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NLA “renaissance” theme, recapped
n With controllable trade-offs, many numerical linear 

algebra operations adapt well for high performance on 
emerging architectures through
§ higher residency on the memory hierarchy
§ greater SIMT/SIMD-style concurrency
§ reduced synchronization and communication

n Rank-structured matrices, based on uniform tiles or 
hierarchical subdivision play a major role

n Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

n Many applications are benefiting
§ by orders of magnitude in memory footprint & runtime



Algorithmic opportunity
With such new algorithms, we can extend many 
applications that possess

§ memory capacity constraints (e.g., geospatial statistics, 
PDE-constrained optimization)

§ energy constraints (e.g., remote telescopes)
§ real-time constraints (e.g., wireless commun)
§ running time constraints (e.g., chem, materials,      

genome-wide associations)



We’ll introduce a hierarchy of ranks …

… and a hierarchy of precisions



Today’s renaissance in numerical linear algebra
A “renaissance” is a rebirth, revival, or renewed interest
Numerical linear algebra has been vital for over 70 years
• has never endured any “dark ages” or “winter”
• it simply became a bottleneck as problem sizes grew 

§ dense problems: cubic complexity, quadratic storage
§ sparse problems: memory bandwidth-constrained

Renewal, in the form of reinvention, comes from these: 
n many practical accuracy requirements are less stringent than traditional
n many important applications are “data sparse”
n many high-complexity tasks can be performed in lower precision than 

traditional
n randomness (typically by random selection) beats systematic coverage

A great time to be looking for research topics
n re-examine important existing algorithms in this light



Simple example of data sparsity 
with the 1D Laplacian

3/2

7/8

2

A is sparse but A-1 is dense

Conformal off-diagonal blocks 
of A and A-1 admit low-rank 
representation with the same 
low rank 
(Fiedler & Markham, 1986)

15/8



Solvers have always evolved beneath “Ax=b”

n Advances in algorithmic efficiency rival advances in 
hardware architecture

n Consider Poisson’s equation on a cube of size N=n3

n If n=64, this implies an overall reduction in flops of 
~16 million*

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann & 
Goldstine

n5 n7

1950 Optimal SOR Young n3 n4 log n

1971 CG Reid n3 n3.5 log n

1984 Full MG Brandt n3 n3

Ñ2u=f 64

64 64

*Six months is reduced to 1 second



year

relative 
speedup

Solver algorithms and Moore’s Law
! This advance took place over a span of about 36 years, or 

24 doubling times for Moore’s Law
! 224»16 million Þ the same as the factor from algorithms 

alone!



Large-scale brings focus on complexity

n Given, for example: 
! a “physics” phase that 

scales as O(N)
! a “solver” phase that scales 

as O(N3/2)
! computation is almost all 

solver after several 
doublings 0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes 
50% time 
on 1 proc

Solver takes 
97% time 

on 1K procs

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases

problem sizen Increasingly, this is felt in the 
gut or the utility bills of users



A brief review of beneficial background
In a short lecture series that gets to the reinvention, we need 
to assume the invention, namely knowledge of
• where the problems come from
• how they are traditionally solved

so we undertake next a 15-slide review on
n types of applications that lead to “bottleneck” linear algebra 

operations
n what results we need to extract
n algebraic building blocks

It could be “homework” tonight to look up what you might 
be missing
We make convenient assumptions, without the caveats for 
every possible pathology related to conditioning, etc.



\begin{review}



Primary problem class for my lectures
Symmetric positive definite matrices arising from
• Schur complements within discretizations of elliptic 

and parabolic PDEs
• integral equations with displacement kernels
• Hessians from PDE-constrained optimization
• fractional differential equations
• covariances in spatial statistics
• radial basis functions from unstructured meshes
• kernel matrices from machine learning 

applications



Schur complements

This eliminates the bottom q unknowns in terms of the remaining p unknowns and is known 
as “static condensation” in the  finite element method.
The Schur complement arising from an SPD matrix is still SPD, but is generally dense even 
for a sparse original, because D-1 is dense.
Schur complements arise when block Gauss elimination is performed to factorize a sparse 
matrix into its Cholesky (or more generally LU) factors, due to such fill in.

c/o wikipedia

⇒ Condensing sparse finite element, finite difference, and finite 
volume matrices leads to dense blocks that are often data sparse  



Integral equations

This is A u = f , where A is n x n.  If the kernel K(s,t) depends only on the distance 
between s and t and not on either separately, it is a “displacement kernel” and invariant 
upon interchange of argument, so A is a symmetric matrix and generally dense.

For a second type Fredholm integral equation, the unknown u also appears outside, giving 
diagonal weight to A = I + K .  

c/o wikipedia

⇒ Integral equations of interest are often strongly diagonally 
dominant and data-sparse (leading, e.g., to fast multipole methods)



Hessian matrices

c/o wikipedia

⇒ Hessian matrices require approximation for optimization
Often sum of compact and low-rank and often hierarchically low rank

symmetric by interchange of partial derivatives.



Fractional derivatives

c/o wikipedia

⇒ Discretized fractional derivative operators – which are currently 
extremely hot – are natural candidates for hierarchically low-rank 
approximation, which is crucial in dimensions higher than one 

where n is the smallest integer larger than the fractional power 𝜈 . When discretized, the operator 
D𝜈 is symmetric and dense except when 𝜈 is an integer.  For instance, if n = 2, we get the discrete 
1D Laplacian matrix, which is sparse, with trivially low-rank off-diagonal blocks.  For fractional values 
of 𝜈 we lose sparsity, but we still have data sparsity.  The off-diagonal blocks have low rank.



Covariance matrices

c/o wikipedia

⇒ Covariance matrices are symmetric and positive semi-definite with 
elements that generally decay with distance by causality, and data sparse 
when properly ordered (e.g., space-filling curves)

This matrix is the generalization of the scalar variance to n dimensions.  
The entries on the diagonal are the variances of each individual element of X.



Solvers and their nestedness
To “go big” and achieve the potential of emerging architectures 
for scientific applications, we need implementations of fast
• linear and least squares solvers
• eigensolvers & singular value solvers
• nonlinear and optimization solvers
• time integrators & sensitivity solvers
• stencil solvers 

that
n offer tunable accuracy-time-space tradeoffs
n exploit data sparsity
n exploit hierarchy of precisions
n may require more flops but complete earlier, thanks to more concurrency 

or less communication or synchronization
n are energy efficient

Linear 
solverindicates 

dependence

Singular 
Value,

Eigensolver

Sens. Analyzer

Time 
integrator

Nonlinear 
solver

Optimizer

Least Squares 
solver 



A week of solvers J



Linear, least squares, eigen & singular value 
solvers of “direct” type

Since Householder (1954), direct matrix computations have been 
built on a foundation of decompositions or factorizations:
• A = LLT =  ⱢDⱢT (Cholesky, L, Ɫ lower tri)
• A = LU (LU (pivots not shown), L lower tri, U upper tri)
• A = QR (QR, Q orthogonal, R right tri)
• A = UH (Polar, U unitary, H HPD if A has full rank)
• A = UTUH (Schur, U unitary, T upper tri)
• A = V𝛬VT (Eigen, V orthogonal if A symmetric, 𝛬 diagonal,)
• A = U𝚺VT (Singular, U,V unitary, 𝚺 diagonal)

Mathematically, these decompositions were all known by 1910.  
If A is n×n , dense, and full rank, their complexities are all O(n3). 
In factored form, determinants, inverses for repeat solves, and low-
rank updates are comparatively inexpensive.



Linear solvers of iterative type
Linear iterative methods are primarily useful for sparse 
problems, because their inner loops typically contain matrix-
vector multiplications and (approximate) preconditioning 
solves.  
These typically exploit special spectral, mathematical, or 
geometric structure, e.g., coming from a PDE:
• stationary iterative methods
• Chebyshev iterative methods
• Krylov subspace iterative methods
• multilevel iterative methods

and may thus achieve a complexity as low as O(n). 
(Sparse problems are also solved by direct methods, especially 
those coming from PDE discretizations, in less than O(n3) by 
exploiting geometric structure, e.g., nested dissection.)



Nonlinear solvers
Nonlinear solvers for f(x) = 0 are invariably iterative.
For high-dimensional problems, they are of fixed-point type 

xk+1 = g(xk)
or accelerated (e.g., Anderson), or are variants of Newton’s method 

xk+1 = xk - J(xk)-1f(xk)
where the inverse of the Jacobian is effected by incomplete application 
of an iterative linear method, often on an approximate Jacobian.  
Jacobian-free Newton-Krylov methods that access J(xk) only by 
Fréchet derivatives

are popular.
Newton’s method may be nonlinearly preconditioned and is usually 
“globalized” by line-search, trust-region, or physics-informed 
“continuation” methods.
Continuation can be in the form of problem resolution (mesh), problem 
parameters (Reynolds), or artificial means.

)]()([1)( uFvuFvuJ -+» e
e



Time integration solvers
Integrators for f(xt,x) = 0 with important special case xt +F(x) = 0 are 
usually semi-discretized in space, and sometimes fed to an explicit ODE 
integrator.
When arising in parabolic, differential algebraic, or mixed contexts, 
they are typically implicitly discretized in time because the temporal 
stability bound is typically more severe than the accuracy bound.
Hyperbolic systems admitting wave behavior tend to have accuracy 
and stability limits of the same order and may be solved explicitly.
However, in multi-wavespeed systems, fast wave phenomena may be 
unimportant to the dynamics of interest, so implicit methods are used.
As such, time integrators tend to reduce on each timestep to a 
nonlinear solve, which, in turn through Newton reduces to a linear 
solve.
Time-integration methods may carry extra sensitivity variables along, 
which provide a form of uncertainty quantification.



nINRIA-SA 30-Mar-2009

Optimization solvers

Consider the rootfinding problem derived from the necessary 
gradient conditions for minimization, with design variables u
! Objective
! Constraints
! Lagrangian
! Form the gradient of the Lagrangian with respect to each 

of x, u, and l to get a large coupled root-finding problem:

NMN fuxuxf ÂÎÂÎÂÎ= ;;;0),(
ÂÎFF ;),(min uxu

0),(),( =+F uxfux xx
Tl

0),( =uxf
0),(),( =+F uxfux uu

Tl

NT uxfux ÂÎ+F ll ;),(),(

Large-scale optimization problems typically come with PDE 
constraints and piggyback on implicit nonlinear solvers. 



nINRIA-SA 30-Mar-2009

Newton Reduced 
Sequential Quadratic Programming (RSQP)

! Applying Newton’s method leads to the KKT system 
for states x , designs u , and multipliers l
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! Then

! Newton Reduced SQP solves the Schur complement 
system  H du = g , where H is the reduced Hessian
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Explicit positions
Explicit values 

Stencil ops: 4 very different types of  y=Ax

general sparse matvec

Explicit positions
Implicit values 

graph Laplacian

Implicit positions
Implicit values 

Laplacian on Cartesian mesh,

Implicit positions
Explicit values 

diffusion on Cartesian mesh,
store no values

store no positions

store neither



\end{review}



Rank-structured operators
n Advantages

! shrink memory footprints to live higher on the 
memory hierarchy
" higher means quick access (↑ arithmetic intensity)

! reduce operation counts
! tune work to accuracy requirements

" e.g., preconditioner versus solver

n Disadvantages
! pay cost of (re-)compression
! not all operators compress well



Data sparsity from rank-structured matrices*

* A rank-structured matrix is a matrix with enough low-rank blocks that it pays to take advantage of them 
(paraphrasing Wilkinson on sparse matrices)

n Tile low rank (TLR)
§ all blocks at a single level of subdivision 

(could in principle vary in size) TLR

HLR
weakly 

admissible

HLR
strongly 

admissible

n Hierarchically low rank (HLR)
§ blocks are left at various levels upon 

recursive subdivision
§ weak and strong “admissibility” variants

n HLR more than two decades old
§ Hackbusch (1999), Tyrtyshnikov (2000)
§ Fiedler (1993) defined “structure ranks”

n Prevalent topic in SIAM Applied 
Linear Algebra conferences



Reduce memory footprint and 
operation complexity with low rank

• Replace dense blocks with reduced rank representations, 
whether “born dense” or as arising during matrix operations
§ use high accuracy (high rank) to build “exact” solvers
§ use low accuracy (low rank) to build preconditioners

• Consider hardware parameters in tuning block sizes and 
maximum rank parameters 
§ e.g., cache sizes, warp sizes

• Use randomized SVD (Halko, Martinsson & Tropp, 2009) to 
form low-rank blocks
§ a flop-intensive GEMM-based flat algorithm

• Implement in “batches” of leaf blocks
§ flattening trees in the case of HLR



Complexities of rank-structured factorization
For a square dense matrix of O(N) :
n “Straight” LU or LDLT

§ Operations O(N3)
§ Storage O(N2)

n Tile low-rank (Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)*

§ Operations O(k0.5 N2)
§ Storage O(k0.5 N1.5)
§ for uniform blocks with size chosen optimally for max rank k of any 

compressed block, bounded number of uncompressed blocks per row 

n Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003) 

§ Operations O(k2 N log2N)
§ Storage O(k N)
§ for strong admissibility, where k is max rank of any compressed block

* First reported O(k0.5 N2.5), then later O(k0.5 N2) for variant that reorders updates and recompression



Rank-structure also relevant to sparse problems
Classical factorizations fill in with elimination

For 3D Poisson solver on a cube with O(N) degrees of freedom:
n Classical nested dissection generally requires O(N2) operations

n Tile low-rank can yield O(N4/3) operations
(Amestoy, Buttari, L’Excellent & Mary, SISC, 2016) 

n Hierarchically low-rank methods can yield O(N) operations
(Bebendorf & Hackbusch, Numer. Math., 2003)

n Gains come from low-rank treatment of the resulting Schur 
complements



Tile Low Rank begins with tile algorithms
n PLASMA, Chameleon, and FLAME 

implementations
n Dense matrix is divided into tiles
n Remove artifactual synchronization by 

bringing task parallelism to the fore

for k = 1 to T do

POTRF(D(k,k))

for i = k+1 to T do

TRSM(V(i,k), D(k,k))
for j = k+1 to T do

SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do

GEMM(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), acc)

Tile Cholesky of a 4x4 matrix



Tile Cholesky factorization (dense)

n34

T = N / B  # B is block size; T is tiles per dimension
for k = 1 to T do
POTRF(D(k,k))
for i = k+1 to T do
TRSM(V(i,k), D(k,k))

for j = k+1 to T do
SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do
GEMM(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), acc)

Kernel Dense Cholesky TLR Cholesky
POTRF 1/3 * B^3 1/3 * nb^3
TRSM B^3 nb^2 * rank

SYRK/LR_SYRK B^3 2 * nb^2 * rank + 4 * nb * rank^2
GEMM/LR_GEMM 2 * B^3 36 * nb * rank^2+157*rank^3

Total O(N^3) O(N^2 * rank)

The block algorithm has T steps 
down the diagonal, each of which 
is O(T^2) for updates, and the 
block update operations are each 
O(B^3), so there is no reduction in 
complexity, 

T^3 * B^3 = N^3 ,
just better scheduling.

A serial and 
incompres-
sible critical 
path of TLR 
Cholesky:
(T-1) * 
(POTRF + 
TRSM + 
SYRK) + 
POTRF



Dynamic runtime systems
n Operate directly from the sequential code
n Ensure that data dependencies are not violated
n Schedule the tasks across appropriate available hardware resources
n Optimize memory placement for nonuniform access
n Enhance software productivity by abstracting the hardware
n Examples (all avail for shared memory, distributed memory, and GPUs):

§ OpmSs
o BSC, Barcelona 
o Pragma-based, extending OpenMP to asynchronous execution

§ ParSEC
o ICL, University of Tennessee
o Parallel runtime scheduling and execution control

§ StarPU
o INRIA, Bordeaux
o Unified runtime system for heterogeneous multicore architecture



Tile Low Rank (TLR) is a compromise between 
optimality and implementation complexity



TLR Cholesky factorization

n37

T = N / B  # B is block size; T is tiles per dimension
for k = 1 to T do
POTRF(D(k,k))
for i = k+1 to T do
TRSM(V(i,k), D(k,k))
for j = k+1 to T
LR_SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do
LR_GEMM(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), acc)

Kernel Dense Cholesky TLR Cholesky
POTRF 1/3 * B^3 1/3 * B^3
TRSM B^3 B^2 * rank

SYRK/LR_SYRK B^3 2 * B^2 * rank + 4 * B * rank^2
GEMM/LR_GEMM 2 * B^3 36 * B * rank^2 + 157*rank^3

Total O(N^3) O(N^2 * rank)

Swapping out a B for a rank, 
where rank ≪ B, provides an easy 
win.

However, one must pay the cost 
of initial compression and of 
recompression after updates.



Low rank approximation for off-diag tiles
There are several means of forming data sparse 
representations of the amenable off-diagonal blocks
n standard SVD: O(n3), too expensive for initial and especially for 

repeated compressions after manipulations
n randomized SVD* (Halko et al, 2011): O(n2 log k) for rank k, 

requires only a small number of passes over the data, saving 
over the SVD in memory accesses as well as operations

n adaptive cross approximation (ACA)* (Bebendorf, 2000): O(k2n 
log n), motivated by integral equation kernels

n matrix skeletonization (representing a matrix by a 
representative collection of row and columns), such as CUR, 
sketching, or interpolatory decompositions

* RSVD and ACA routines offered in KBLAS at github.com/ecrc/kblas-gpu
Jacobi-SVD also offered in KBLAS for small matrices in batched mode



Geospatial statistics motivation
“Increasing amounts of data are being produced (e.g., 
by remote sensing instruments and numerical models), 
while techniques to handle millions of observations have 
historically lagged behind… 
Computational implementations that work with 
irregularly-spaced observations are still rare.”  

- Dorit Hammerling, NCAR, July 2019

Traditional approaches:
n Global low rank
n Zero outer diagonals

Better approaches:
n Hierarchical low rank
n Reduced precision outer 

diagonals

1M ✕ 1M dense sym DP matrix requires 4 TB,  N3 ~ 1018 Flops 



Geospatial statistics applications
Synthetic test matrix: random coordinate generation 
within the unit square or unit cube with Matérn 
kernel decay, each pair of points connected by 
n linear exp to square exp decay, aij ~ exp (-c|xi - xj|p), p = 1,2

2D 3D



Large dense symmetric systems arise as 
covariance matrices in spatial statistics

• Climate and weather applications have many 
measurements located regularly or irregularly in a region; 
prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial 
random field, with parameters to be fit

• Leads to evaluating the log-likelihood function involving a 
large dense (but data sparse) covariance

• Solve 𝛴-1 and determinant | 𝛴 | and depend upon Cholesky,
dominated by DPOTRF factorization routine (next slides)

inverse determinant



TLR vs. Intel MKL on shared memory
Geospatial statistics (Gaussian kernel) to accuracy 1.0e-8
n Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
n Two generations of linear algebra (classical dense and tile low rank) 

Red arrows: 
speedups from 

hardware, 
same algorithm

Green arrows: 
speedups from 

algorithm, 
same hardware

Blue arrow:
from both

classical

tile low rank
w/StarPU

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

NB: log scale



Memory footprint for DP matrix of size 1M

4 TB

1 to 2 orders of 
magnitude less, 
depending upon 

accuracy

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, EuroPar 2018

NB: log scale



Nearly 2 orders of 
magnitude for 0.5M size 
matrix on 16 nodes

HiCMA vs. ScaLAPACK on distributed memoryTLR vs. ScaLAPACK on distributed memory

Green arrow: 
speedup from 

algorithm, 
same 16 nodes

NB: log scale

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Shaheen II at KAUST: a Cray XC40 system with 6,174 compute nodes, each of which has two 16-core Intel Haswell 
CPUs running at 2.30 GHz and 128 GB of DDR4 main memory



TLR tour de force

64000

Cholesky factorization of a TLR matrix (DPOTRF) derived from 
Gaussian covariance of random distributions, up to 42M DOFs, on 
up to 4096 nodes (131,072 Haswell cores) of a Cray XC40
n would require 14.1 PetaBytes in dense DP
n would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

Millions of DOFs
Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky Factorization 
Toward Climate and Weather Prediction Applications. PASC ‘20 (ACM), 2020

NB: log scale



Execution trace, dense DPOTRF
Chameleon: Dense DPOTRF time 18.1s

4 nodes of Shaheen with a matrix size of 54K using StarPU runtime

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018



Execution trace, TLR DPOTRF
HiCMA: TLR DPOTRF time 1.8s (10X faster)

4 nodes of Shaheen with a matrix size of 54K, using StarPU runtime

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018



Comparing the traces

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

n Tile low rank has a higher percentage of idle time (red), 
relative to flop-intensive dense tile

n Scales less efficiently relative to itself
n However, for a acceptable accuracy tolerance, it is 

superior in time and energy

18.1 s

1.8 s



TLR (complex) LU factorization

DAG for 4x4 
LU factorization

time →
concurrency
↓

Conventional tile LU factorization 
(shown with complex data types, left) 
is converted to a TLR LU factorization 
with replacement of off diagonal blocks 
with low rank compressed



Compress (once) on the fly, solve many with HLU

Compression overhead

per RHS solve time

Exterior Helmholtz problem: acoustic scattering BIE

Al-Harthi, Alomairy, Akbudak, Chen, Ltaief, Bagci & K., Solving Acoustic Boundary Integral Equations 
using High Performance Tile Low Rank LU Factorization, Proceedings of ISC High Performance 2020



Rank distribution challenges 
with 3D exponential kernels 

n51
Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D 
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

The simple exponential kernel:

𝐶 𝑟; ℓ = 𝑒𝑥𝑝( −
𝑟
ℓ
)

is suited for rough correlations 
such as the variation of wind 
speed or temperature with 
altitude, and leads to wide 
rank disparities

initial ranks 
following

Morton 
ordering of 3D 

field with 
N=1.08M and 

B=2700
for matrix of  

400 x 400 tiles

final ranks 
following 
Cholesky 

factorization

rank 
variations 

before and 
after 

factorization

ratio of 50 in rank!

ratio of 500 in rank!

small→smaller, large→larger



Rank distribution challenges 
with 3D exponential kernels 
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Threshold for treating an individual data-sparse tile as dense is relatively low 
(effectively about 15% of tile size)
May be lower considering distribution of ranks

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D 
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

Ratio of rank to tile size with matrix size 
1.08M; rank is a mathematical object; 
tile size is an algorithmic parameter

Time and annotated flop rates for low rank 
GEMM and dense GEMM (48 GF/s) for tiles size 
2700, with ratios & threshold, as function of rank

NB: ratios in log scale



Dynamic data structure adaption:
treat near-diagonal high-rank tiles as fully dense

n53

Data layout Compute kernels Data flow 

First, second and third panel factorization & update steps
P - POTRF, T - TRSM, S - SYRK, G – GEMM
Upper color: within tile band adaptively preserved as 
dense
Lower color: handled as low rank tile

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D 
Data-sparse Matrix Problems. IPDPS (IEEE), 2021



Sensitivity to tile size
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Auto-tuning is available based on a starting point for tile size B = 𝑵

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D 
Data-sparse Matrix Problems. IPDPS (IEEE), 2021



Dense tile bandsize auto-tuning

n55

Time to 
Solution 

Auto-tuning 
time on 512 
nodes

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D 
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

Boxes indicate 
bandsize range 
in which TLR and 
dense flops for 
all GEMM and 
TRSM are within 
a small range 
around unity

Time spent 
autotuning for 
bandsize is about 
0.1% of cost of 
solution



Memory reduction & load imbalance

n56

Memory reduction Imbalance idle times on 16 nodes

Even after thresholding high-rank off-diagonal tiles as dense, a wide 
distribution of smaller ranks remains.
Memory allocations per tile are reduced to those actually needed with 
major reduction (up to 44x) in band adaptive TLR relative to earlier TLR 
versions.
Dynamic runtime system deals with tile load variations gracefully.



Comparison with prior state-of-the-art 
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For exponential kernel matrix of N = 2.16M on 256 nodes, new TLR 
optimizations to account for rank variation save factor of 5x to 7.5x 
across a range of relevant sizes for geospatial environmental statistics

Q. Cao, Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Extreme-scale Task-based 
Cholesky Factorization Toward Climate and Weather Prediction Applications, PASC, 2020 (ACM) 

5.24x 
speedup

Tile release time to the runtime system (last tile is end of computation)



Sensitivity to accuracy thresholds 
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N=2.16M bandsize 
annotated

Effect of accuracy requirements on 512 nodes
Earlier results were for 10-9; here are three looser tolerances



Hierarchical Computations on 
Manycore Architectures: HiCMA*

* appearing one thesis at a time at  https://github.com/ecrc



Conclusions, recapped
n With controllable trade-offs, many linear algebra 

operations adapt well to high performance on emerging 
architectures through
§ higher residence on the memory hierarchy
§ greater SIMT/SIMD-style concurrency
§ reduced synchronization and communication

n Rank-structured matrices, based on uniform tiles or 
hierarchical subdivision play a major role

n Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

n Many applications are benefiting
§ by orders of magnitude in memory footprint & runtime



Iconographic conclusion

today tomorrow
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Very special thanks to…

Hatem Ltaief
Principal Research Scientist

Extreme Computing Research Center
KAUST



Closing haiku

By low rank’s blessing?

Curse of dimension,

Can you be mitigated



Thank you!

اركش

david.keyes@kaust.edu.sa
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