 
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Figure 11: Byron Cook 

 

Figure 12: Marco F. Duarte 

 

Figure 13: Marco F. Duarte (MAS) 

 

Figure 14: Sven Apel 
 

Figure 15: Sven Apel (MAS) 
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 In the above table (Table 4), first 3 authors (Figure 9, 10, and 11) have a decent number 

of collaborators that justify their high productivity. But the authors in the Figure 12 and Figure 

14 look different: they have only a few collaborators (degree). So, we grab their co-authorship 

graphs from MAS (Figure 13 and Figure 15) which says Marco F. Duarte has 88 co-authors and 

Sven Apen has 141, as opposed to 6 and 4 from our graphs. We understand these are the noises 

due to the insufficient date in CiteSeer
x
 that would affect our algorithm later. 

 On the other hand, first 3 authors in Table 5 (Aseem Agarwala, Anne Adams, and Alice 

M. Agogino) have a decent number of collaborators and rich neighborhoods, but fail to 

overcome our definition of emergence. Again, we believe their limitations come from the 

insufficient data in CiteSeer
x
.  

 Identifying authors in Table 6 are fairly straightforward: they do not have many 

collaborators and their colors are faded as well. 
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Table 5: Social Networks of Non-Emerging Nodes (moderately active authors) 

 

Figure 16: Aseem Agarwala 

 

Figure 17: Anne Adams 
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Figure 18: Alice M. Agogino 

 

Figure 19: Andre Adelsbach 

 

Figure 20: Afshin Abdollahi 

 

Table 6: Social Networks of Non-Emerging Nodes (inactive authors) 

 

Figure 21: Alfarez Abdul-Rahman 

 

Figure 22: Alberto Abello 
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Figure 23: Alicia Abella 

 

Figure 24: Arthur Abnous 

 

Figure 25: Amund Aarsten 

 

Examining the graphs of the emerging versus non-emerging authors, we can identify 

social network characteristics associated with the emerging nodes/authors:  

(i) They have higher degrees than non-emerging authors (more co-authors). 

(ii) Their neighbors are dynamic too (large circles) 

(iii) Their neighbors have higher h-indices (dark color). 

 

Besides these social network characteristics, we also assume emerging authors have the 

following personal features:   

(i) Their publications/future publications are going to be „important‟ (i.e., have relatively 

high citations). 

(ii) They tend to publish more papers than their non-emerging peers. 
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Our hypothesis is that, although all low-impact authors may have the same or similar h-

index at time t, there might be some differences in the number of papers and/or citations that are 

being overlooked by the h-index now, but may be an important predictor of future success.  

Therefore, for a researcher/node n, we categorize his or her features into two groups: personal 

features and social features, which are listed in the following Table 7. 

Table 7: List of Features 

Type Features Feature Definition 

Personal 

features 

              ) the largest x for which n has x papers with at least x 

citations each until time t (inclusive) 

              )           )                ) 

               ) total number of publications of n at time t 

                    ) total number of citations of n at time t 

Social 

features 

            ) |      )|, where       ) is the set of adjacent nodes of 

n in the co-authorship graph at time t.  

                 )  ∑  -        )        )   

                  )  ∑    -        )    -           )        )          ) 

In section 4, we investigate the relationship of each feature to future success and then look at 

the effectiveness of promising features on classification accuracy.  

3.4.3 Dataset Builder 

In order to build a reliable test dataset, we needed to create a set of low-impact authors 

whose future success is known.   Thus, we select our low-impact authors for t = 2005 and we can 
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generate the truth values of their future success based on their h-index in 2011.  On the other 

hand, to extract the features for these authors as of 2005, we need to gather their data for the 

years from 2000 to 2005. Therefore, we start with generating a snapshot of the co-authorship 

graph at t = 2005, and calculating the author impacts at t= 2000, 2005, and 2011. Then, 

following the definition of our classes and features, we end up building the training dataset for 

the classifiers. A fragment of our training set is given in the Table 8.  The truth values for each 

author are shown in the final column in where E stands for Emerging and NE for Non-Emerging. 
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Table 8: Fragment of Training Dataset 
N
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Byron Cook 9 430 4 16 3 10 39 89 E 

Engin Kirda 18 426 4 16 3 14 58 90 E 

Marco F. Duarte 7 268 2 13 1 6 12 25 E 

Konstantina 

Papagiannaki 19 632 4 15 3 20 85 156 

E 

Sven Apel 12 276 2 12 2 4 3 12 E 

Alice M. 

Agogino 

26 124 3 5 0 9 21 70 NE 

Afshin Abdollahi 7 51 2 4 1 2 5 19 NE 

Aseem Agarwala 5 334 3 5 2 11 53 102 NE 

Andre Adelsbach 12 60 3 5 3 4 6 8 NE 

Anne Adams 7 126 3 5 2 7 35 63 NE 

Arthur Abnous 2 39 2 2 0 3 6 15 NE 

Alberto Abello 8 47 3 3 3 1 2 4 NE 

Alicia Abella 6 163 4 4 2 4 19 48 NE 

Alfarez Abdul 

Rahman 

3 414 3 3 1 1 2 4 NE 

Amund Aarsten 7 27 3 3 2 3 5 9 NE 
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 Classifier Design 3.5

We apply two supervised learning algorithms, namely Gaussian Naive Bayes (GNB) and 

Support Vector Machine (SVM) to see which provides the more accurate emerging author 

identification results.  

3.5.1 Gaussian Naive Bayes (GNB) 

Given a class variable y and a feature vector  ⃗⃗                Bayes‟ theorem 

assumes features are independent of one another within each class, and provides the following 

classification rule: 

 ̂        
 

   )∏    | )

 

   

 

where  ̂ is the predicted class. If we use Maximum A Posteriori (MAP) estimation to estimate 

class prior    ), and posterior probabilities     | ); the former is then the relative frequency of 

class y in the training set. GNB also assumes the likelihood of the features to be Gaussian: 

    | )  
 

√    
 
   (  

(     )
 

    
 

) 

where    and    are estimated using maximum likelihood. Rather than implement a Naïve Bayes 

classifier, we installed and used the python-based machine learning library, scikit-learn [31]. 

3.5.2 Support Vector Machine (SVM) 

Support Vector Machine (SVM) [30] is famous for its good generalization performance 

and the ability in handling high dimensional data. The SVM tries to find an optimal separating 

hyperplane to maximally separate two classes of training data. Suppose, {  ⃗⃗     )   ⃗⃗   

  )     ⃗⃗     )} be a two-class linearly separable training dataset, where  ⃗⃗   stands for 
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individual training feature vector and    {     } for label. Then, computing an SVM 

corresponds to minimizing ‖ ⃗⃗⃗ ‖ such that 

    ⃗⃗⃗   ⃗⃗     )         

and the decision function is simply the sign of {    ⃗⃗⃗   ⃗⃗     )}. Although SVM predicts only 

class label without probability information, Chang et al [32] shows how to transform SVM 

decision values into probability values. Again, instead of implementing an SVM classifier, we 

used the python-based machine learning library, scikit-learn [31]. 

3.5.3 k-Fold Cross Validation 

In k-fold cross-validation, the original sample is randomly divided into k equal size 

subsamples. Of the k subsamples, a single subsample is set aside as the test data to evaluate the 

model, and the remaining k − 1 subsamples are used as training data. The whole process (training 

+ testing) is then repeated k times (the folds), with each of the k subsamples used exactly once as 

the test data. The k results from the folds are then combined by taking the average to produce a 

single estimation. The benefit of this method over repeated random sub-sampling is that all 

observations are used for both training and testing, and each observation is used for testing 

exactly once. For k value, 10 is the most popular choice in the machine learning community. 

Therefore, we also choose to use 10-fold cross validation in our experiment. 
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4. EXPERIMENTS 

 Test Sets 4.1

In the CiteSeer
x
 database, the numbers of emerging (E) and non-emerging (NE) authors are 

1,612 and 50,551 respectively within the time frame from 2000 to 2005. Since the number of 

emerging authors or the size of E is only 3.18% of the size of NE, this could skew our classifier 

accuracy.  However, it is clear from this data that the vast majority of low-impact researchers do 

not, ultimately, go on to make sustained contributions to their field. Thus, we randomly select 

1,600 authors from each class (3,200 in totals) to make a balanced test dataset, DS_ALL.  Since 

it takes long time to train the SVM for large dataset, we do not work with DS_ALL; rather we 

divide the DS_ALL dataset into 8 smaller datasets (DS1 to DS8) each of which contains 400 

randomly selected instances of E and NE (200 from each class). Then, for each of the smaller 

datasets (DS1 to DS8), we apply 10-fold cross validation to train and evaluate both of our 

classifiers (SVM and GNB). Finally, these 8 results from the 8 smaller datasets are combined by 

taking the average. All the accuracies in Table 9 and Table 10 are calculated in this manner. 

Another intuition of doing this is since we already know that our dataset is noisy, we try to 

minimize its effect by dividing the whole dataset into smaller chunks, work with them separately, 

and combine them by taking the average. 
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 Feature Evaluations 4.2

4.2.1 Relative importance of Features 

First, we examined the relative importance of individual features as predictors of future 

success. Therefore, we conducted the classification experiments using only one feature at a time. 

Table 9 shows the average classification accuracy of SVM and GNB with their statistical 

significance. The h-index alone (55%) is as good as random guess (50%) at predicting future 

success.  Among all other the features, the „individual citations count‟ (f3) produces the best 

accuracy (74.3% and 70.2%). With that exception, the social network features such as 

sum_degreet, sum_hindext,       -       are more accurate than the personal features.  We 

also observe that, with a single feature, the Support Vector Machine classifier and the Naïve 

Bayes classifier perform comparably. 

Table 9: Relative Importance of Individual Feature. 

Feature  Feature Name 

 

Support Vector Machine 

(SVM) 

Gaussian Naïve Bayes 

(GNB) 

P-value 

(2-

tailed 

T-test) 

Accuracy StdDev Accuracy StdDev 

f0          0.557 0.026 0.556 0.031 0.966 

f1          0.611 0.02 0.612 0.021 0.928 

f2           0.619 0.025 0.604 0.022 0.231 

f3                0.743 0.03 0.702 0.042 0.041 

f4         0.641 0.03 0.613 0.021 0.049 
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f5              0.638 0.025 0.608 0.02 0.018 

f6               0.663 0.023 0.627 0.021 0.005 

 

4.2.2 Combinations of Features 

Since more than one feature produces accurate classifications we expect that the 

combinations of two or more features might work even better. From Table 9, it is obvious that 

the 55% accuracy of f0 (h-index) is essentially a random guess (50%). Since it does not 

contribute anything to the classifier, we omit this feature in our next experiments.  

In this set of experiments, we train our classifiers with all possible combinations of 6 

features (f1 to f6). In Table 10, we display the top performing combinations, grouped by feature 

size, and highlight the „local best‟ within each group in boldface. Table 10 also reveals several 

interesting findings:  

(i) f3 (citation count) appears most frequently.  This is not surprising because it was the 

most accurate single feature. 

(ii) Although f1 and f2 provided similar accuracy (61%), f2 (number of publications) 

appears less often than f1 (change of h-index) in the „local best‟ combinations.  

(iii) As the number of features used by the classifier increases, the f2 (number of 

publications) is superseded by the social network feature f4 (degree centrality), and f1 

is further backed up by f6 (change of h-index in the neighborhood). 

(iv) The Support Vector Machine classifier consistently outperforms the Naïve Bayes 

classifier in terms of accuracy, by approximately 8.6% on average.  
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Table 10: Performance Comparison of Different Feature Combinations 

Feature 

Size 

Combination 

of 

Feature 

Indices 

Support Vector Machine 

(SVM) 

Gaussian Naïve Bayes 

(GNB) 

P-value 

(Two 

tailed T-

test) 

Accuracy StdDev Accuracy StdDev 

2 

2+3 0.745 0.027 0.676 0.038 0.001 

1+3 0.741 0.033 0.685 0.036 0.006 

3+5 0.74 0.031 0.688 0.034 0.006 

3+6 0.739 0.026 0.687 0.037 0.005 

3+4 0.738 0.024 0.687 0.034 0.003 

3 

3+5+6 0.748 0.033 0.675 0.034 0.001 

2+3+4 0.743 0.031 0.68 0.033 0.002 

3+4+5 0.741 0.029 0.68 0.038 0.003 

1+3+4 0.74 0.034 0.691 0.033 0.011 

1+3+6 0.738 0.029 0.694 0.033 0.014 

4 

3+4+5+6 0.75 0.032 0.675 0.034 0 

2+3+5+6 0.747 0.032 0.682 0.035 0.002 

1+3+5+6 0.746 0.026 0.686 0.031 0.001 

1+3+4+5 0.741 0.035 0.69 0.028 0.006 

1+3+4+6 0.74 0.023 0.691 0.029 0.002 

5 

1+3+4+5+6 0.75 0.028 0.679 0.031 0 

1+2+3+5+6 0.748 0.031 0.686 0.033 0.002 
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1+2+3+4+6 0.741 0.026 0.685 0.034 0.003 

6 1+2+3+4+5+6 0.748 0.032 0.681 0.035 0.001 

 

4.2.3 Accuracy vs. Number of Features 

Table 11 summarizes the most accurate results for each feature set size. We observe that as 

the number of features used to train the classifier increases, the accuracy continues to increase 

until feature size 5.  These gains are surprisingly modest though.  Table 11 also reveals that the 

highest accuracy (75%) is achieved by SVM with both of the combinations f3+f4+f5+f6 and 

f1+f3+f4+f5+f6. We consider f1+f3+f4+f5+f6 the best performer since it has a smaller standard 

deviation, 0.028 versus 0.032. However, the scenarios are quite different for Naïve Bayes: some 

of the best combinations in GNB such as f1+f3+f6 (accuracy 69.4%) and f1+f3+f4+f6 (accuracy 

69.1%) still perform worse than the single feature f3 (70.2%). We will discuss this issue in 

section 4.2.4.  

Table 11: Best Performing Combinations in each Feature-size Group 

Feature 

size 

Support Vector Machine (SVM) Gaussian Naïve Bayes (GNB) 

Accuracy StdDev Features Accuracy StdDev Features 

1 0.743 
0.03 3 0.702 0.042 3 

2 
0.745 0.027 2+3 0.688 0.034 3+5 

3 0.748 
0.033 3+5+6 0.694 0.033 1+3+6 

4 0.75 
0.032 3+4+5+6 0.691 0.029 1+3+4+6 

5 0.75 
0.028 1+3+4+5+6 0.686 0.033 1+2+3+5+6 
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6 0.748 
0.032 1+2+3+4+5+6 0.681 0.035 1+2+3+4+5+6 

 

 

Figure 26: Accuracy vs. Number of Features 

4.2.4 Accuracy vs. Training Set Size 

Up to this point, all of our experiments have been carried out over the smaller datasets 

DS1 to DS8. Since we have gained sufficient insights regarding the best performing set of 

features, we are now interested in measuring the performance of our classifiers as we increase 

training dataset size. Therefore, we vary the percentage of the gold dataset (DS_ALL) for 

training from 12.5% to 100% with a step size of 12.5%. Figure 27 indicates the following facts: 

(i) A training dataset of size 37.5% (or 1200 authors) of DS_ALL provides the highest 

accuracy for the SVM classifier.  

(ii) Between two competitive feature-sets f3+f4+f5+f6 and f1+f3+f4+f5+f6, the latter wins in 

the long run for SVM.  

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1 2 3 4 5 6

A
cc

u
ra

cy
 

Number of Features 

SVM

GNB



49 

 

(iii) For GNB, among three competitive features f1+f3+f6, f1+f3+f4+f6, and f3, neither of them 

is a clear winner.  

(iv) The performance of h-index remains unchanged, and it is slightly better than the random 

guess (the 0.5 line).  

(v) The performance of co-authorship graph‟s degree centrality, SVM (degree) nearly 

catches the GNB at 37.50% of DS_All dataset point; however, it is 11.69% worse than 

the SVM (1+3+4+5+6) (the topmost accuracy) at that point.  

Finally, we can conclude that the SVM classifier with feature set f1+f3+f4+f5+f6 and training 

dataset of size 37.5% of DS_ALL are the optimal settings of our emerging author detection 

algorithm. 

 

Figure 27: Prediction 
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 Predicting Emerging Authors 4.3

To validate our approach, we end our work by using our algorithm to find emerging 

authors in the year 2011. We go through the similar process of selecting young researchers 

described in Section 3.4 where t = 2011, and classify them into either of the two classes, namely 

emerging (E) and non-emerging (NE). Besides class labels, our classifier provides prediction 

probability. In the following table (Table 12), we enlist a number of authors that the classifier 

believes to have high (                ), moderate (                   ), and low 

(                   ) chances of being rising stars. We also include their most recent h-

indices (@2013) from CiteSeer
x
 as an indicator of their true achievements.   

Table 12: Predicting Emerging Authors  

Author's Name Affiliation h-

index 

(2011) 

h-

index 

(2013) 

Prediction 

probability 

L. Grimson MIT 4 8 0.997732 

Stefan Naher University of Trier 4 7 0.999406 

Martn Abadi Microsoft 4 5 0.998755 

Robert Bridson University of British Columbia 4 5 0.958197 

Val Breazu-Tannen University of Pennsylvania 4 5 0.945338 

David L. Applegate AT&T Labs Research 3 6 0.727797 

Bruce L. Worthington Microsoft 4 6 0.839929 

Markus M. Breunig German Aerospace Center 3 5 0.815587 

Paul I. Dantzig IBM 4 5 0.749348 
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Frederico Torres Fonseca Universidad Nacional de Colombia 4 5 0.748446 

Martin R. Andersson Chalmers University of 

Technology 

4 7 0.698364 

Thomas Gartner University of Bonn 4 6 0.683219 

Valentin Jijkoun University of Amsterdam 4 6 0.618103 

Saul London  3 6 0.646772 

Antonina Starita University of Pisa 4 6 0.50737 

 

The following table, Table 13, contains 15 randomly selected authors who are identified 

as non-emerging according to our algorithm. 

Table 13: Prediction of Non-Emerging Authors  

Author's Name Affiliation h-

index 

(2011) 

h-

index 

(2013) 

Prediction 

probability 

Brendan Mccane University of Otago 3 3 0.357155 

Youssef Iraqi Khalifa University of Science 3 3 0.345736 

Brian K. Grant University of Washington 3 3 0.468394 

Pascal Gautron Institut de Recherche en Informatique  3 3 0.323327 

Torsten Schlieder Free University of Berlin 3 5 0.327689 

Lee W. Campbell Massachusetts Institute of Technology 2 4 0.343336 

Uffe Kjaerulff Aalborg University 2 4 0.332213 

Hugues Marchand Universit 2 4 0.314621 
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Philippe Morignot Atomic Energy Commission 2 4 0.302967 

Jean-Baptiste Pomet The French National Institute 2 4 0.304718 

Caixue Lin University of Tennessee Knoxville 1 4 0.410267 

Edward Bortnikov Yahoo Research Labs 1 2 0.41243 

Michael Baentsch IBM 1 2 0.430239 

Osman Balci Selcuk University 1 2 0.347947 

Richard Cavanaugh University of Florida 1 2 0.319026 

 

When we compare the two groups after just two years, the emerging authors have 

increased their average h-index from 3.8 to 5.87 whereas the predicted non-emerging authors 

have only increased their average h-index from 2 to 3.26. 

 Discussion 4.4

4.4.1 Why Citation Count Works so Well 

Historically, citation count plays a big role in measuring the total impact of a researcher. 

However, one of its disadvantages is that it may be inflated by a small number of ‟big hits‟ that 

may not be the actual contribution of the individual if he or she is co-author with many others on 

a one or a few highly cited papers. To overcome this drawback, many researchers suggested 

using a variant of citation count: the number of citations to each of the q most cited papers, (for 

example, q = 5) [1]. Since the young researchers do not have that many publications, their total 

citation count is equivalent to this measurement. This might be a reason why citation count 

works so well. 
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Another explanation is citation count provides a wider margin to the classifier. As Hirsch 

mentioned, if an author‟s h-index is h, then her total citation counts would be     , where 

      [1]. Therefore, unlike any other features, citation count is directly proportional to the 

square of individual‟s h-index which makes it less vulnerable to noise. 

4.4.2 Dataset in Retrospect 

In Section 3.2.1, we mentioned that we built the graph of 62,886 nodes from the set of 

278,904 papers. However, there were 199,628 authors in the paper-set, and our algorithm (in 

Table 1, Line 5.ii. b.) discarded almost 68.5% of the total authors because they did not belong to 

our disambiguated author-set of size 62,886. Moreover, by taking random samples and 

inspecting them visually, we have found that an individual author has 2.26 duplicate entries on 

average in CiteSeer
x
. Therefore, the numbers of publications and the number of citations of an 

author are distributed among his or her duplicate entities. Among these multiple entities of an 

author, we choose to use the entity that has the highest number of publications. As a result, it is 

obvious that we have lost a lot of useful information that might have affected the accuracy of our 

results. 

4.4.3 Usefulness of pure Co-authorship Graph 

Although we have shown that the best performance comes from the combination of 

personal and social features, some of our social and personal features are difficult to calculate. 

For example, collecting citation data chronologically is very difficult as these are often 

copyrighted by digital libraries. Without proper citation data, the calculation of the h-index 

would not be possible. Therefore, some of our features such as f1, f5, and f6 would be unavailable 
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as well. On the other hand, co-authorship data are freely available online
12

. So, one could easily 

build fairly complete and large-scale co-authorship network. Our experimental data shows that 

we can achieve accuracy as high as 68% using just degree centrality (Figure 27). Although it is 

11.69% worse than the best performing counterpart, we expect to have better accuracy with less 

noisy data. Therefore, we can consider degree centrality as a cheap, alternative single-valued 

feature for the classifier. 

  

 

                                                 

12
 http://dblp.uni-trier.de/xml/ 
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5. CONCLUSIONS 

 Summary 5.1

In this study, we empirically classify young researchers into two classes, namely 

emerging and non-emerging, depending on their h-indices. Then, we investigate which are the 

key characteristics of emerging authors based on personal and social features. We concluded that 

the success of a young individual researcher largely depends on his or her early citations, number 

of collaborators, and the impact and recent research activity of the collaborators.   

We built a social network of 62,886 authors using the data available in CiteSeer
x
. To 

view these social networks online, we developed an interactive, web-based user interface. 

Moreover, we also offer web services so that anyone can work with these graphs by their own 

way. 

We then designed and trained SVN and Naïve Bayes classifiers to learn how to identify 

emerging authors based on the personal and social aspects of a set of 3,200 young researchers 

who had an h-index of less than or equal to four in 2005. We represented each of these 

researchers as a six-dimensional vector of features. Since we already knew that there was noise 

in our data, we divided our original dataset into 8 smaller datasets averaged the results. It is 

noteworthy to mention to that we trained both classifiers on all possible combinations of features 

(a total of 63 sets of features) to determine which combination(s) worked best. We found that 

SVM classifier with the feature set <individual‟s change of h-index, citation count, degree 

centrality, total h-indices of the neighbors, and total change of h-indices of the neighbors> 

worked best, providing an accuracy of 75% when predicting emerging authors as of 2011, 5 

years later. 
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After we completed our experiments with our test and training data set, the best 

performing classifier was used to make the prediction of producing research impacts in the 

coming years of a set of 50,551 researchers who had an h-index of less than or equal four in 

2011. Finally, when we examined the results, we found that after just two years (in 2013), the 

predicted emerging researchers had increased their average h-index from 3.8 to 5.87 whereas the 

predicted non-emerging ones had only increased their average h-index from 2 to 3.26 (from the 

data available in CiteSeer
x
). 

 Contributions 5.2

Throughout this study, we made the following contributions: 

- We find a combination of personal and social features that allows us to predict future 

success for young researchers. 

- We offer a new visual browsing interface for CiteSeer
x
. 

- We propose that with the lack of citation data, degree centrality could be an 

alternative single-feature for training classifiers. 

- We found that, although the h-index is a poor estimator of the potentials of young 

researchers, citation count is a strong candidate. 

 Future Work 5.3

While this work provides the basic framework for finding emerging authors, there is still 

plenty of room for improvement. For example, we extract social features of a node from its 

immediate neighbors (1-level deep) only. It would be an interesting study to see the effect of 

extracting features from nodes at distance two or more, making use of more of an author‟s 

academic social network. Moreover, our co-authorship graph is weighted, but we do not 
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incorporate edge-weights in this study. Furthermore, we can vary the threshold value of h-index 

in the definition of our Emerging/Non-Emerging classes and re-do the experiment. Finally, we 

are excited to see the results of our algorithm on a different, clean dataset. 
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