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ABSTRACT 
 

Power has become a critical design parameter for digital CMOS integrated circuits. With 

performance still garnering much concern, a central idea has emerged: minimizing power 

consumption while maintaining performance. The use of dynamic voltage scaling (DVS) with 

parallelism has shown to be an effective way of saving power while maintaining performance. 

However, the potency of DVS and parallelism in traditional, clocked synchronous systems is 

limited because of the strict timing requirements such systems must comply with. Delay-

insensitive (DI) asynchronous systems have the potential to benefit more from these techniques 

due to their flexible timing requirements and high modularity. This dissertation presents the 

design and analysis of a real-time adaptive DVS architecture for paralleled Multi-Threshold 

NULL Convention Logic (MTNCL) systems. Results show that energy-efficient systems with 

low area overhead can be created using this approach. 
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1.  Introduction 

1.1 Problem  

Power has become a primary design constraint for digital CMOS systems.  This has 

emerged largely from two factors: transistor feature size reduction into deep sub-micron regions 

and the proliferation of energy-limited applications such as mobile multimedia devices, 

biomedical monitoring devices, and distributed sensor networks.  As process feature size has 

reduced, dynamic power has shown only a linear increase, but leakage power and thermal output 

have shown exponential increases.  Leakage power for some systems now comprises over 50% 

of the total power consumption as opposed to 1-2% seen in earlier decades [1].  As power 

distribution has not scaled with process size, at a cost level, circuits have become significantly 

more expensive to run and cool. The proliferation of mobile devices has helped make this 

increase in power and cost apparent and has created a need for devices that use energy as 

efficiently as possible to provide the most cost-effective solution for a given application.  With 

semiconductor processes continuing to follow Moore’s Law and mobile devices’ growth 

increasing yearly, power will continue to be a critical concern in the near future. 

In recent years, there are many power reduction techniques that have emerged as promising 

solutions to alleviate the power problem. One technique, the combination of parallelism and dynamic 

voltage scaling (DVS), has been effective in this area allowing for power savings while maintaining 

throughput at the cost of area. Parallelism is a technique where multiple instances of a computational core 

are set up to run concurrently; DVS is a power management technique where the supply voltage of a 

system is scaled in accordance with a certain power usage strategy. These techniques, in combination, 

have been well-studied and applied to the prevailing clocked, synchronous systems. However, 

synchronous systems employing this technique show several disadvantages compared to delay-
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insensitive, asynchronous systems like those designed using NULL Convention Logic (NCL) [2]: 

1) For synchronous systems, the combination of VDD scaling, clock frequency scaling, 

and process variation requires large timing margin and sophisticated timing analysis. 

NCL circuits, on the other hand, are correct-by-construction; they work correctly as 

long as the transistors switch properly. Therefore very little, if any, timing analysis is 

needed. This feature allows NCL circuits to employ DVS more aggressively, across a 

wider range of voltages, and with higher reliability than the synchronous 

counterparts; 

2) The handshaking signals of NCL circuits naturally indicate the input data rate and 

current workload, which enables real-time adaptive DVS and substantially simplifies 

the VDD control algorithm compared to synchronous counterparts; 

3) The delay-insensitivity of NCL circuits automatically guarantees no input data will be 

lost during the rise of VDD when a new burst of input arrives, where in synchronous 

circuits careful timing analysis is required to achieve this feature; 

4) The robustness against process variations facilitates the implementation of parallelism 

in NCL circuits for further VDD scaling and power reduction, where each processing 

unit can have its own individual VDD scaling mechanism without the need to consider 

global timing; 

5) The high modularity feature of NCL circuits allows for much easier turning on/off of 

parallel processing units for enhanced system scalability; and 

6) Synchronous systems generally consume more active energy and leakage power than 

NCL counterparts, especially the most recent advance of this methodology – the 

Multi-Threshold NCL (MTNCL) [3]. 
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Furthermore, it has recently been stated by Intel that current technology trends have 

prompted them to change their low power design methodology [4].  In the past, Intel has created 

designs specifically tailored for each application type: server, desktop, mobile, and medical 

implantable devices.  Now they are looking into creating only 1-2 designs capable of operating 

across all applications. In order to do this, the following four features are highly desirable: 1) 

aggressive power management; 2) adaptive to workload, environment (temperature change), and 

aging; 3) resistant to errors during voltage/frequency changes; and 4) maximize(minimize) 

process advantages (disadvantages). 

While the fourth feature, to a large degree, must still be handled by physical-level 

designers, the first three features are achievable by using delay-insensitive asynchronous logic 

with little to no timing analysis and overhead. Feature one and three are inherent features of 

NCL/MTNCL systems due to their timing insensitivity; NCL/MTNCL systems can have their 

supply voltages scaled across a large, continuous range in real-time without incurring 

computation errors. The second feature is achievable through the handshaking signals existent in 

every NCL/MTNCL system; changes in workload, environment, and aging are all detectable 

through the monitoring of these handshaking signals.  Because of these reasons, NCL/MTNCL 

systems implementing parallelism and DVS can achieve the type of universal operation Intel 

introduced. Such systems can be easily customized for various applications in order to achieve 

the most energy efficient solution. 

1.2 Dissertation Statement 

The goal of this dissertation is to develop and explore an adaptive system architecture 

which uses MTNCL, parallelism, and DVS to create energy-efficient systems. 
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1.3 Approach 

The approach is to build a design flow that for any MTNCL core with n dual-rail inputs, 

m dual-rail outputs, 1 Ki input, 1 Sleep input, 1 Reset input, and 1 Ko output, instances a user-

specified number of cores and builds the surrounding circuitry to accommodate the parallelism 

and implement DVS.  Figure 1 shows an example of such systems. 

 

Figure 1. System Approach 

 

To implement parallelism, the Demultiplexer and Input Sequence Generator dispatch 

incoming DATA to the proper Core while the Multiplexer and Output Sequence Generator 

guarantee the proper DATA exits the system. To implement DVS, a voltage control unit (VCU) is 

added. The VCU takes as inputs the handshaking signals (Ko’s) from each Core. These signals, 
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which are used to coordinate the MTNCL circuit’s behavior by controlling the DATA/NULL 

wavefront alternation, also indicate a Core’s fullness, i.e., how many DATA the core is 

processing. The VCU uses this information along with a UserControl input to regulate the Cores’ 

supply voltage. The UserControl input is incorporated in order to allow the user to specify 

system constraints, i.e., how full the system should attempt to be at all times. If the user specifies 

that the system should try to be empty, the VCU tunes the Cores’ VDD to higher values facilitating 

higher throughput. On the other hand, if the user specifies that the system should try to be full, 

the VCU tunes the Cores’ VDD to lower values facilitating lower power. Furthermore, when the 

input data rate is low, e.g., the system is idle, the VCU aggressively scales the Cores’ VDD deep 

into the sub-threshold regime to reduce leakage power.  As the Cores begin to fill with DATA, 

the VCU raises the Cores’ VDD in anticipation of the incoming workload. 

Due to MTNCL’s advantages, the value of VDD can be scaled with very high precision in 

real-time, allowing for systems with near-optimal energy efficiency or near-optimal throughput 

as required by the application.  Even higher levels of energy/performance precision could be 

obtained with features like giving each Core its own VDD domain or implementing real-time 

disabling/enabling of Cores to further reduce leakage power or handle an increased workload, 

respectively. 

1.4 Organization of this Dissertation 

Chapter 2 contains background information on several key concepts of the system: NCL, 

MTNCL, DVS, and parallelism. Chapter 3 contains a detailed description of the system. Chapter 

4 contains the simulation methodology and results and analysis of simulations for the system. 

Chapter 5 summarizes the main concepts learned, discusses the potential impact of this 

information, and explores future avenues for this work. 
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2. Background 

2.1 Symbolically Incomplete Logic 

Synchronous circuit designs can be separated into two units: datapath and control.  The 

datapath unit's responsibility is to process data; the control unit's responsibility is to validate 

processed data. Control units use a time-dependent signal to affirm the validity of the datapath's 

data. This requires datapath elements' delays to be bounded by the time-dependent signal. This 

timing dependency between datapath and control exists because Boolean logic, which is used to 

implement the datapath elements, consists only of values representing data. 

Boolean logic consists of two logic values: True and False.  These values represent data, 

so processing sequences of these values yields only more data; there is no value in the logic that 

indicates the data's validity. Validity can only be obtained through the use of a time-dependent 

reference which uses the same values of the logic (True/False). As long as the data process and 

reference are synchronized, the reference's periodic oscillation between the two logic values can 

be used to indicate when data is valid and when it is not. A logic that does not contain explicit 

values that indicate data's validity is a main characteristic of a symbolically incomplete logic and 

the prime difference between Boolean logic and NCL [2]. 

2.2 NULL Convention Logic (NCL) 

NCL is a symbolically complete logic which means that its logic set includes values for 

data processing and data validation. Data validation is made possible through the inclusion of a 

non-data (NULL) value along with the standard Boolean values.  In this way, invalid data can be 

represented through the use of the non-data (NULL) value, and valid data can be represented 

through the use of the original Boolean data values.  
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A wire in traditional digital circuitry uses only two voltage levels to represent a logic 

value. These two voltage levels are typically represented as logic1 and logic0 and can be mapped 

directly to Boolean logic’s two values: True = logic1; False = logic0.  However, NCL requires 

three logic values: one non-data value (NULL) and the two data values. Thus, at least two wires 

are used to encode the three NCL logic values. The two-wire representation, denoted as dual-rail 

encoding, of the logic values is shown in the table below. The two wires cannot be logic 1 at the 

same time, which is considered as an invalid state. 

 

 NULL DATA 0 DATA 1 INVALID 

Wire 0 0 1 0 1 

Wire 1 0 0 1 1 

Table 1. Dual-Rail Encoding 

 

DATA 0 and DATA 1 can be used to represent any mutually exclusive two-value 

relationship, like Boolean logic's True/False relationship.  However, NCL logic sets are not 

restricted to two data values. They can contain n data values, where n > 1, requiring n wires for 

encoding.  For example, quad-rail encoding, shown in Table 2, uses four data values which can 

be used to represent a mutually exclusive four-value relationship like two paired Boolean signals. 

Since mutual exclusivity is not inherent to an encoding scheme's n data values, by 

convention, the n data values of any encoding scheme are asserted in mutual exclusivity of each 

other.  Assertion of multiple data values at the same time is, in nearly all cases, prohibited. 
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 NULL DATA 0 DATA 1 DATA 2 DATA 3 INVALID 

Wire 0 0 1 0 0 0 1 

Wire 1 0 0 1 0 0 1 

Wire 2 0 0 0 1 0 1 

Wire 3 0 0 0 0 1 1 

Table 2. Quad-Rail Encoding 

An NCL signal consists of n wires which represent n data values; this type of signal is 

called an n-rail signal.  Wire denotation is done in two ways: 1) name.railX, where name is the 

signal's name and X identifies the rail/wire number; and 2) name
X
. For example, A.rail0 and A

0
 

both reference Wire 0 or rail 0 of signal A.  Bus notation is done in the following two ways: 

A(i).rail0 or Ai
0

 where i indexes a bus's signal. 

2.2.1 NCL Gates 

In NCL signals, a single wire can express only one data; the voltage level of a single wire 

indicates that it is representing data, but it does not indicate which data value is represented. As 

such a gate processing these signals cannot determine a signal's actual data value; it can only 

determine the quantity of data being presented to it. A gate that processes signals in this manner 

is called a threshold gate, the threshold being the number of inputs that need to be logic1 for the 

output of the gate to become logic1. NCL gates use hysteresis such that the output of the gate 

counts as a threshold-1 number of inputs. Once the gate's threshold is met, the gate's asserted 

output will be sustained until all inputs to the gate are deasserted.  A gate with these properties 

satisfies the process definition of NCL and provides a fundamental and scalable unit for 

processing logic values. 
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Threshold gates have two major naming conventions depending on whether or not the 

inputs to the gate are weighted.  All threshold gates with non-weighted inputs use the form THmn 

such that 1 < m < n.  n is the number of inputs to the gate, and m is the threshold of the gate.  

Threshold gates with weighted inputs, also called weighted threshold gates, use the form 

THmnWx1x2…xL.  L is as an integer value where 1 < L < n, and the weight of input L is an integer 

value such that 1 < xL < m. These two types of gates, as well as a few others, comprise the 27 

fundamental NCL gates. These 27 gates, shown in Table 3, are capable of expressing any 

Boolean function of four variables or less [2].   

Combinations of these 27 gates can be used to design any combinational circuit; 

however, a few other gate types are needed for control and storage elements: resetting and 

inverting. Resetting gates are typically of the form THnn, and their reset state is denoted by 

either a d, signifying reset to logic1, or an n, signifying reset to logic0. The d or n is is placed 

after the THnn.  For example, the name TH22d would be used represent a TH22 gate capable of 

resetting to logic1.  Inverting gates are typically of the form TH1n and are denoted by a b placed 

after the TH1n. 

NCL Gate Boolean Function 

TH12 A + B 

TH22 AB 

TH13 A + B + C 

TH23 AB + AC + BC 

TH33 ABC 

TH23w2 A + BC 

TH33w2 AB + AC 

TH14 A + B + C + D 

TH24 AB + AC + AD + BC + BD + CD 

TH34 ABC + ABD + ACD + BCD 
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TH44 ABCD 

TH24w2 A + BC + BD + CD 

TH34w2 AB + AC + AD + BCD 

TH44w2 ABC + ABD + ACD 

TH34w3 A + BCD 

TH44w3 AB + AC + AD 

TH24w22 A + B + CD 

TH34w22 AB + AC + AD + BC + BD 

TH44w22 AB + ACD + BCD 

TH54w22 ABC + ABD 

TH34w32 A + BC + BD 

TH54w32 AB + ACD 

TH44w322 AB + AC + AD + BC 

TH54w322 AB + AC + BCD 

THxor0 AB + CD 

THand0 AB + BC + AD 

TH24comp AC + BC + AD + BD 

Table 3.  27 Fundamental NCL Gates 

 

Figures 2-5 show symbols for examples of the gate types mentioned in the preceding 

section. 

 

Figure 2.  TH23               Figure 3.  TH33w2  
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Figure 4. TH22d                Figure 5.  TH12b 

Nearly all threshold gates contain four major blocks. The name of each block corresponds 

with its effect on the gate's output.  From previous work [24], the four blocks are named the 

following: Reset, Hold0, Set, and Hold1. The Set and Hold0 blocks are complements of each 

other, as are the Reset and Hold1 blocks.  The Set/Reset block is responsible for changing the 

gate's output from a logic0/logic1 to a logic1/logic0.  The Hold1/Hold0 block is responsible for 

holding the output logic1/logic0 once it has been changed to logic1/logic0 by the Set/Reset 

block.  The transistors used for hysteresis are placed in series with the Hold blocks. An example 

of these blocks' arrangement in a common NCL gate is shown in Figure 6. 

The Set block contains PMOS transistors ordered to represent its corresponding Boolean 

function.  The Hold1 block is a parallel combination of PMOS transistors driven by each gate 

input, respectively.  The Reset block is a series combination of NMOS transistors driven by each 

gate input, respectively.  The Hold0 block is a complementary ordering of the Set block.  These 

blocks output is inverted in order for the gate to function properly in a CMOS setting.  All NCL 

gates can be created by following these block descriptions; however, some term combining 

between blocks can yield transistor savings. Resetting and inverting gates use the same block 

arrangement, but require slight modifications to achieve their function. 
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Figure 6.  TH22 Transistor-Level Schematic 

Inverting gates are n-input OR gates with names of the form TH1n.  Removing a TH1n's 

output inverter achieves the function of a TH1nb gate. Resetting gates require two or four extra 

transistors depending on whether the gate resets to a logic1 or logic0, respectively. Figure 7 and 

Figure 8 show the schematics for a TH22d (reset to logic1) and TH22n (reset to logic0) gate, 

respectively.  

 

Figure 7.  TH22d Transistor-Level Schematic 
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Figure 8. TH22n Transistor Level Schematic 

In order for NCL circuits to maintain delay-insensitivity, they must be input complete and 

observable. An input complete circuit requires that: 1) all outputs of the circuit may not transition 

from NULL to DATA until all inputs have transitioned from NULL to DATA; and 2) all outputs 

of the circuit may not transition from DATA to NULL until all inputs have transitioned from 

DATA to NULL. An observable circuit requires that no orphans are allowed to propagate through 

a gate. An orphan is a wire that transitions to logic1 during the processing of an input set but is 

not used in the determination of the output. Orphans occur wherever there is a wire fork and are 

neglected through the isochronic fork assumption as long as they do not cross a gate boundary 

[2]. 

2.2.2 NCL Registers 

Threshold gates used in a combinational circuit can only process sets of DATA and 

NULL signals, also known as DATA/NULL wavefronts.  These wavefronts need to be processed 

cyclically to maintain the circuit's validity. Elements that maintain this cyclical distribution of 

wavefronts are called NCL registers. These elements store complete DATA/NULL wavefronts 
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until notified that the wavefront has been successfully processed. At this point, the next 

corresponding wavefront of the cycle can be stored. These elements also communicate which 

wavefront type they currently hold so that the wavefront's source knows when to send the next 

wavefront. An example of a single bit dual-rail register is shown in Figure 9.  

 

Figure 9. Single Bit Dual-Rail Register 

This register receives a control signal, called Ki, which dictates what can be stored or 

passed next DATA or NULL.  When Ki is logic 1, only a DATA can be passed through the 

threshold gates; when Ki is logic 0, only a NULL can be passed through the threshold gates.  The 

acknowledgment signal, called Ko, communicates what wavefront the register will accept next.  

Ko becomes logic 0 when a complete DATA is accepted, indicating readiness to accept a NULL;  

Ko becomes logic 1 when a complete NULL wavefront is accepted, indicating readiness to 

accept a DATA. 

Single-bit dual-rail registers can be combined to form larger n-bit registers. As an example, a 4-

bit dual-rail register is shown in Figure 10. 

For n-bit registers a completion block – called COMP block – is included that combines 

the Ko of each bit into one Ko signal that represents the state of the entire register. A COMP 

block, shown in Figure 11, consists of a log4m tree of THnn gates, where m is the register's bit 

width. In a 4-bit register's, the COMP block is one TH44 gate.  
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Figure 10. 4-Bit Dual-Rail Register 

 



 

16 

 

Figure 11. COMP Block 

Generally, for a single combinational circuit, two registers placed on each side of the 

circuit are used to control wavefronts to the circuit.  Figure 12 shows such a configuration.   

 

Figure 12. NCL Pipeline Stage 

For this and following sections, the use of the terms DATA and NULL is used to mean 

DATA wavefront and NULL wavefront. Assuming that the two registers and consequently the 

combinational circuit begin in a NULL state, both registers’ Ko signals will be logic 1 indicating 

their readiness to receive a DATA.  Register 2's Ko signal is used directly as the Ki signal of 
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Register 1.  So, Register 1 is communicating with its Ko signal that it is ready to receive a 

DATA, and its Ki signal allows the register to store that DATA.  The order that these signals 

become the required values for storing the DATA is inconsequential.  Once a DATA is stored by 

Register 1, its Ko will become logic 0 indicating it is ready for a NULL.  Register 1's source may 

receive this signal and send a corresponding NULL, but that NULL will not be stored until the 

DATA has been processed by the combinational circuit and stored by Register 2.  When the 

DATA reaches Register 2, the Ki to that register should logic 1 allowing that DATA to be stored.  

The Ko of Register 2 will become logic 0 to signify the reception of a DATA and request for a 

NULL.  This will allow a NULL to be passed through the circuit and Register 2, allowing the 

cycle to repeat in a maintainable order. 

Due to the unpredictability of CMOS gates on startup, registers require the use of 

resetting gates.  Replacing the TH22 gates shown in Figure 9 with the proper TH22n or TH22d 

gate allows for the initialization of a NULL or DATA and is required for the construction of 

registers and consequently standard storage elements. 

The standard storage and data flow element of NCL is called a three-ring register.  It is 

necessary for storing DATA sets through the process of a NULL set, and for acting as a 

wavefront source.  A block diagram of an 8-bit three-ring register is shown in Figure 13. 

With Reset at logic1, Register 1 and Register 2 are initialized to store all NULL values, 

and Register 3 is initialized to store the value DATA0, which is DATA0 for all its values.  

Assume that Ki begins at logic 0 which forces the output of the COMP block to logic 0. With 

that, the states of the three registers are as follows: Register 1 is being presented with DATA 

from Register 3, but Ki1 is logic 0, disallowing the passing of that DATA; Register 2 is being 

presented with NULL, and Ki2 is logic 0 allowing that NULL to pass through; Register 3 is 
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being presented with NULL, but Ki3 is logic 1, disallowing the passing of that NULL.  As long 

as Ki does not change, the states of these registers and their corresponding Ki and Ko will not 

change.  A steady state has been reached; this state is called the NULL state. During this state the 

output of the 3-ring register is NULL. Once Ko becomes logic 1 indicating that the 3-ring 

register is in its NULL state, the reset signal may become logic 0. 

 

Figure 13.  8-bit 3-Ring Register 

 

When Ki becomes logic 1, a series of events occur resulting in a steady state.  First, Ki1 

becomes logic 1, and the DATA being presented Register 1 will pass through to the second 

register.  The Ko1 Register 1 becomes logic 0 after the DATA is passed; this will allow the NULL 

being presented to Register 3 to be passed through to Register 1.  Ko3 becomes logic 1 after 

NULL is passed; this will allow the DATA being presented to Register 2 to be passed through to 

Register 3. Ko2 will go low, and a static state has been reached again, the DATA state.  The 

output of the 3-ring register is now issuing whatever DATA Register 3 has been reset to, in this 

case, DATA0. 
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2.2.3 Timing Considerations 

With the elements discussed in this section – threshold gates, registers, and 3-ring 

registers – complex computational circuits and control systems can be created. However, there is 

one caveat to using hysteretic threshold gates for circuit design. Hysteresis in threshold gates 

introduces a timing dependency that must be examined before attempting to build complex 

systems. In a threshold gate, the output of the gate is fed back to its Hold blocks for correct 

maintenance of the output. In the case that this feedback signal is slower than successive 

wavefronts to the combinational circuit, errors will occur.  The required delay ratio for correct 

circuit operation is shown in Equation 1.   

Delay feedback

Delaywavefront

< 1

    Equation 1 

For errors to emerge in such a system, the feedback signal's delay would have to be 

greater than the time needed for the acknowledgment signal to change and the arrival and 

acceptance of the next wavefront.  The gate's feedback path, generally only a transistor or two 

delay, is significantly faster than the acknowledgment path, which consists of several gate delays. 

Following standard design practices, this delay relationship is usually close to 0. 

2.3 Multi-Threshold NULL Convention Logic (MTNCL) 

MTNCL is an asynchronous, delay-insensitive design methodology that combines 

MTCMOS (Multi-threshold CMOS) power-gating method with regular NCL. Developed in [6-

9], MTNCL offers significant improvements in active energy and leakage power savings, 

throughput enhancement, and area reduction over traditional NCL counterparts, making it a 

promising candidate for delay-insensitive (DI) asynchronous systems. 

The most notable difference between MTNCL and NCL is the usage of the sleep 
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mechanism inside each MTNCL logic gate to facilitate DATA/NULL wavefronts.  When a gate’s 

sleep signal is logic0, that gate is said to be awake.  In this state, the gate can process 

DATA/NULL values.  When a gate’s sleep signal is logic1, that circuit is said to be asleep.  In 

this state, the gate’s output is pulled low facilitating a NULL value.  This transfers up to the 

pipeline level such that when all the gates in a pipeline stage are awake (sleep = 0), a 

DATA/NULL wavefront can be propagated; when all the gates in a pipeline stage are asleep 

(sleep = 1), a NULL wavefront is generated. Unfortunately, this change in DATA/NULL 

wavefront propagation compromises delay-insensitivity through the potential passing of a partial 

NULL wavefront [24].  Mitigating this problem requires a new completion method called Fixed 

Early Completion (FEC).  FEC ensures that the DATA/NULL wavefront being presented to a 

pipeline stage’s Register matches the requested wavefront of the subsequent pipeline stage before 

allowing DATA/NULL to be propagated.  An example of the resulting pipeline is shown in 

Figure 14. 

 

 

Figure 14: Original Architecture of an MTNCL Pipeline with FEC 

Incorporating the MTCMOS structure inside a NCL threshold gate (block structure 

shown for reference in Figure 15(a)) actually reduces the number of transistors needed to achieve 

that gate's four functions: Reset, Set, Hold1, and Hold0. For one, the Reset circuitry is no longer 
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needed. With the MTNCL sleep mechanism, a gate's output will become logic0 when Sleep is 

logic 0. This facilitates the Reset function. Furthermore, all gates in a pipeline stage are forced to 

sleep by the same Sleep signal, so hysteresis is no longer required. As such, the Hold1 circuitry 

and corresponding NMOS transistor are removed, and the PMOS transistor is removed to 

maintain the complementary nature of CMOS logic. These modifications result in the general 

gate structure shown in Figure 15(b). During active mode, the Sleep signal is logic0 and the gate 

functions normally. During sleep mode, Sleep is logic1, and the low-Vt pull-down transistor is 

turned on to force the output to logic0. At this time, the output inverter's high-Vt PMOS transistor 

is gated, and all high-Vt NMOS transistors are off which reduces leakage. As an example, Figure 

15(c) shows a TH23 gate's MTNCL implementation.   

 

Figure 15: (a) Block Reduction from MTCMOS Power Gating, (b) MTNCL Gate Structure, 

(c) TH23 MTNCL Implementation (High-Vt Transistors are Circled) 

Since the inception of the MTNCL architecture, there have been two enhancements to it: 

slept completion logic and slept registers [3]. For these enhancements, the Ko of a pipeline stage 

is used not only to sleep the subsequent stage's MTNCL logic, but also the register and 

completion logic. For slept completion logic, all of the regular NCL gates in an EC block are 

replaced with their MTNCL version except for the last gate which facilitates maintenance of the 

Ko signal through sleep.  For the slept register, the register is redesigned such that after the 
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register propagates a DATA wavefront, it can only propagate a NULL wavefront when sleep 

becomes logic1. The resulting pipeline is shown in Figure 16. 

 

Figure 16:  Current Architecture of an MTNCL Pipeline with EC 

Compared to MTCMOS synchronous and regular NCL counterparts, MTNCL offers 

several unique and significant advantages: 1) Leakage reduction in both active and idle modes – 

since the combinational logic block in each stage goes to sleep after every DATA cycle, leakage 

power is reduced substantially even when the circuit is actively processing data, in contrast to 

MTCMOS synchronous circuits where leakage is only reduced when the entire circuit is in sleep 

mode; 2) Reduced area overhead and active energy – MTNCL architecture ensures input-

completeness and observability, such that input-incomplete logic functions can be used to design 

the circuit, which significantly decreases area overhead and active; and 3) Improved performance 

– due to the early completion and sleep mechanisms, the throughput of MTNCL pipeline is 

improved compared to NCL [10]. 

2.3.1 Timing Considerations 

While this most recent MTNCL architecture brings with it several advantages over its 

architectural predecessors, a new delay ratio is imposed as shown in Equation 2. The addition of 

the slept DI register mechanic introduces a timing dependency between that register and 
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subsequent stages of the pipeline. For a given register, if the sleep path, i.e., the path from the 

subsequent COMP block's output to the given register's sleep input, is faster than the wakeup 

path, the path from the subsequent COMP block's output to the subsequent register's sleep input, 

then it is possible to sleep the given register before waking up the subsequent register thereby 

destroying data. Generally this situation only needs to be examined when the capacitive load of 

the wakeup path is significantly higher than that of the sleep path, yielding situations where 

buffering between those nets may become unbalanced. 

Delaysleep

Delaywakeup

> 1

    Equation 2 

2.4 Dynamic Voltage Scaling (DVS) 

DVS is a power management technique where the supply voltage (VDD) of a system is 

scaled in accordance with a certain power usage strategy.  In low power designs, this often means 

scaling the voltage in accordance with the workload of the system to achieve energy-optimal or 

ultra-low power performance. Regardless of the strategy, power savings derivations are rooted in 

the CMOS power equation. 

Equation 3 shows the CMOS digital circuit power equation. This power equation has 

three terms: 1) dynamic power – power consumed during charging/discharging of the capacitive 

load, CL; 2) short-circuit power – power consumed during switching when both PMOS and 

NMOS networks are on; and 3) leakage power – power consumed regardless of switching 

activity.  

P=C L V DD
2

f
( 0→1)

+ t sc V DD I peak f
(0→1)

+ V DD I leakage   Equation 3 

Of the three terms, dynamic power and leakage power have the most impact on overall 
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power consumption. Reducing VDD linearly provides a quadratic reduction in dynamic power and 

a linear reduction in leakage power. Typically, at larger process nodes (>90nm), dynamic power 

is the dominant term in the power equation; however, as process scales down to 65nm and lower, 

leakage power begins to become the dominant term [1]. This rationale provides incentive to not 

only scale VDD as responsively and aggressively as possible during active times, but to also scale 

VDD as low as possible during idle times. 

In a synchronous system supply voltage and frequency are directly related; as the supply 

voltage scales, the frequency must scale with it.  Due to the overhead investment and energy-

savings per validation time, synchronous systems employing DVS for low-power operation 

typically have a small set of voltage-frequency (VF) pairs which the system can operate at. If the 

periodicity of the system's workloads is predictable, switching between VF pairs can be done 

between workloads to ensure no loss in performance. However, if the periodicity of the system's 

workload is unpredictable, switching between VF pairs has to be done during workload 

processing. Since some time is needed to adjust the voltage and frequency, this adjustment must 

take place within a cycle's slack time in order to maintain system performance. Usually this is 

not possible for systems focused, to some degree, on performance, so, instead, during a run-time 

VF switch, it is assumed that several cycles will be lost. VF switching becomes even more 

problematic when considering changes in Vt due to process variation, temperature variation, and 

aging which can cause circuit behavior to fall outside the profiled bounds for a VF pair. As 

variation increases, the circuit is less likely to be able to take full advantage of VF switching 

without the addition of some variation-aware circuitry. 

Due to the delay-insensitivity features of MTNCL, there is no performance loss 

associated with supply voltage switching during workload processing as in a synchronous 
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system. If the voltage is scaled up during workload processing, that workload will be processed 

faster; if the voltage is scaled down during workload processing, that workload will be processed 

slower. No data is lost as long as the transistors are switching. Furthermore, since MTNCL is 

correct-by-construction, Vt changes stemming from process variation, temperature variation, and 

aging will only affect an MTNCL system if Vt shifts are so extreme that they permanently turn 

on/off a transistor, effectively disabling it from switching. Fluctuations in variation can even be 

recognized by monitoring the system's handshaking signals. 

2.4.1 Literature Review 

In recent years, there has been extensive study on DVS as it applies to synchronous 

systems in areas like workload observation, inter-task and intra-task algorithms, variation-aware 

techniques, multi-core VF island strategies, course-grain/fine-grain implementations, etc. This 

section examines current works in several of these areas to better understand the landscape of 

DVS in synchronous systems. 

There are two main approaches to workload-based DVS algorithms for synchronous 

systems: offline profiling using statistical models and run-time estimation. [19, 20] are examples 

of works that focus on offline profiling which use statistical modeling of workloads to develop 

optimal DVS algorithms for hard real-time systems. This type of approach is limited to 

stationary workloads and requires extensive profiling to utilize a costly DVS algorithm with 

runtimes of, in the case of [19],  O(n
2
). For highly variable workloads, a run-time estimation 

technique is required. [13] proposes such a technique which uses a Kalman filter [15] to estimate 

the execution time of future workloads. This approach, of course, still incurs deadline misses and 

lost cycles because of VF switching. 

[11] investigates a combination of inter-task and intra-task DVS on systems with 
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unpredictable workloads. A large portion of their study assumes an ideal model where the 

processor speed can be tuned continuously and unrestrictedly, and the speed change overhead is 

ignored. They develop DVS schemes that are optimal for varying DVS strategies under the ideal 

model which they then apply to a realistic system model. They show that their DVS schemes 

offer energy savings over other schemes currently held as optimal.  

[12] investigates the interplay of DVS with DPM (Dynamic Power Management – 

sleeping idle off-chip devices at run-time). As voltage/frequency lowers, execution time 

increases. This causes the idle time for devices to decrease requiring them to be active for longer. 

When voltage/frequency rises execution time decreases, and the idle time for devices increases. 

They use this idea to formulate an m log m (m = number of off-chip devices) algorithm to 

minimize system-wide energy that combines DVS with DPM. 

For chip multi-processors (CMPs), [16] evaluates several different voltage-frequency 

island (VFI) strategies and [17] presents a variation-aware DVS technique. [21] explores core 

allocation in an 80-core TeraFLOPS processor for four application types: 1) low compute, low 

communication; 2) low compute, high communication; 3) high compute, low communication; 

and 4) high compute, high communication. Clock and power gating strategies are applied to idle 

cores to show energy savings for each application type.  Other explorations involve voltage 

island granularity coupled with variation-aware design. 

 Local voltage dithering (LVD), a fine-grain DVS technique is presented in [22] and 

applied to a 32-bit Kogge-Stone Adder. This technique uses locally embedded power switches to 

allow for more responsive and customizable DVS. The power savings is achievable only if 

voltage changes occur in the same time-scale as the altering workload, and, due to the energy 

overhead, lowering supply voltage requires operation in this lower energy state for a certain 



 

27 

number of clocks to benefit from the switch. 

Lastly, a robust summary of modern DVS techniques for logic and memory design, as 

well as, novel analog power delivery components are presented in [18]. 

Much of the research on synchronous DVS systems focuses on mitigating the effects of 

timing fluctuations caused by the voltage scaling itself, process variation, thermal variation, or 

other timing sensitivities at deep sub-micron process nodes.  All these problems can be mitigated 

through the use of a DI asynchronous methodology like NCL/MTNCL.  As examples, an NCL 

ALU implemented on the 0.5μm IBM SiGe 5AM process has shown to work across a continuous 

voltage range of 3.3V to 0.36V, and an 8031 microcontroller implemented using the same 

process has shown to work from 3.3V to 2.2V with no features specifically tailored for low-

voltage operation. 

2.5 Parallelism 

Parallelism is an architectural technique where a computational block is instanced 

multiple times and these instances are set up to run concurrently with each other.  In the past, 

parallelism has generally been thought of as technique to improve performance, but, more 

recently, parallelism has been employed along with DVS to achieve more energy-efficient 

systems.  Due to the reduction in power as supply voltage is reduced, parallelism combined with 

DVS can create higher throughput, lower power (energy-efficient) systems at the cost of area 

[13].  

A technique to reduce area overhead, introduced in [4], compares two systems where: 1) 

one system, PA1, is comprised of only one core with area A; and 2) one system, PA2, is 

comprised of N cores with each core having area A/N. In this way, the total area of the second 

system is comparable with the reference system. This is done by manipulating transistor channel 
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widths. Since the computational capability of each copied core is degraded, the PA2 system 

requires a supply voltage of γVDD and clock frequency of ηf to process the same input data, 

where 0<{γ,η}<1. The dynamic power of the PA2 system is PPA2=C(γVDD)2ηf=γ2ηPref. 

Although PA2's dynamic power savings may be smaller than PA1's, the substantial area savings 

in PA2 can reduce leakage power significantly. 

For NCL circuits, some preliminary work has been done in [14] which examines the 

effects of applying parallelism and DVS on a 4×4 NCL multiplier. The highest performance 

system required four copies of the multiplier while the most energy-efficient system required 

only two copies. The results indicate that parallelism coupled with DVS can apply to NCL, and 

likely MTNCL, systems for improvements to performance and power. 
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3. Architecture 

3.1 High-Level Design 

Figure 1 in Chapter 1 shows the system's high-level design. It is comprised of 

components that can be separated into three categories based on their function: 1) Core 

components– responsible for performing the type of computation required by the application; 2) 

Parallelism components – responsible for the distribution and sequencing of data; and 3) Voltage 

Control Unit (VCU) components – responsible for generating, selecting, and regulating the 

Cores' VDD.  

3.2 Core Design 

Several Cores were used in the process of creating a functional system. All Cores are 

based on the 4×4 pipelined MTNCL multiplier shown in Figure 17. This design was used in the 

inaugural system and is referred to as Core 1. A system that uses Core N is hereafter referred to 

as System N. For subsequent Cores/Systems, multiplier chaining, shown in Figure 18, was used. 

Essentially a number of multipliers are chained together such that the output of one multiplier 

feeds the input of the subsequent multiplier. Invert blocks are placed between each multiplier to 

ensure the result does not tend towards 0. 

Cores 2, 3, and 4 use an unpipelined version of the 4×4 MTNCL multiplier and contain 1, 

2, and 4 multipliers per stage, respectively. Systems 2, 3, and 4 are comprised of 8 stages with 1 

Ko per stage. This yields a total of 32 Ko signals for fullness observation. Core 5, used in the 

final system, uses the pipelined version of the 4×4 MTNCL multiplier and contains 4 multipliers 

per stage. System 5 is comprised of 1 stage with 32 Ko signals per stage. This yields a total of 

128 Ko’s for fullness observation. 
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Figure 17:  4×4 Pipelined MTNCL Multiplier 
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Figure 18:  Multiplier Chaining 

3.3 Parallelism Design 

From Figure 1, the components responsible for parallelism are the Sequencers, the 

Demultiplexer, and the Multiplexer. These components were designed as generics and their 

designs are shown in Figure 19, 20, and 21, respectively. 

 

 

Figure 19:  Generic Sequencer 
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Figure 20:  Generic Demultiplexer 
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Figure 21:  Generic Multiplexer 
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3.4 Voltage Control Unit (VCU) Design 

The VCU's main function is to use the Cores' Ko signals and other inputs indicating the 

desired Core fullness to select an appropriate VDD for the Cores and supply that VDD with 

adequate current. The approach of the VCU's high-level design began with breaking down this 

function into three smaller blocks: Vref Selector, Vref Generator, and Voltage Regulator. A high-

level block diagram of the VCU is shown in Figure 22. 

 

Figure 22:  VCU Block Diagram 

3.4.1 Vref Generator 

The Vref Generator's function is to generate a number of reference voltages and output the 

one selected by the Vref Selector. Initially this was done using a simple voltage divider with a 

pass-through gate for each reference voltage, which is shown in Figure 23. While responsive this 

solution turned out to be flawed for two reasons: 1) it was overkill – such small variations in VDD 

do not produce observable variations in fullness; 2) it was power inefficient – it consumed power 

even if the circuit was idle or if the user desired a VDD of 0 V. 
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Figure 23:  Original Vref  Generator 

To alleviate the problems of the original Vref Generator, a new one was designed that 

included voltage reference path gating and a shutdown mechanism. This design is shown in 

Figure 24. 

The new Vref Generator has two modes of operation that depend on if the system is 



 

36 

processing data or idle. When the Processing signal is logic1, the system is currently processing 

data. In this mode, the value of the enabled voltage divider path is allowed to pass through to 

Vref. When Processing is logic0, the system is currently idle – it is processing no data. In this 

mode, Vref becomes 0 V which gates power to all the Cores' elements connected to the adaptable 

supply. In this way minimal power is wasted if the system is idle. For this benefit, the design 

trades responsiveness and ease of device sizing both of which are incurred from the addition of 

an NFET in each voltage divider path. 

 

Figure 24:  Vref Generator 

 



 

37 

The function of the Processing signal emerged because of a slight modification to the 

Cores' VDD distribution which was originally intended to increase fullness fluctuation. In the 

original scheme, there were two voltage islands, one for the Cores' VDD which can be modulated 

at run-time and one for all other components' VDD which is fixed at 1.2V. The Cores' VDD was 

originally planned to be distributed to every element of each core, from the COMP block to the 

last register. Due to low fullness range observed in the original system (System 1), the fixed 1.2V 

supply was applied to the first register and COMP block of every core. As an example, a color-

coded two-core system is shown in Figure 25. All colored blocks have a fixed 1.2V supply while 

the rest are connected to the adaptable supply. This facilitates the calculation of the Processing 

signal as shown in Figure 26. 

When Reset is logic1, Processing is held at logic1. During this time, all of the Ko signals 

will be reset to logic 1 as well. Each AND block represents a log4n tree of Boolean AND gates (n 

= number of inputs to the block), so during reset the output of each AND block becomes logic1. 

When reset drops to logic0, if all Ko signals are still logic1 – this indicates the system is idle – 

Processing becomes logic0. This causes Vref to become 0 V which in turn causes the adaptable 

supply to become 0 V. When the adaptable supply becomes 0 V, all of the completion blocks 

connected to the adaptable supply also become 0 V. This will cause the top AND block in Figure 

26 to become logic 0. Now if data enters the system, the first Core's first Ko will become logic0 

causing the bottom AND block's output to become logic0. Processing will become logic1 and 

Vref will become the voltage currently being selected by the Vref Selector (typically 1.2V after 

reset). Processing will remain logic1 until all Ko signals become logic 1 at which point this 

process may start over. 
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Figure 25:  VDD Distribution Example 

 

 

Figure 26:  Processing Signal Computation 
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3.4.2 Voltage Regulator 

The Voltage Regulator's main function is to take a voltage reference and supply that 

voltage with sufficient current to a load, in this case the system's Cores. The design, shown in 

Figure 27, is essentially a unity gain buffer amplifier. Transistors P1, P3, P4, N1, and N2 form an 

operational amplifier. Combined with the pass device formed by N4 and R2, the negative 

feedback loop keeps the output Vout the same value of Vref. The Vout node has big drive capability 

(0 – 50 mA).  P1 and P2 form a current mirror to provide the operation current for the 

operational amplifier.  R1 is set to let the current flowing through P2 be 20 µA.  N3 works as a 

bypass capacitor, which is used to improve the stability of the negative loop. Table 4 lists the 

device sizes for the circuit. 

 

Figure 27: Voltage Regulator Schematic 
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Originally, this regulator was implemented on the 65nm IBM CMOS 10lpe process. With 

a system comprised of four pipelined MTNCL4×4 multipliers, the regulator scaled the supply 

voltage of the cores from 0.6V to 1.2V in approximately 20ns. When the system is running with 

maximum data rate and maximum VDD, at most 5 data can be input/output to/from the system in 

this time. As shown in the next section, this response time is more than adequate to detect abrupt 

changes in workload. In the current system, which uses the IBM 8RF 130nm CMOS process, the 

regulator is replaced with a VerilogA model that uses the delay information obtained from 

simulations with the IBMcmos10lpe process. 

Component Parameter Value 

P1 W/L 5µm/1µm 

P2 W/L 5µm/1µm 

P3 W/L 20µm/1µm 

P4 W/L 20µm/1µm 

N1 W/L 10µm/0.5µm 

N2 W/L 10µm/0.5µm 

N3 W/L 5µm/0.5µm 

N4 W/L 10µ/0.1µm 

R1 Resistance 80k ohms 

R2 Resistance 10k ohms 

Table 4:  Voltage Regulator Device Sizes 
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3.4.3 Vref Selector 

The Vref Selector's function is to use the Cores' Ko signals and the UserControl input, 

which indicates desired fullness, to select an appropriate VDD for the Cores. This function can be 

broken down into two parts: a trigger mechanism (clock or handshaking signal) and a 

combinational circuit. Due to the Cores' free-flowing feed-forward pipeline structure, the Cores' 

Ko signals switch in an autonomous fashion. Thus they cannot be used in a DI asynchronous 

combinational circuit unless they are made to switch in a sequential fashion. The area overhead 

for the extra handshaking severely impacts throughput to the point of implementing parallelism 

pointless. As such, it was clear from the onset that the combinational circuit would be Boolean in 

nature; however, as the trigger was not necessarily based off the Cores' Ko signals, several design 

styles were considered for its implementation 

3.4.3.1 Design Style Analysis 

Initially there were several goals set for the Selector's implementation: 1) Minimize 

power; 2) Minimize throughput impedance; 3) Maximize computation resolution; and 4) 

Minimize area. Goals 1 and 4 depend mainly on the Selector's algorithm. Goal 2 depends on how 

well the Selector can work in parallel with the system. Goal 3 depends on the event used to 

trigger the Selector's computation. For maximum resolution the computation is triggered 

whenever the fullness changes which, from Figure 1, is whenever Ko/Ki switches.  With these 

ideals in mind, three design styles were considered for the Selector's trigger: asynchronous, 

synchronous, and bounded-delay. 

When considering an asynchronous design style, the initial problem was to determine 

how the Selector's computation would be triggered. The first, most obvious way was to use the 

system's Ko/Ki for the Selector's trigger (Ki signal). Unfortunately, due to the independent 
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switching of Ko and Ki, only one of them can be used as the Selector's trigger without breaking 

delay-insensitivity, and this has serious implications on the Selector's resolution.  

Using Ko for the Selector's trigger, the Cores' VDD can be modulated as long as data is 

entering the system, but, if this stops, VDD may remain at an undesired value as the system 

empties. A reciprocal problem occurs when Ki is used as the system's trigger. From an empty 

state, the system could become quite full before modulating VDD in a desired manner. This 

problem can be averaged somewhat if another sequencing step is placed in the middle of the 

Cores' pipeline and that sequencing step's Ko is used. However, the increase in area and decrease 

in throughput does not gain much; the Selector's resolution is still only half of its ideal value. 

Furthermore, in order to avoid impeding system throughput, the Selector's computation would 

have to finish in parallel with Ko/Ki's stage. It may not be possible to pipeline the Selector so that 

the delays are matched. For these reasons, this scheme seemed unappealing. In response, the 

Cores' internal Ko signals were examined as a means to trigger the Selector. 

The use of the Cores' internal Ko signals is even less effective because of their 

aforementioned switching behavior. This independent switching activity restricts the Cores' Ko 

signal usage to one Core's Ko. This poses two problems: 1) Computation resolution would be 

even less than the first scheme, only triggering for one of the N core's stages; and 2) the 

Selector's logic may not be pipelined in a way that can match the selected stage's computation 

time. These asynchronous approaches yielded less than optimal resolution time and uncertainty 

with regards to throughput impedance.  This leads to the consideration of a synchronous design 

style. 

With a synchronous design style, the Selector's trigger is a clock signal which, in order to 

ensure ideal resolution, can be set to Ko/Ki's average switching time when the system was 
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operating at maximum VDD and maximum data rate. Unfortunately, this would be an egregious 

waste of power should the data rate decrease or the user desire slower system operation. To 

counter this, the clock's frequency could be modulated along with the voltage; however, this 

presents overhead in the form of clock generation, clock selection, and timing analysis. This 

approach seems unappealing given that Ko/Ki, by default, indicates every change in fullness, and 

should be able to trigger the computation more directly. This leads to the consideration of a 

bounded-delay design style. 

Using a bounded-delay design style, an implementation closely aligned with the proposed 

goals was derived. This implementation is shown in Figure 28. In this implementation, Modulate 

essentially acts as a clock signal for the combinational circuit responsible for computing Vref. 

Note there are two delay elements, QD1 and QD2. QD1's path disables setting of the NOR latch 

when Modulate is logic1. QD2's path is responsible for resetting the NOR latch. These paths' 

functions dictate the delays of QD1 and QD2. On a rising edge, QD1 needs to be just long 

enough for Modulate to latch the system's Ko signals; on a falling edge, QD1 needs to be long 

enough to prevent a concurrent set and reset of the latch. On a rising edge, QD2 needs to be as 

long as the worst-case delay in the Selector's pipeline; on a falling edge, QD2 can be as short as 

possible. Ideally the delay looks like the waveforms shown in Figure 29. This leads to the QD1 

path being quick to rise and slow to fall, while the QD2 path is slow to rise and quick to fall. 

This can be implemented by imbalanced PFET/NFET sizing in the QD1/QD2 delay chains or 

through a VerilogA model as shown in Figure 30.  While the trigger mechanism accomplishes all 

four of the initially proposed goals, it introduces some small timing dependencies due to the 

required delays. This imposes some level of timing analysis for a complete system; however, the 

analysis should be brief as each delay is only based on one event.  
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Figure 28: Vref Selector Enable 

 

 

Figure 29: Ideal Modulate, QD1, QD2 Relationship 
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   analog begin 
   @ (initial_step) 

  begin 

   qd1delay = 2n; 

   qd2delay = 5n; 

  end 

  @(cross(V(q)-0.8, +1, 0.2, 0.05)) 

  begin 

   qd1delay = 2n; 

   qd2delay = 5n; 

  end 

  @(cross(V(q)-0.4, -1, 0.2, 0.05)) 

  begin 

   qd1delay = 5n; 

   qd2delay = 2n; 

  end 

  V(qd1) <+ absdelay(V(q), qd1delay, maxd); 

  V(qd2) <+ absdelay(V(q), qd2delay, maxd); 

  

Figure 30: VerilogA Delay Block 

3.4.3.2 High-Level Design 

With a triggering mechanism in place, the next problem was to decide if the 

combinational circuit should be referential – include the current Vref selection in the computation 

– or non-referential – do not include the current Vref selection in the computation.  

The non-referential approach would require a well-characterized system which implied a 

very large register bank that stored fullness levels for a large variety of user inputs and data rates. 

Enough fullness information would have to be stored to allow logic to accurately guess what the 

next Vref should be based only on the current fullness, user input, and stored fullness information. 

Even though the logic itself would have the benefit of being purely combinational, this approach 

seemed undesirable due to the potential area overhead, amount of system profiling required, and 

inflexible nature of the algorithm. 

The referential approach uses the currently selected Vref along with the difference 

between current fullness and desired fullness (specified by the user) to determine what the next 
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Vref should be. This feedback path implies the addition of a register for Vref and a potential third 

delay path for the triggering mechanism. Furthermore, some number of fullness levels 

corresponding to supply voltages ranging from 1.2V to the lowest operating voltage would need 

to be stored as reference points. The combinational circuit can use this to determine how much 

higher/lower the next Vref should be from the current one and the overhead should be minimal 

compared to non-referential approach. Lastly, the logic itself should be small as the circuit is 

only comparing the system's current fullness with some referenced fullness levels and making a 

selection. For these reasons, this approach seemed most aligned with the system's goals. The 

selection of a referential approach leads to the high-level design in Figure 31. 

The Modulate signal is used to clock the Cores' Ko signals into Register 1. In MTNCL 

pipelines, a pair of sequential stages is woken up before the pair's first stage slept. This allows 

the clock signal to switch at any time during data processing without fear of missing data's 

presence. After the Ko signals are clocked into Register 1, they pass through the Data Detector. 

The Data Detector divides the Ko signals into four-bit sequences and determines how many data 

are present in each sequence. The output is a two-bit number for every four-bit sequence. The 

two-bit numbers are input to a generic Ripple-Carry Adder tree which outputs a log2(C*p-1)-bit 

number representing the number of data currently in the Cores, i.e., the current fullness. The 

combinational circuit uses this fullness, along with the desired fullness, and the Vref generator's 

enable vector (EN) to produce a new EN. This new EN is clocked into Register 2 by Modulate. 

The combinational circuit's high-level design is shown in Figure 32. The current fullness 

is compared with the desired fullness. This results in a difference magnitude (positive value) and 

the magnitude's direction, i.e., whether A > B or A < B. The difference magnitude is sent through 

the SetRange block which produces a one-hot signal where each bit represents a group of non-
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overlapping magnitude ranges, .e.g., 0 to 6, 7 to 14, 15 to 30, etc. Thus, the difference 

magnitude's range and direction are used to modulate Vref. 

With this model in place, the only unknown left was the profiled fullness levels. To 

determine a good set of fullness levels, the system fullness was observed across a wide range of 

voltages.  

 

 

 

Figure 31: Vref Selector High-Level Design 
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Figure 32: Vref Selector Combinational Circuit 

3.4.3.3 System Profiling 

Initially the Core's fullness was observed with Core VDD scaled from 1.2V to 0.6V and 

with maximum data rate. To ensure maximum data rate, a 3-ring register implementing an 8-bit 

internal lineal feedback shift register (LFSR) provided the system with wavefronts. The fullness 

observations from these simulations are listed in Table 5. 

As can be seen, the fullness only varied by at most 4 across the entire voltage range. 

These results countered the initial conceptions that DVS should have a noticeable impact on 

Core fullness range. It was thought that perhaps the total delay of each Core was too short 

allowing data to leave the system too quickly. This prompted a reconfiguration of the Cores. The 

multiplier's pipeline elements were removed. A new system, System 2, was configured using this 

multiplier to have: 4 Cores, 8 stages per Core, and 1 Multiplier per stage. This system's fullness 

was observed with Core VDD scaled from 1.2V to 0.7V and with maximum data rate. The results 

are shown in Table 6. 

The fullness range was even smaller this time. Two more systems were created to flesh 

out the delay relationship. System 3 consisted of: 4 Cores, 8 stages per Core, and 2 Multipliers 

per stage. System 4 consisted of: 4 Cores, 8 stages per Core, and 4 Multipliers per stage. The 
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observed fullness from these systems' simulations are shown in Table 7 and 8, respectively. 

 

Core VDD (Volts) Fullness  Core VDD(Volts) Fullness 

1.2 8  1.2 2 

1.1 8  1.1 2 

1.0 10  1.0 2 

0.8 12  0.9 2 

0.7 10  0.8 2 

0.6 11  0.7 2 

      Table 5: System 1 Fullness       Table 6: System 2 Fullness 

  These sets of simulation results proved conclusively that some other delay relationship 

was the fullness range's primary factor. This could be the case if data was somehow entering 

each Core at close to the same rate that it was being processed. To ensure that data was entering 

the Core as fast as possible, VDD distribution was changed.  This change is explained in Section 

3.4.1 and exhibited in Figure 25. This change had little effect on Systems 2, 3, and 4's fullness 

range; however, System 1 showed marginal improvement. To increase variance further, 

additional pipelined multipliers were chained inside a given Core to increase each Core's total 

delay. The final system, System 5, consisted of: 4 Cores, 4 Multipliers per Core, 8 stages per 

Multiplier, and 1 Ko per stage. System 5's observed fullness is shown in Table 9.  
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Core VDD (Volts) Fullness  Core VDD (Volts) Fullness 

1.2 3  1.2 4 

1.1 4  1.1 4 

1.0 3  1.0 4 

0.8 3  0.9 4 

0.7 5  0.8 4 

0.6 6  0.7 5 

      Table 7: System 3 Fullness                Table 8: System 4 Fullness  

 

Core VDD (Volts) Fullness 

1.2 7 

1.1 7 

1.0 8 

0.9 10 

0.8 14 

0.75 15 

0.725 16 

0.7 20 
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0.65 36 

0.6 51 

0.55 56 

0.54 56 

0.535 56 

0.5325 54 

0.53 63 

0.525 64 

0.51 64 

Table 9: System 5 Fullness  

Fullness was observed from 1.2V, nominal VDD, to 0.51V, which was the lowest operating 

VDD. System 5's results showed fullness following VDD as originally predicted. Fullness peaked at 

64, which means that half of the 128 stages are processing data. In MTNCL, this corresponds to 

maximum fullness. These results suggested that a wide variety of Vref values could produce 

observable differences in voltage. To be sure, fullness variance, the amount fullness varies in a 

steady supply state, needed to be observed. For this study, the Core's fullness was observed at 

several voltages from 1.2V and 0.53V with maximum data rate. As examples, waveforms from 

the 1.2V and 0.53V simulations are shown in Figure 33 and Figure 34, respectively. In each 

figure, the dc signal indicates system fullness. 
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Figure 33: Fullness Variance at 1.2V 

 

Figure 34: Fullness Variance at 0.53V 
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At 1.2V the fullness variance was only 2; however, as voltage scaled down fullness 

variance increased peaking at 4 with a 0.53V supply. Hence reference fullness values must differ 

by at least 4 to be observable; to be conservative this difference is increased to 6. With that in 

mind, a set of fullness values was selected such that the differences between subsequent values 

are close-to-equal and at least greater than 6. The chosen values correspond to the voltages: 1.2V, 

0.7V, 0.65V, 0.6V, and 0.53V.  With the profiled fullness levels set, the SetRange and 

ModulateEN blocks could be fleshed out. 

SetRange takes the difference magnitude from the comparator and produces a one-hot 

signal, S. Each bit of S represents a group of non-overlapping magnitudes. One group 

encompasses the fullness variance, in this case, [0,6]. This group, represented by S(0), indicates 

that the fullness of the system has not changed enough to warrant a change in EN. The other 

groups are likewise based on events that cause changes in magnitude. These events are: 1) 

UserControl switches; and 2) data rate changes. To determine how these events can affect 

magnitude, the minimum and maximum effect of each event is observed.  

Event 1 can cause a change at least equal to the minimum difference between subsequent 

fullness levels which in this case is 12. Conversely the maximum change Event 1 can cause is 

equal to the difference between the highest and lowest fullness levels which in this case is 63. 

Data rate changes have the most effect in the following two cases: 1) Abrupt switch to minimum 

data rate when the system is full; and 2) Abrupt switch to maximum data rate when the system is 

empty. As Figures 35 and 36 show, in either case, the maximum magnitude change during a 

Modulate cycle is about 4. From these observations, two more groupings were created: 1) [7, 

13], represented by S(1), indicating a small change in user control or some significant change in 

data rate; and 2) [14, 63], represented by S(2), indicating a large magnitude change due to user 
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control switch.  

Essentially, when S(0) is logic1, magnitude is within its variance range and Vref should 

not change; when S(1) is logic1, Vref should change by one level as we have observed a 

magnitude outside of variance range; when S(2) is logic1, Vref should change by several levels as 

the user's fullness desire has sharply changed. For simplicity, the Vref Generator was limited to 

the 5 voltages corresponding to the profiled fullness levels. This leads to equations shown in 

Figure 37. 

From Figure 37, V(4:0) represents the five possible Vref values: 1.2V, 0.7V, 0.65V, 0.6V, 

and 0.53V, respectively. If a large change in magnitude is detected, the highest/lowest voltage is 

selected depending on if the current fullness is greater/less than the desired fullness. This allows 

for the quickest response to the user's desires. Changes in data rate, even the most abrupt ones, 

are detectable and handled by selecting a higher/lower voltage depending on if the data rate 

decreases/increases. In this way, voltage can be modulated in a simple, responsive manner in 

real-time with little area/power/design-time overhead. In fact, the only parts of the Selector that 

cannot be designed as generic components are the Vref Selector Enable, SetRange, and 

ModulateEN blocks. These blocks require some system profiling before their derivation is 

possible, but all other blocks can be made in a generic, regular fashion. 
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Figure 35: Max Data Rate's Fullness Effect on Empty System 

 

Figure 36: Min Data Rate's Fullness Effect on Full System 
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Figure 37: Modulate Equations 



 

57 

4. Methodology, Results, and Analysis 

4.1 Methodology 

 

Figure 38. Design Flow 

Figure 38 shows the design flow used for the final system's creation and analysis. The 
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final system's Parallelism, Core, and VCU logic were initially coded and simulated in VHDL 

using ModelSim. After behavioral verification, the VHDL description is converted into a gate-

level Verilog netlist using Mentor's Leonardo. This netlist is run through several scripts which 

achieve the following functions: 1) Buffering; 2) Power connection and partitioning; and 3) Area 

comparison.  

The buffering script uses gate characterization data to buffer high capacitive nets 

prioritizing gate replacement over buffer insertion. To achieve this, gate libraries are created for 

all of the 27 fundamental MTNCL gates and the limited number of NCL and Boolean gates 

required. Each gate is designed three times with each design having a different drive strength – 

A, B, or C. Drive strength A corresponds with minimum drive strength; drive strength B 

corresponds with roughly 4x drive strength; and drive strength C corresponds with roughly 16x 

drive strength. A gate's drive strength is denoted by appending _(a/b/c) to its name, .e.g., 

th23x0m_c. The script ensures that the drive strength to capacitive load ratio for every net falls 

within a certain bound. When trying to meet these bounds, gate replacement (replacing a gate 

with a stronger version of itself) is prioritized over buffer insertion.  

The power connection and partitioning script adds power/ground connections to each 

gate with the power connection dependent on the gate's system-level function. A gate's system-

level function is determined through its instance name which represents its placement in the 

original hierarchical design. 

The area comparison script groups gates based on their system-level functions and 

computes the gate-by-gate area for each system-level function. 

After running through the aforementioned scripts, the resulting netlist was imported into 

Cadence and implemented at the transistor-level with the 130nm IBM 8RF-DM process.  The Vref 
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Generator and Voltage Regulator were also designed in Cadence using the same 130nm process, 

though later they were converted to VerilogA models. 

4.1.1 Testbench 

The final system's testbench is shown in Figure 39. The testbench consists of several 

VDC components and two main blocks: Gvrsfin and Controller. Gvrsfin consists of all the gate-

level logic required to implement the system. Controller is a VerilogA model that has several 

responsibilities: 1) Manipulate data rate according to application scenario; 2) Generate and 

supply Cores' voltage; 3) Verify output data; and 4) Log output receipt times. The VDC 

components, along with one output from Controller, supply power to the system's four separate 

voltage domains named: 1) Core_fixed – the Core components receiving a fixed 1.2 V supply; 2) 

Core – Core components receiving the adaptable supply; 3) Parallelism – Parallelism 

components which receive a fixed 1.2 V supply, and 4) Control – VCU logic which receives a 

fixed 1.2 V supply. The three-ring-register supplying input patterns is in a separate voltage 

domain which is excluded from energy calculations. 

4.1.2 Simulation Procedure 

All simulations are performed in Cadence's Analog Design Environment using the 

UltraSim simulator. The system is simulated at five different Core domain voltage levels: 1.2 V, 

0.7 V, 0.65 V, 0.6 V, 0.53 V. These voltage levels correspond to the profiled fullness values and 

0.53 V is the lowest operating voltage for the system. For these simulations, the three-ring-

register is allowed to run at its maximum rate. This facilitates a near-maximum input data rate 

which equates to a DATA-to-DATA time of approximately 3.4ns. At each voltage level, the 

system computes the same sequence of 100 data patterns. This computation's execution time is 
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recorded as well as each voltage domain's current draw. From this information, each domain's 

energy consumption is calculated, and each voltage level's energy efficiency is determined.  

 

Figure 39. Simulation Testbench 

4.2 Energy Results and Analysis 

Figure 40 shows system execution time at each of the 5 simulated voltage levels (1.2 V, 

0.7 V, 0.65 V, 0.6 V, 0.53 V). For the same 5 voltage levels, Figure 41 shows each voltage 

domain's energy usage and Figure 42 shows the total energy consumed per data computation 
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(100 total data computed at each voltage level). 

 

Figure 40. Execution Time 

 

Figure 41. Energy Usage by Voltage Domain 
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Figure 42. Energy per Computation 

From Figure 41, Core_fixed and Parallelism domains' energy consumption remained 

relatively constant for each simulation. This is expected as each domain has a fixed 1.2 V supply 

and performs the same operations regardless of the Cores' supply. Core_fixed energy usage is 

slightly higher as that domain consists of slightly more gates than the Parallelism domain.  

The Core domain's energy trends as expected. It follows a CMOS transistor's energy 

usage in the active/sub-threshold leakage regimes. The threshold voltage for this process is 0.6 V. 

As the Cores' voltage scales from 1.2 V to 0.65 V, the Core domain's energy decreased somewhat 

exponentially. This is expected as the transistors are still switching in the active regime where 

dynamic switching current is dominant. At 0.6 V, a sharp decrease in energy is observed 

indicating entry into near/sub-threshold regime where dynamic switching current is no longer a 

factor. At 0.53 V, a linear decrease from 0.6 V is observed as leakage current is now dominant.  

Despite the increase in execution time as voltage scaled down, total Core energy for the 

computation decreased along the entire operational supply range. At 0.53 V, the system's fullness 
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is maximized which means that the number of “awake” stages is maximized. In the active 

regime, this should consume more energy, but in the sub-threshold regime the extra energy used 

by “awake” stages does not outweigh overall reduction in energy. 

Figure 42 shows the system's total energy usage per computation. For this graph, the total 

energy consumed by each of the system's domains is summed and divided by the 100 data 

computed during the simulation. The graph essentially shows the system's energy efficiency at 

each of the five voltage levels. The system's energy efficiency follows a parabolic trend largely 

due to the Control domain's energy usage. Core domain energy decreases across the voltage 

range while Control domain energy increases. The Control domain's increase in energy even 

outpaces the Core domain's decrease in energy resulting in the system being less energy efficient 

at 0.53V than at 1.2 V. 

The Control domain's energy usage is inversely proportional to the Core domain's energy. 

Figure 43 and Figure 44 show the Control domain's current waveform at Core voltages of 1.2 V 

and 0.53 V, respectively. Both the quiescent current and switching current is significantly higher 

at 0.53V. The peak current at 1.2 V often lies around 7.5mA; the peak current at 0.53 V often lies 

around 20 mA. The increased peak current is expected because, at lower voltages, there is 

significantly more switching which is attributed to the system's fullness level. A fuller system 

increases the likelihood of switching in the Ko signal register, DATA Detector, and RCA Tree; an 

emptier system greatly decreases the likelihood components switching. The increase in quiescent 

current is caused by low-voltage inputs being applied to gates on the 1.2V domain. Specifically, 

this occurs at the Ko signal register where most of its inputs are driven by gate outputs connected 

to the Core domain. With the Ko signal register’s gates on a 1.2 V domain, at lower Core domain 

voltages, there is a significant potential difference from gate to source.  
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Figure 43. Control Domain Current at 1.2 V 

 

Figure 44. Control Domain Current at 0.53 V 
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To mitigate this, a level-converter was placed between each Ko signal and its input at Ko 

signal register. This resulted in the energy results shown in Figure 45 and Figure 46. The 

Core_fixed, Parallelism, and Core domains’ energy trends remain the same. The Control 

domain’s energy now trends in a more expected manner, increasing slightly as Core voltage is 

lowered. Furthermore the energy per data computed now decreases from 1.2 V to 0.60 V. Due to 

the exponential increase in computation time, the energy per computation increases slightly at 

0.53 V. 

 

  

Figure 45. Energy Usage per Domain post Level-Converters 
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Figure 46. Energy per Computation post Level-Converters 

4.3 Area Results and Analysis 

Figures 47, 48, and 49 show the area required for the following logic sectors: 1) Core – 

this includes gates in the Core_fixed and Core domains; 2) Parallelism – this includes gates in 

the Parallelism domain; and 3) Control – this includes gates in the Control domain. Gate area 

measurements are taken from fabrication-ready layouts.  

Core logic accounts for roughly 90% of the system's area. Most of this area consists of 

registration components. Registers, in the form of th12x0m_a gates, account for over half the 

area, while completion components, mainly consisting on th24compx0m_a gates, account for the 

next highest percentage, roughly one-fifth of Core logic's area. 

Parallelism logic uses a small amount of area, taking up only 1% of the system's total 
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area. The demultiplixer, multiplexer, and sequencers use a fairly equal amount of this area; 

roughly one-third of that 1% is used by each. 

Control logic accounts for about 9% of the total area, the largest portion of which is D 

flip-flops for the Ko and EN signal registers. Control logic overhead is largely based on the ratio 

between Ko signals and the average stage's area. As the ratio of Ko signals to the average stage's 

area increases, the area overhead of the Control logic increases; as the ratio of Ko signals to the 

average stage's area decreases, the area overhead of the Control logic decreases. Considering the 

basic Core design (4x4 pipelined multiplier) and its area per stage, the Control logic's area 

overhead would likely be less for larger designs. Of course, a significant increase in either the 

number of voltage references (unlikely due to fullness variance) or modulation algorithm 

complexity could challenge this idea. 

 

 

Figure 47. Parallelism Area 
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Figure 48. Core Area 

 

 

 

Figure 49. Control Area
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5. Conclusions 

The technical approach and results presented herein provide a basic platform for 

combining parallelism and DVS as they apply to DI asynchronous systems. A design flow is built 

which facilitates, in a mostly modular fashion, the implementation of parallelism and DVS for 

feed-forward MTNCL designs. Using this flow a system implementing these features is created 

and explored. 

5.1 Summary 

An MTNCL system's Ko signals indicate how many data it is currently processing. This 

is referred to as fullness. If the input data rate is faster than the output data rate, i.e., the rate at 

which data enters the system is faster than the rate at which data leaves the system, modulating 

the system's supply voltage can produce changes in fullness. However, to elicit an observable 

change in fullness, supply voltage must be modulated by an amount that is unique to each 

system. This introduces a theoretical limit to voltage precision. However, two other 

characteristics, fullness variance and fullness range, have a larger impact on voltage precision. 

Consideration of these characteristics leads to a voltage modulation algorithm which sustains 

system throughput across various data-rates. To accomplish the voltage modulation, a low-power 

voltage reference generator incorporating a novel shutdown technique is designed along with a 

voltage regulator. The control logic's area overhead and system's energy efficiency are also 

evaluated. 
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5.2 Future Work 

While in this work an MTNCL system implementing parallelism and DVS has been 

created and unique system characteristics like fullness range and variance have been observed 

and explored, specific relationships between these characteristics and system parameters need to 

be studied further. Observations show a link between supply voltage and energy-efficiency. A 

connection between fullness and energy-efficiency needs to be determined for potential 

improvements to the voltage modulation algorithm. Although the VCU's logic overhead is within 

an acceptable margin and its energy usage trended as expected, VCU optimizations that further 

reduce the area and energy draw need to be explored. Lastly, the VCU shown herein takes a 

reactive approach to voltage modulation. Some investigations are needed to determine the 

viability and effectiveness of a VCU that is predictive in nature. 
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