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Abstract(
 

This work examines the thermal dissipation characteristics of Low-Temperature 

Co-fired Ceramic (LTCC) and Direct Bonded Copper (DBC) with the implementation of 

a Single Ended Primary Inductance Converter (SEPIC) topology. The advantages and 

disadvantages of the two substrates will be explored in addition to a description of the 

design and control of the SEPIC. It will be shown that the DBC implementation is 

superior with regards to thermal dissipation, but that LTCC has advantages in high-

density packaging, RF applications, and embedded components. These substrates and 

converters provide many advantages in industrial applications that include automotive 

and grid level implementations.  Additional comments about best practices in the 

fabrication and design process are also included.  
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Chapter(1(=(Introduction(

1.1(Opening(Comments(
 
 Power electronics and the use of power converters in harsh environments and 

grid-connected applications are becoming more common as researchers attempt to make 

electrical applications more robust and efficient. Electric cars, DC power transmission, 

data storage, and battery powered personal electronic equipment all use power converters 

that must either withstand extreme temperatures and operating conditions or be reliable 

under constant use and thermal/electrical cycling for years at a time, or both. Ceramic 

substrates are a means of packaging and implementing power converters in a number of 

configurations that aid with thermal dissipation, do not corrode, can be packaged very 

tightly or in layers, and resist various types of shock. Different types of substrates have 

different advantages as the reader will soon discover, and this work will specifically 

examine the thermal dissipation characteristics of Low-Temperature Co-fired Ceramic 

(LTCC) and Direct Bonded Copper (DBC) substrates with respect to the operation of a 

single-ended primary inductance converter (SEPIC) topology. 

1.2(Project(Objectives(
 
 The basic goal of this project is to simulate, build, and observe the thermal 

dissipation characteristics of a power converter on both the LTCC and DBC substrates. 

The chosen power converter in this case is the SEPIC topology because of its ability to 

step up or step down voltage in addition to its higher part count in comparison to simpler 

converters such as the buck or boost converters. While a higher part count is not normally 

an advantageous characteristic of module design, it was thought that the increased part 
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count would allow for the observance of more points of heat transfer as components like 

the inductors and transistor began to dissipate power.  

 The thermal simulations for this project are built and run using Solidworks® 

Education Edition design software. A correlation is to be drawn between the maximum 

temperature observed on the devices in the simulation and the maximum temperature the 

devices actually exhibit on the completed physical module. These temperatures are 

measured using a thermal camera. After all of the measurements are gathered, a 

comparison of the thermal dissipation characteristics of both the LTCC module and the 

DBC module will be done and conclusions as to which substrate is more appropriate for 

power modules will be made. 

 

 (
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Chapter(2(=(Background(

2.1(SEPIC(and(Boost(Power(Converters(

 The advantages of ceramic substrates are realized in the implementation of power 

modules, and the power module designed for this project is the (SEPIC) topology. 

However, an understanding of the operation of a boost converter is also important 

because of its use in the later stages of this work. These converters operate on similar 

principles, yet controlling the SEPIC is much more difficult than controlling the boost. 

 The SEPIC is a DC-DC switching power converter that has the ability to act as a 

constant voltage source to its load where its source is either at a higher or lower voltage 

potential than that load. This topology has a non-inverting output, a medium efficiency 

and cost compared to other step-up/step-down switching power converters such as the 

Cúk  converter and has a continuous non-pulsating current sourcing characteristic that 

allows maximum power sourcing of a photovoltaic (PV) source [1]. In addition to these 

advantages in the application of a PV application DC-DC power converter, the SEPIC is 

more stable (and therefore desirable in this application) than the Cúk at maximum power 

point even though the Cúk responds faster to changes in an MPPT algorithm [2]. 

 The circuit schematic for the SEPIC topology is shown in Figure 1. It requires the 

use of an input and output filtering capacitor (C1 and C3, respectively), an energy 

transfer capacitor (C2), two inductors (L1 and L2), a switch (M1, normally an n-type 

MOSFET), and a controller to control the switching device using a varying pulse width 

modulation (PWM). The inductors selected can be coupled such that they take up less 

space and have the same current ripple. The input capacitor reduces input ripple from the 

source, and the energy transfer capacitor blocks DC current in the event of a permanently 
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open switch thus protecting the load [3]. It is important to operate the converter in 

continuous-conduction mode, which occurs if there is current flowing through L2 

throughout the entire switching cycle. Continuous-conduction mode is much easier to 

control than discontinuous mode because the response of the output to changes in the 

duty cycle is more stable and predictable in continuous mode [3]. 

 

Figure 1: SEPIC Topology 

Equation (1) describes the voltage conversion ratio for the SEPIC where Vs is the input 

voltage, Va is the output voltage, and D is the duty cycle of the PWM.  

!!
!!
= !
!!!     (1) 

This equation describes the ideal case, and the energy transfer would be decreased 

in actual implementation because of switching losses that include the parasitic resistances 

of the inductors and diodes, as well as the saturation resistance (rds(on)) of the MOSFET. 

Equations from application note AN-1484 describe how to size the inductors, capacitors, 

diode, MOSFET, and duty cycle given the frequency, input voltage, output voltage, and 

desired current ripple at the output [6].  

 The SEPIC can also be thought of a boost-buck converter since the first inductor 

and capacitor act as a boost converter, while the second stage is similar to buck converter 
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(except the output filter capacitor should be in series with the load as opposed to in 

parallel with it). A boost converter cannot step down voltage, but can effectively 

(although not as efficiently) step up voltage to the load [3]. This detail becomes very 

important in section 4.4 of this work. 

 Switching power converters need to be carefully controlled, and require the 

measurement and monitoring of the input and output voltages in order to successfully 

react to changes in the load or source. These variables are processed through a sensing 

network that controls a pulse width modulation (PWM) waveform that switches the 

transistor in the middle of the circuit to control the amount of energy transferred from the 

input to the output. The simpler topologies such as the buck and boost converters simply 

need a reference voltage to compare the output to, and then will adjust the PWM 

accordingly. Some applications require current sensing in addition to voltage sensing in 

order to calculate and execute a maximum power point tracker (MPPT) such as when 

using a solar panel as the source [7][8]. As mentioned above, the SEPIC topology in this 

application is controlled by a LM3478 switching controller that monitors the input and 

output voltages in addition to the current at the source of the transistor so it can shut 

down in the event of a high current condition in order to protect the components in the 

circuit [5][6]. 

  The boost converter is limited to simply stepping up voltage from the input to the 

output. The circuit schematic for the boost converter can be seen in Figure 2 [3]. 
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Figure 2: Boost Converter Topology 

Equation 2 describes the voltage conversion ratio for the boost converter [3]. 
 

!!
!!
= !

!!!     (2) 

In addition to the inverted output characteristic of the boost converter, it is also 

less efficient as a means of transferring energy from source to load than the SEPIC. The 

boost is easier to control because it is only a second order system and therefore can be 

controlled by network that consists of a saw-tooth waveform and comparator that adjusts 

the PWM based on the output voltage. The LM3478 mentioned earlier can also control a 

boost converter and does so by monitoring the voltage at the input and output as well as 

the current at the source of the transistor for current protection. The monitoring of the 

input and output allows for faster response to load and line transients, which not only 

protects the components and sources from overvoltage, but also increases the efficiency 

of the system [3][5].  

 

2.2(Properties(of(Ceramic(Substrates(
 

Designers use ceramic substrates in electronics manufacturing and packaging because 

they are chemically stable, have high thermal conductivity (similar to that of 

semiconductor devices), and are resistant to thermal and mechanical shock [9]. Ceramic 

substrates also have a low dissipation factor that minimizes capacitance and electrical 
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losses, a low dielectric constant that prevents breakdown at high voltage application, and 

they have physical and mechanical characteristics that prevent material distortion under 

high loading and high temperature applications. These substrates have higher 

compression strength than alloy steel, and a higher tensile strength than porcelain [9]. 

LTCC and DBC substrates have been around for some time, but have undergone 

continuous improvement over the years. DBC for instance, developed by General Electric, 

has been around for over 40 years. As is the case with many new products, adoption of 

DBC substrates was slow at first because of prohibitive costs, but manufacturers soon 

discovered the great benefits that DBC can provide. The major advantage to DBC is the 

“direct bonded copper” characteristic it is named for. The copper conductor of the 

substrate is directly bonded to a ceramic base which creates a strong bond between the 

copper and the ceramic base in place of the additional layers of solder and molybdenum 

to adhere the copper to the substrate in the traditional fabrication methods regarding 

ceramic substrates. The decrease in layers and material leads to a smaller height profile 

for the end product, in addition to better thermal cycling performance as a result of 

decreased thermal expansion of the copper (depending on thickness) because of the 

decreased thermal resistance in the absence of the molybdenum layer, and higher 

production yields due to the decreased number of layers to be fabricated [10]. Figure 3 

shows a comparison of the traditional bonding method and the DBC method, where the 

ceramic base in this case is alumina (AlN) [10]. 
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Figure 3: Traditional vs DBC substrate assembly 

Because of the increased thermal performance of the DBC method, the substrates can 

withstand very high current. According to Visser and Snook, a copper foil of .25mm x 1 

mm can withstand a continuous DC current of 100 amps with a temperature increase of 

less than 20 °C [11]. This is a particularly useful characteristic to have in high power 

modules that deal with fault current limiting or smart switching with grid level 

applications. 

Due to the bonding characteristics of copper, specifically the eutectic bonding 

temperature of 1065 °C (and a melting point of 1084 °C), the most common ceramic 

substrates to use for DBC are alumina and beryllium oxide. Other options (such as that 

shown in Figure 1) is aluminum nitride, however, a thermal oxidation process must be 

used on the surface of the ceramic before attempting to bond the copper to it. This 

process can potentially produce a porous bauxite alumina interface between the copper 

and the substrate that degrades the thermal expansion characteristics as well as the 

thermal conductivity of the unit. The thermal characteristics of ceramic substrates can be 

calculated using Equation 3 [11]. Equation 3 describes thermal conductivity of a 
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compound substrate where K is the thermal conductivity of each material and t is the 

thickness of each material. 

!! = !!!!!!!!!!...!!!!
!!!!!!...!!

    (3) 

DBC substrates are patterned using common printed circuit board techniques such 

as laser or chemical etching and dicing. Dry photoresist and chemical etching are 

common for small batch production [11]. Additional assembly and packaging options for 

DBC substrates include the addition of vias for hermetically sealed packages, integrated 

terminals and the possibility to liquid-cool the package using a combination of copper-

ceramic and copper-copper bonding techniques to stack many layers of copper between 

the DBC substrates and cycling liquid between them. Liquid cooling is sometimes used to 

solve cooling problems in both industrial power electronics and automotive applications 

[10]. Vias can be added to the substrates by drilling holes in the ceramic prior to 

attaching the copper layer, then filling the via with a conductor in one of several methods 

including the use of a copper ball into the via after one copper layer is bonded and then 

adding the other copper layer, placing a copper blank into the via after one copper layer is 

already bonded then pressing the second copper layer down to it, or just pressing the front 

copper layer all the way to the back copper layer through the via. Integrated terminals are 

created by letting the copper layer extend past the ceramic layer, then interleaving it with 

another module or connection instead of soldering it. These integrated terminals help 

avoid solder failure between terminals, leave more space available on the substrate, and 

allow for high current through the interface because of the lack of solder [12]. 

LTCC substrates have not been around as long as DBC substrates have, but they 

have been used for couple of decades now and present a number of distinct advantages in 
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power electronics packaging and applications that need to withstand harsh environments, 

high temperatures, and/or various types of shock. Other advantages that LTCC substrates 

present to the power electronics manufacturer is the ability to create very dense packages 

because of the unlimited number of layers one can create with very reliable and easy to 

make vias (thickness of course becomes an issue), material properties that make the 

substrate conducive to RF applications like the low dielectric constant, and the ability to 

create very fine lines and spaces on the substrate with thick and thin film application of 

conductors and components [13]. 

The two thick-film compositions used for LTCC applications are metallizations 

and dielectrics. The metallizations are conductive pastes that are primarily used for traces 

and inductors, and are composed of four primary functional ingredients: 1.) a conductive 

metallic phase consisting of noble metal powders or alloys such as gold, silver, gold-

palladium, platinum-gold, copper, aluminum, and nickel 2.) an inorganic binder 

phase/bonding agent composed of glass powders 3.) an organic carrier agent to suspend 

the inorganic binder and provide the correct consistency for the paste and 4.) an organic 

suspension medium. Different atmospheres in the firing environment are required 

depending on the metals used. For instance, the noble metals such as gold and silver can 

be fired in normal air, but copper requires a nitrogen environment to prevent oxidizing 

contamination [9]. 

Thick-film dielectric materials are used to insulate conductive patterns as well as 

create high dielectric constant (k) capacitors. These dielectric materials are comprised of 

crystallizing dielectrics and glass-filled ceramics such as barium titanate, lead titanate, 

and lead zirconate titanate.  These compounds are heated to remove impurities, ball-
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milled to 1-10µm and mixed with a carrier agent for the screen-printing process. The final 

processed products have dielectric constants of between 20-1200 [9]. 

Thick-film resistors are either resinate or cermet systems. These molecular 

compounds are described most concisely by Barlow and Elshabini as such: “Precious 

metal resinates are solutions of metal chlorides in organic solvents or organometallic 

compounds in which the metal atom is attached to an oxygen atom linked to a carbon 

atom. Cermets are materials resulting from a fused structure of conductive or resistive 

material in a vitreous nonconductive binder.” The resistive pastes are comprised of 

resistive materials (normally selected from a number of metal-oxides), a glassy phase, an 

organic suspension medium, and diluted with another organic solution to be removed in 

the firing process. These resistors can be created with resistivities of 1Ω/square – 

5MΩ/square sheet resistance. The thermal coefficient of resistance (TCR) of thick film 

resistors makes the conductivity of the materials complex in thin layers. Although metals 

normally have a positive TCR, when some of the active material is dissolved into the 

glass material during firing, the effect is similar to that of semiconductors with a negative 

TCR. The dimensions of the resistors affect TCR as well. Short and narrow resistors have 

a higher TCR than long wide resistors due to the diffusion of the active material across a 

wider area [9]. 

LTCC presents a distinct advantage over HTCC (high-temperature co-fired 

ceramic) substrates because LTCC can be fired at 875°C while HTCC must be fired at 

1600°C and do not need to be plated by Ni or NiAu to bond or solder efficiently. The 

advantageous RF characteristics of LTCC substrates include the ability to integrate 
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passive RF functions on the substrate level between ceramic layers to perform functions 

such as a filter, a balun, or matching network [13]. 

The LTCC substrate process is a bit more complicated than the DBC process, but 

yields the distinct advantages mentioned in the previous paragraphs. One of the 

challenges to overcome in LTCC substrate fabrication and processing is the issue of 

shrinkage matching between the green tapes (the flexible LTCC substrate material before 

it is fired and hardened) and the metal inks (conductors) and components to be placed on 

the substrate. Early versions of the LTCC green tapes could shrink up to 16% in the firing 

process in the X and Y directions, and up to 25% in the Z direction [13]. However, 

current green tape products such as the pressure assisted zero-shrinkage sintering process 

for Murata’s LFC® series tapes only shrink in the z direction leaving the pad size 

unchanged [15]. 

LTCC substrates yield additional advantages as well as some additional 

challenges when designed for RF and multi-layer applications. As the operating 

frequency of the circuit laid on the substrate increases, stray inductances increase in the 

traces used to connect components. Also, stray capacitances increase with the number of 

layers of substrate used and the voltages utilized in the modules. Since these substrates 

are well suited to use in high power applications, the voltages (and therefore capacitances 

between layers) can be quite significant.  

 Some methods have been developed in order to mitigate the effects of high 

frequency operation through improved deposition and fabrication techniques of 

embedded and printed passive components. One such method is to control the shape of 

embedded printed inductors so that their cross section is rectangular as opposed to 
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almond shaped. The almond shaped conductive material for these inductors have sharp 

edges in the cross sectional area that have larger leakage currents as opposed to 

rectangular conductors [16]. 

Additional options and developments for LTCC fabrication continue to come 

about as new materials and fabrication methods are researched and published. Inductors, 

capacitors, resistors, and transformers can be printed on substrates or embedded between 

layers in order to continually reduce overall package size. Ferrite and dielectric materials 

can be combined and co-fired with LTCC substrates to create highly reliable 

magnetically coupled inductors and transformers. The combination of ferrite and 

dielectric tapes and pastes also allow for the isolation of magnetic circuit components and 

conductive traces in different layers to prevent parasitic inductances. These fabrication 

techniques increase the appeal for using LTCC substrates to make system-in-package 

products that are compact with high circuit density [17].  

 (
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Chapter(3(=(Fabrication(and(Simulation(

3.1(SEPIC(Design(

The SEPIC is a second order circuit with a left hand plane zero when used with 

closed loop feedback, so it is difficult to control where line and load transients may occur 

since it is not inherently stable in steady state. Using the equations from Hammerbauer 

and Stork, a Simulink® simulation of the ideal behavior of the converter was built in 

order to determine maximum operating conditions and adequately size the components 

[4]. The appendix contains many of the hands calculations done in order to solve for the 

component specifications such as maximum current and voltage experienced by the 

circuit based on the minimum and maximum input and output parameters for the system. 

The appendix also contains Matlab® code that was written in order to iteratively 

calculate the aforementioned component specifications based upon different input and 

output conditions possible in the test environment.  

Figure 4 shows the Simulink® functional block diagram that was built using the 

equations from Hammerbauer and Stork. The switch and pulse generator blocks were 

used to simulate the PWM, but were limited to a constant duty cycle. The gain blocks 

with the “R” caption took the equivalent series resistance (ESR) of the inductors and 

capacitors into account. The gain blocks with “1/Cx” or “1/Lx” in the caption are the 

values of the various inductors and capacitors that were simulated. The sum and 

integrator blocks were used to complete the implementation of the state space equations 

from the Hammerbauer and Stork work. Figure 5 shows the voltage and current values 

observed in the simulation for each of the components of concern.  
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Figure 4: Simulink® Functional Block Diagram 
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Figure 5: Simulink® Simulation of SEPIC- Purple=I(L1), Yellow=V(C2), Cyan=I(L2),Red=V(C1) 

Figure 5 shows the maximum currents and voltages possible in an idealized 

system for the SEPIC topology. One should note that very high currents are possible in 

the inductors, but that the waveforms that appear to be steady state in this figure are 

actually peak values since the state space calculation was run with a fixed maximum duty 

cycle as opposed to a variable PWM controlled by input and output variables. The 

variable PWM regulates the energy transferred to the output, and if the output is a battery, 

the voltage is clamped to the battery voltage such that it is relatively constant but for the 

minor change in battery charge as the battery is charged. 

3.2(Board(Fabrication(
 
 The fabrication of the LTCC and DBC modules was accomplished with the help 

of many faculty, staff, and graduate students in the University of Arkansas Department of 

Electrical Engineering and the High Density Electronics Center (HiDEC) associated with 
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it (see acknowledgements). The LTCC module began with a blank green tape and a 

circuit trace layout built using AutoCAD® Student Edition software. The trace layout 

was sent to a third party manufacturer to be mounted as a negative mask in a screen mesh 

to be used on the screen-printing machine. The LTCC was layered and fired as a stack 

multiple green tapes in order to approximately match the thickness of the DBC board. 

After the green tape was fired, the traces were printed on it and the board was fired again 

in order to cure the traces.  

The DBC module used the same traces design as the LTCC board in order to be as 

consistent as possible for comparison of thermal performance. The DBC traces were 

printed onto a negative transparency, zinc plated, then chemically etched in order to bring 

the traces out of the solid copper sheet of one side. There were some defects in the DBC 

production process because of the dry film coming away from the board to allow the 

chemical etching to erode the traces. However, multiple copies were produced in order to 

minimize risk. After the boards were fully fabricated, the components were placed on the 

boards with solder paste and put into a conveyor oven to complete the solder reflow 

process. Figures 6 and 7 show the fully fabricated LTCC and DBC (respectively) boards 

with the components attached. 
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Figure 6:Fully Fabricated LTCC Board 

 

 

Figure 7: Fully Fabricated DBC Board 

 

There were some problems with the reflow solder process because of the size of 

the traces on the MOSFET. The solder that was placed on the gate and source bled over 

the ceramic between the traces and shorted these two nodes on all but one of the LTCC 

boards. There were attempts to solve this problem by using a soldering iron and hotplate 
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to liquefy the solder between the traces, but this proved impossible because the substrate 

dissipated heat so quickly that the solder would not get to melting temperature on a large 

enough area to clear the short. A hot air gun was not used, but is an option that should 

have been explored. 

 Additional problems were encountered when it was realized that there were no 

physical points on the board that could be attached to probes to supply power, the gate 

signal for switching, nor the input, output, or ground signals for control and analysis. This 

lead to the creation of custom surface mount sockets and pins created from header pins 

and wire sockets that were attached to the surface of the board using the solder iron and 

hot plate method mentioned above. Again, this proved difficult because of the heat 

dissipation characteristics of the boards. In the end, however, solid solder bonds were 

created such that the circuit could function using off-board testing equipment and power 

sources.  

3.3(LM3478(Implementation(
 
 The use of the LM3478 switching controller is an important step to testing, 

simulating, and operating the SEPIC converter for this project. The appendix contains the 

design schematic of the controller as well as many of the calculations and test bench 

observations for the design of not only the controller, but also for the sizing of the SEPIC 

components themselves. This controller was tested on the SEPIC with through hole 

components on a bread board in order to ensure the operation of the SEPIC converter 

with the initial calculated component sizes, and was then put onto a milled PCB milled in 

the University of Arkansas Senior Design Lab in order to make testing easier because of 

its modular implementation. Figure 8 below shows the final milled board with the 
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LM3478 mounted with pins along the right side for off-board connections to the 

converter module. 

 

Figure 8: LM3478 Board Implementation 

 

3.4(Circuit(Modification(
 
 Immediately before testing began, it was realized that there was a fatal error in the 

trace layout of the SEPIC topology. Two of the critical components in the middle of the 

circuit were laid out in the wrong place. The diode was placed prior to the 47uF energy 

transfer capacitor and output inductor rather than after, so the energy transfer through the 

capacitor and inductor was blocked by the diode rather than the diode blocking back fed 

current from the load. This of course, was a serious and significant problem. Figure 1 

shows the intended layout, and Figure 9 below shows the circuit that was actually 

fabricated.  
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Figure 9: Schematic of Physical Circuit 

 By the time that this mistake was realized, there was no more time or funding to 

redesign another set of traces and then have them ordered and placed in a screen or 

transparency, then fabricate two more sets of boards. So, a modification of the circuit was 

made in order to rectify this mistake. In Figure 9, the output filter capacitor (C3) and the 

output inductor (L2) were removed and the node that they shared with the energy transfer 

capacitor (C2) was connected to ground. This meant that the schematic could now 

function as a boost converter where the output would now be the node shared by the 

diode (D1) and C2.  

 This solution was not ideal, but did allow for the operation of the circuit in order 

to observe the thermal characteristics that were the goal of this project. Additionally, the 

LM3478 was not needed after the purchase of a new function generator by the lab that 

had the ability to modify the duty cycle of the waveform generated. Since the boost 

converter is generally stable, it could be controlled by simply adjusting the duty cycle of 

the function generator as opposed to the need to control the SEPIC from unbounded 

operation by monitoring multiple variables with the LM3478, as mentioned earlier. 

 Figures 10 and 11 below show the final incarnation of the power converters that 

were tested. Notice that the output inductor and capacitor (bottom right two components 

from the boards in Figures 6 and 7) have been removed. One can see in Figure 10 that the 
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removal of these devices removed the traces that were screen printed onto the LTCC, so a 

solder trace had to be placed over where the component pad was. Both of the final boards 

appear worse for wear due to the reworking that was required to remove the original 

components, solder bridge over ripped off pads, and attach an additional pin at the new 

output node between the diode and C2. 

 

Figure 10: Final LTCC Module 

 

Figure 11: Final DBC Module 
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3.5(Thermal(Simulation(in(Solidworks®(
 
 In order to obtain an idea of how the modules would perform under test 

conditions, a Solidworks® model was built of the module and a thermal simulation was 

performed. Due to the limitation of a Student Edition license for Solidworks® in addition 

to the lack of experience in the software, the models are simple yet demonstrate the key 

points of interest with regards to the thermal behavior substrates. The series of figures 

below show the results of the thermal study in Solidworks®. The figures are labeled both 

with captions and with notations in the upper left-hand corner of the figure, and the 

thermal scale in Kelvin can be seen on the right-hand side of each of the figures. The first 

set of images, Figures 12 and 13, show views of heat dissipation from the inductors on 

the LTCC, then a view of the heat dissipation from the MOSFET on the LTCC. 

 

Figure 12: Inductor Heat Dissipation Simulation (LTCC) 
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Figure 13: MOSFET Heat Dissipation Simulation (LTCC) 

Figures 14 and 15 show the same views of the inductor and MOSFET heat dissipation, 

but with regards to the DBC module. 

 

Figure 14: Inductor Heat Dissipation Simulation (DBC) 
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Figure 15: MOSFET Heat Dissipatoin Simulation (DBC) 

 The inductor simulations were run with a thermal load on the inductor of 25 watts. 

The MOSFET simulations were run with thermal load conditions increased to 50 watts 

since the 25W MOSFET simulations were difficult to observe due to lack of contrast 

between the part and the substrate. The maximum temperature shown in the simulation is 

markedly higher (by almost 70 Kelvin) on the DBC inductor simulation as opposed to the 

LTCC inductor simulation. However, the there is only a 30 K difference between the two 

MOSFET simulations, and the MOSFET temperature on the LTCC is actually hotter than 

when it is on the DBC. The simulations do not suggest that the substrates (simulated as 

ceramic porcelain) carry the thermal energy very far from the component before it is fully 

dissipated to room temperature. The simulations also suggest that the LTCC may be 

better suited to dissipating highly concentrated thermal loads better than DBC, while 
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DBC is may be better for dissipated loads with more surface area contact to the traces and 

substrates. 

 (
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Chapter(4(=(Analysis(and(Testing(
 
 The first tests performed were to confirm that the modified SEPIC into boost a 

converter actually worked and transferred energy from the input to the output in order to 

sufficiently heat up the components through power dissipation. The boost converters on 

both substrates were tested at a switching frequency of 100kHz and input voltage of 10V. 

As expected, the voltage at the output increased proportionally (inverted, of course) as 

the duty cycle increased according to the voltage conversion ratio in Equation 2. Figures 

16 and 17 show the gate signal (in blue) and the drain to source voltage across the 

MOSFET (in yellow) for the LTCC and DBC implementations (respectively) 

 

 

Figure 16: Test of Boost on LTCC 
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Figure 17: Test of Boost on DBC 

 One should note the voltage discharge curve in the yellow drain to source 

waveform in both of the figures above. This voltage tracks the voltage on the input 

capacitor as it transfers energy to the inductor. Since the circuit was modified from 

components designed for a different converter topology, there was a concern that the 

performance of the boost would not be ideal. However, as the next figures show, the 

converter performed very well and was sufficient to observe the thermal characteristics of 

the substrates. 

 Figures 18 and 19 below show an infrared image capture from a Flir® thermal 

camera. The circuits were connected to the source as mentioned above and discharged 

into a 20Ω power resistor for a minimum of 1 minute in order to build up a sufficient 

amount of heat in the components and the substrates. Figure 18 shows the LTCC infrared 

image, and Figure 19 shows the DBC infrared image. 
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Figure 18: Infrared Image of LTCC Boost Converter During Operation 

 

Figure 19: Infrared Image of DBC Boost Converter During Operation 

 In this application, the DBC performed much better than the LTCC in dissipating 

heat away from the components generating it and out to the substrate where it could 

escape by convection. Figure 18 shows how the heat generated by the MOSFET (the 
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white area) spreads out to toward the diode (the orange area to the right of the MOSFET), 

but does not extend to the edge of the board. However, one can identify almost all of the 

relevant components in Figure 19 by how the heat signatures surrounding them. The 

green-blue square to the right of the MOSFET is the inductor, and the red-white object to 

the right of the MOSFET is the diode. The alligator clips, oscilloscope probes, and the 

gate signal trace are all a cool blue at near room temperature because the ceramic 

substrate beneath them is dissipating the heat to its very edges. 

 Perhaps the most important thing to observe with regards to these thermal images 

is the maximum operating temperature of the components. During continuous operation, 

the DBC module never allowed the MOSFET temperature to rise above 50°C, whereas 

the LTCC module could not draw the heat away from the MOSFET and increased the 

temperature to the rated temperature of the component (150°C) at which time the circuit 

was shut down due to safety concerns. These observations contradict the simulation 

profiles observed in Solidworks®. However, further testing to determine whether thermal 

vias or increased component surface area on the LTCC implementation would allow it to 

match the thermal dissipation performance of the DBC may prove insightful. 

 (
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Chapter(5(=(Conclusion(
 
 The DBC substrate is a clear winner with regards to thermal dissipation for power 

converters based upon the findings shown in this paper. The advantages of the LTCC lie 

in the ability to create fine-line traces and multiple layers on a versatile substrate, and 

while it is made of a ceramic material, could not compete with the performance of the 

DBC with regards to heat dissipation. An LTCC module could have a heat sink attached 

to it in order to bolster its ability to wick heat away from its components, but this works 

against the benefit of LTCC to fit into small multi-chip modules (MCM) and perform 

well in the high-frequency applications it is becoming so popular for.  

 The success of the DBC in these tests is attributed to the dual copper layer on the 

substrates. The traces were only used on one side of the board, so the back side was 

simply a sheet of copper attached to the ceramic substrate layer that acted like a built-in 

heat sink. Performance of the DBC could improve in this application if heat sinks were 

soldered to the back of the module in order to increase the amount of surface area 

exposed to circulating air.  

 The actual performance of the boards with regards to the Solidworks® 

simulations was inconsistent at best. The thermal behavior of the substrate in the LTCC 

MOSFET simulation most closely resembled the actual performance of the substrates 

during the testing phase. Better simulation profiles could be built with component models 

that are more precise as opposed to cuboid representations of the material and size 

properties such as were used here. Also, more familiarity with the eccentricities of the 

software would aid in the accurate and custom simulation of more variables within the 

test environment that may contribute to the dissipation characteristics such as a manually 
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configuring the model meshing and thermal resistance between materials as opposed to 

running “automatic” or “default” settings for these variables. 

 In addition to the technical conclusions mentioned, there are a number of lessons 

learned with regards to the collaborative design process a whole that should be mentioned. 

The error in the trace layout evolved from a miscommunication and poor labeling of the 

design that led to this critical detail being overlooked before the fabrication process was 

initiated. Pressure to move to the fabrication stage because of approaching deadlines and 

an eagerness to begin testing led to restructuring of the scope of the project. It is fortunate 

that the project was salvaged, but a multi-layer board would not have been so easy to fix 

if a fix would have been possible at all. Finally, the communication required in order to 

coordinate the use of facilities, personnel, expertise, and diagnostic equipment is a 

daunting task that consumes at least as much time as the work itself does. It takes a 

tremendous amount of organization and cooperation with all parties involved in order to 

use the time and resources available effectively. Without the time, patience, and 

willingness to help of all of the people and organizations mentioned in the 

acknowledgments, this project would have been much more difficult than it was.  
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Appendix(
 
The following pages contain hand written calculations, design simulations, Matlab® 

code, and Simulink® code that were instrumental for this work to be a success.  
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