
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Mathematical Sciences Spring Lecture Series Mathematical Sciences

4-6-2021

Lecture 02: Tile Low-rank Methods and Applications (w/review) Lecture 02: Tile Low-rank Methods and Applications (w/review)

David Keyes
King Abdullah University of Science and Technology, david.keyes@kaust.edu.sa

Follow this and additional works at: https://scholarworks.uark.edu/mascsls

 Part of the Algebra Commons, Analysis Commons, Non-linear Dynamics Commons, Numerical

Analysis and Computation Commons, and the Ordinary Differential Equations and Applied Dynamics

Commons

Citation Citation
Keyes, D. (2021). Lecture 02: Tile Low-rank Methods and Applications (w/review). Mathematical Sciences
Spring Lecture Series. Retrieved from https://scholarworks.uark.edu/mascsls/4

This Video is brought to you for free and open access by the Mathematical Sciences at ScholarWorks@UARK. It
has been accepted for inclusion in Mathematical Sciences Spring Lecture Series by an authorized administrator of
ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/mascsls
https://scholarworks.uark.edu/masc
https://scholarworks.uark.edu/mascsls?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/mascsls/4?utm_source=scholarworks.uark.edu%2Fmascsls%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

David Keyes
Extreme Computing Research Center

King Abdullah University of Science and Technology
5-9 April 2021

Lecture 2

Tile Low-rank Methods and
Applications (w/review)

University of Arkansas Department of Mathematical Sciences

46th Spring Lecture Series

NLA “renaissance” theme, recapped
n With controllable trade-offs, many numerical linear

algebra operations adapt well for high performance on
emerging architectures through
§ higher residency on the memory hierarchy
§ greater SIMT/SIMD-style concurrency
§ reduced synchronization and communication

n Rank-structured matrices, based on uniform tiles or
hierarchical subdivision play a major role

n Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

n Many applications are benefiting
§ by orders of magnitude in memory footprint & runtime

Algorithmic opportunity
With such new algorithms, we can extend many
applications that possess

§ memory capacity constraints (e.g., geospatial statistics,
PDE-constrained optimization)

§ energy constraints (e.g., remote telescopes)
§ real-time constraints (e.g., wireless commun)
§ running time constraints (e.g., chem, materials,

genome-wide associations)

We’ll introduce a hierarchy of ranks …

… and a hierarchy of precisions

Today’s renaissance in numerical linear algebra
A “renaissance” is a rebirth, revival, or renewed interest
Numerical linear algebra has been vital for over 70 years
• has never endured any “dark ages” or “winter”
• it simply became a bottleneck as problem sizes grew

§ dense problems: cubic complexity, quadratic storage
§ sparse problems: memory bandwidth-constrained

Renewal, in the form of reinvention, comes from these:
n many practical accuracy requirements are less stringent than traditional
n many important applications are “data sparse”
n many high-complexity tasks can be performed in lower precision than

traditional
n randomness (typically by random selection) beats systematic coverage

A great time to be looking for research topics
n re-examine important existing algorithms in this light

Simple example of data sparsity
with the 1D Laplacian

3/2

7/8

2

A is sparse but A-1 is dense

Conformal off-diagonal blocks
of A and A-1 admit low-rank
representation with the same
low rank
(Fiedler & Markham, 1986)

15/8

Solvers have always evolved beneath “Ax=b”

n Advances in algorithmic efficiency rival advances in
hardware architecture

n Consider Poisson’s equation on a cube of size N=n3

n If n=64, this implies an overall reduction in flops of
~16 million*

Year Method Reference Storage Flops

1947 GE (banded) Von Neumann &
Goldstine

n5 n7

1950 Optimal SOR Young n3 n4 log n

1971 CG Reid n3 n3.5 log n

1984 Full MG Brandt n3 n3

Ñ2u=f 64

64 64

*Six months is reduced to 1 second

year

relative
speedup

Solver algorithms and Moore’s Law
! This advance took place over a span of about 36 years, or

24 doubling times for Moore’s Law
! 224»16 million Þ the same as the factor from algorithms

alone!

Large-scale brings focus on complexity

n Given, for example:
! a “physics” phase that

scales as O(N)
! a “solver” phase that scales

as O(N3/2)
! computation is almost all

solver after several
doublings 0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes
50% time
on 1 proc

Solver takes
97% time

on 1K procs

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

problem sizen Increasingly, this is felt in the
gut or the utility bills of users

A brief review of beneficial background
In a short lecture series that gets to the reinvention, we need
to assume the invention, namely knowledge of
• where the problems come from
• how they are traditionally solved

so we undertake next a 15-slide review on
n types of applications that lead to “bottleneck” linear algebra

operations
n what results we need to extract
n algebraic building blocks

It could be “homework” tonight to look up what you might
be missing
We make convenient assumptions, without the caveats for
every possible pathology related to conditioning, etc.

\begin{review}

Primary problem class for my lectures
Symmetric positive definite matrices arising from
• Schur complements within discretizations of elliptic

and parabolic PDEs
• integral equations with displacement kernels
• Hessians from PDE-constrained optimization
• fractional differential equations
• covariances in spatial statistics
• radial basis functions from unstructured meshes
• kernel matrices from machine learning

applications

Schur complements

This eliminates the bottom q unknowns in terms of the remaining p unknowns and is known
as “static condensation” in the finite element method.
The Schur complement arising from an SPD matrix is still SPD, but is generally dense even
for a sparse original, because D-1 is dense.
Schur complements arise when block Gauss elimination is performed to factorize a sparse
matrix into its Cholesky (or more generally LU) factors, due to such fill in.

c/o wikipedia

⇒ Condensing sparse finite element, finite difference, and finite
volume matrices leads to dense blocks that are often data sparse

Integral equations

This is A u = f , where A is n x n. If the kernel K(s,t) depends only on the distance
between s and t and not on either separately, it is a “displacement kernel” and invariant
upon interchange of argument, so A is a symmetric matrix and generally dense.

For a second type Fredholm integral equation, the unknown u also appears outside, giving
diagonal weight to A = I + K .

c/o wikipedia

⇒ Integral equations of interest are often strongly diagonally
dominant and data-sparse (leading, e.g., to fast multipole methods)

Hessian matrices

c/o wikipedia

⇒ Hessian matrices require approximation for optimization
Often sum of compact and low-rank and often hierarchically low rank

symmetric by interchange of partial derivatives.

Fractional derivatives

c/o wikipedia

⇒ Discretized fractional derivative operators – which are currently
extremely hot – are natural candidates for hierarchically low-rank
approximation, which is crucial in dimensions higher than one

where n is the smallest integer larger than the fractional power 𝜈 . When discretized, the operator
D𝜈 is symmetric and dense except when 𝜈 is an integer. For instance, if n = 2, we get the discrete
1D Laplacian matrix, which is sparse, with trivially low-rank off-diagonal blocks. For fractional values
of 𝜈 we lose sparsity, but we still have data sparsity. The off-diagonal blocks have low rank.

Covariance matrices

c/o wikipedia

⇒ Covariance matrices are symmetric and positive semi-definite with
elements that generally decay with distance by causality, and data sparse
when properly ordered (e.g., space-filling curves)

This matrix is the generalization of the scalar variance to n dimensions.
The entries on the diagonal are the variances of each individual element of X.

Solvers and their nestedness
To “go big” and achieve the potential of emerging architectures
for scientific applications, we need implementations of fast
• linear and least squares solvers
• eigensolvers & singular value solvers
• nonlinear and optimization solvers
• time integrators & sensitivity solvers
• stencil solvers

that
n offer tunable accuracy-time-space tradeoffs
n exploit data sparsity
n exploit hierarchy of precisions
n may require more flops but complete earlier, thanks to more concurrency

or less communication or synchronization
n are energy efficient

Linear
solverindicates

dependence

Singular
Value,

Eigensolver

Sens. Analyzer

Time
integrator

Nonlinear
solver

Optimizer

Least Squares
solver

A week of solvers J

Linear, least squares, eigen & singular value
solvers of “direct” type

Since Householder (1954), direct matrix computations have been
built on a foundation of decompositions or factorizations:
• A = LLT = ⱢDⱢT (Cholesky, L, Ɫ lower tri)
• A = LU (LU (pivots not shown), L lower tri, U upper tri)
• A = QR (QR, Q orthogonal, R right tri)
• A = UH (Polar, U unitary, H HPD if A has full rank)
• A = UTUH (Schur, U unitary, T upper tri)
• A = V𝛬VT (Eigen, V orthogonal if A symmetric, 𝛬 diagonal,)
• A = U𝚺VT (Singular, U,V unitary, 𝚺 diagonal)

Mathematically, these decompositions were all known by 1910.
If A is n×n , dense, and full rank, their complexities are all O(n3).
In factored form, determinants, inverses for repeat solves, and low-
rank updates are comparatively inexpensive.

Linear solvers of iterative type
Linear iterative methods are primarily useful for sparse
problems, because their inner loops typically contain matrix-
vector multiplications and (approximate) preconditioning
solves.
These typically exploit special spectral, mathematical, or
geometric structure, e.g., coming from a PDE:
• stationary iterative methods
• Chebyshev iterative methods
• Krylov subspace iterative methods
• multilevel iterative methods

and may thus achieve a complexity as low as O(n).
(Sparse problems are also solved by direct methods, especially
those coming from PDE discretizations, in less than O(n3) by
exploiting geometric structure, e.g., nested dissection.)

Nonlinear solvers
Nonlinear solvers for f(x) = 0 are invariably iterative.
For high-dimensional problems, they are of fixed-point type

xk+1 = g(xk)
or accelerated (e.g., Anderson), or are variants of Newton’s method

xk+1 = xk - J(xk)-1f(xk)
where the inverse of the Jacobian is effected by incomplete application
of an iterative linear method, often on an approximate Jacobian.
Jacobian-free Newton-Krylov methods that access J(xk) only by
Fréchet derivatives

are popular.
Newton’s method may be nonlinearly preconditioned and is usually
“globalized” by line-search, trust-region, or physics-informed
“continuation” methods.
Continuation can be in the form of problem resolution (mesh), problem
parameters (Reynolds), or artificial means.

)]()([1)(uFvuFvuJ -+» e
e

Time integration solvers
Integrators for f(xt,x) = 0 with important special case xt +F(x) = 0 are
usually semi-discretized in space, and sometimes fed to an explicit ODE
integrator.
When arising in parabolic, differential algebraic, or mixed contexts,
they are typically implicitly discretized in time because the temporal
stability bound is typically more severe than the accuracy bound.
Hyperbolic systems admitting wave behavior tend to have accuracy
and stability limits of the same order and may be solved explicitly.
However, in multi-wavespeed systems, fast wave phenomena may be
unimportant to the dynamics of interest, so implicit methods are used.
As such, time integrators tend to reduce on each timestep to a
nonlinear solve, which, in turn through Newton reduces to a linear
solve.
Time-integration methods may carry extra sensitivity variables along,
which provide a form of uncertainty quantification.

nINRIA-SA 30-Mar-2009

Optimization solvers

Consider the rootfinding problem derived from the necessary
gradient conditions for minimization, with design variables u
! Objective
! Constraints
! Lagrangian
! Form the gradient of the Lagrangian with respect to each

of x, u, and l to get a large coupled root-finding problem:

NMN fuxuxf ÂÎÂÎÂÎ= ;;;0),(
ÂÎFF ;),(min uxu

0),(),(=+F uxfux xx
Tl

0),(=uxf
0),(),(=+F uxfux uu

Tl

NT uxfux ÂÎ+F ll ;),(),(

Large-scale optimization problems typically come with PDE
constraints and piggyback on implicit nonlinear solvers.

nINRIA-SA 30-Mar-2009

Newton Reduced
Sequential Quadratic Programming (RSQP)

! Applying Newton’s method leads to the KKT system
for states x , designs u , and multipliers l

ú
ú
ú

û

ù

ê
ê
ê

ë

é
-=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é

f
g
g

u
x

JJ
JWW
JWW

u

x

ux

T
uuuux

T
x

T
uxxx

dl
d
d

0

! Then

! Newton Reduced SQP solves the Schur complement
system H du = g , where H is the reduced Hessian

fJWWJJgJJgg xuxxx
T
x

T
ux

T
x

T
uu

1)(--- --+-=
uxuxxx

T
x

T
u

T
ux

T
x

T
uuu JJWWJJWJJWH 1)(--- ---=

uJfxJ ux dd --=
uWxWgJ T

uxxxx
T
x dddl ---=

Explicit positions
Explicit values

Stencil ops: 4 very different types of y=Ax

general sparse matvec

Explicit positions
Implicit values

graph Laplacian

Implicit positions
Implicit values

Laplacian on Cartesian mesh,

Implicit positions
Explicit values

diffusion on Cartesian mesh,
store no values

store no positions

store neither

\end{review}

Rank-structured operators
n Advantages

! shrink memory footprints to live higher on the
memory hierarchy
" higher means quick access (↑ arithmetic intensity)

! reduce operation counts
! tune work to accuracy requirements

" e.g., preconditioner versus solver

n Disadvantages
! pay cost of (re-)compression
! not all operators compress well

Data sparsity from rank-structured matrices*

* A rank-structured matrix is a matrix with enough low-rank blocks that it pays to take advantage of them
(paraphrasing Wilkinson on sparse matrices)

n Tile low rank (TLR)
§ all blocks at a single level of subdivision

(could in principle vary in size) TLR

HLR
weakly

admissible

HLR
strongly

admissible

n Hierarchically low rank (HLR)
§ blocks are left at various levels upon

recursive subdivision
§ weak and strong “admissibility” variants

n HLR more than two decades old
§ Hackbusch (1999), Tyrtyshnikov (2000)
§ Fiedler (1993) defined “structure ranks”

n Prevalent topic in SIAM Applied
Linear Algebra conferences

Reduce memory footprint and
operation complexity with low rank

• Replace dense blocks with reduced rank representations,
whether “born dense” or as arising during matrix operations
§ use high accuracy (high rank) to build “exact” solvers
§ use low accuracy (low rank) to build preconditioners

• Consider hardware parameters in tuning block sizes and
maximum rank parameters
§ e.g., cache sizes, warp sizes

• Use randomized SVD (Halko, Martinsson & Tropp, 2009) to
form low-rank blocks
§ a flop-intensive GEMM-based flat algorithm

• Implement in “batches” of leaf blocks
§ flattening trees in the case of HLR

Complexities of rank-structured factorization
For a square dense matrix of O(N) :
n “Straight” LU or LDLT

§ Operations O(N3)
§ Storage O(N2)

n Tile low-rank (Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)*

§ Operations O(k0.5 N2)
§ Storage O(k0.5 N1.5)
§ for uniform blocks with size chosen optimally for max rank k of any

compressed block, bounded number of uncompressed blocks per row

n Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003)

§ Operations O(k2 N log2N)
§ Storage O(k N)
§ for strong admissibility, where k is max rank of any compressed block

* First reported O(k0.5 N2.5), then later O(k0.5 N2) for variant that reorders updates and recompression

Rank-structure also relevant to sparse problems
Classical factorizations fill in with elimination

For 3D Poisson solver on a cube with O(N) degrees of freedom:
n Classical nested dissection generally requires O(N2) operations

n Tile low-rank can yield O(N4/3) operations
(Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)

n Hierarchically low-rank methods can yield O(N) operations
(Bebendorf & Hackbusch, Numer. Math., 2003)

n Gains come from low-rank treatment of the resulting Schur
complements

Tile Low Rank begins with tile algorithms
n PLASMA, Chameleon, and FLAME

implementations
n Dense matrix is divided into tiles
n Remove artifactual synchronization by

bringing task parallelism to the fore

for k = 1 to T do

POTRF(D(k,k))

for i = k+1 to T do

TRSM(V(i,k), D(k,k))
for j = k+1 to T do

SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do

GEMM(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), acc)

Tile Cholesky of a 4x4 matrix

Tile Cholesky factorization (dense)

n34

T = N / B # B is block size; T is tiles per dimension
for k = 1 to T do
POTRF(D(k,k))
for i = k+1 to T do
TRSM(V(i,k), D(k,k))

for j = k+1 to T do
SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do
GEMM(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), acc)

Kernel Dense Cholesky TLR Cholesky
POTRF 1/3 * B^3 1/3 * nb^3
TRSM B^3 nb^2 * rank

SYRK/LR_SYRK B^3 2 * nb^2 * rank + 4 * nb * rank^2
GEMM/LR_GEMM 2 * B^3 36 * nb * rank^2+157*rank^3

Total O(N^3) O(N^2 * rank)

The block algorithm has T steps
down the diagonal, each of which
is O(T^2) for updates, and the
block update operations are each
O(B^3), so there is no reduction in
complexity,

T^3 * B^3 = N^3 ,
just better scheduling.

A serial and
incompres-
sible critical
path of TLR
Cholesky:
(T-1) *
(POTRF +
TRSM +
SYRK) +
POTRF

Dynamic runtime systems
n Operate directly from the sequential code
n Ensure that data dependencies are not violated
n Schedule the tasks across appropriate available hardware resources
n Optimize memory placement for nonuniform access
n Enhance software productivity by abstracting the hardware
n Examples (all avail for shared memory, distributed memory, and GPUs):

§ OpmSs
o BSC, Barcelona
o Pragma-based, extending OpenMP to asynchronous execution

§ ParSEC
o ICL, University of Tennessee
o Parallel runtime scheduling and execution control

§ StarPU
o INRIA, Bordeaux
o Unified runtime system for heterogeneous multicore architecture

Tile Low Rank (TLR) is a compromise between
optimality and implementation complexity

TLR Cholesky factorization

n37

T = N / B # B is block size; T is tiles per dimension
for k = 1 to T do
POTRF(D(k,k))
for i = k+1 to T do
TRSM(V(i,k), D(k,k))
for j = k+1 to T
LR_SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do
LR_GEMM(U(i,k), V(i,k), U(j,k), V(j,k), U(i,j), V(i,j), acc)

Kernel Dense Cholesky TLR Cholesky
POTRF 1/3 * B^3 1/3 * B^3
TRSM B^3 B^2 * rank

SYRK/LR_SYRK B^3 2 * B^2 * rank + 4 * B * rank^2
GEMM/LR_GEMM 2 * B^3 36 * B * rank^2 + 157*rank^3

Total O(N^3) O(N^2 * rank)

Swapping out a B for a rank,
where rank ≪ B, provides an easy
win.

However, one must pay the cost
of initial compression and of
recompression after updates.

Low rank approximation for off-diag tiles
There are several means of forming data sparse
representations of the amenable off-diagonal blocks
n standard SVD: O(n3), too expensive for initial and especially for

repeated compressions after manipulations
n randomized SVD* (Halko et al, 2011): O(n2 log k) for rank k,

requires only a small number of passes over the data, saving
over the SVD in memory accesses as well as operations

n adaptive cross approximation (ACA)* (Bebendorf, 2000): O(k2n
log n), motivated by integral equation kernels

n matrix skeletonization (representing a matrix by a
representative collection of row and columns), such as CUR,
sketching, or interpolatory decompositions

* RSVD and ACA routines offered in KBLAS at github.com/ecrc/kblas-gpu
Jacobi-SVD also offered in KBLAS for small matrices in batched mode

Geospatial statistics motivation
“Increasing amounts of data are being produced (e.g.,
by remote sensing instruments and numerical models),
while techniques to handle millions of observations have
historically lagged behind…
Computational implementations that work with
irregularly-spaced observations are still rare.”

- Dorit Hammerling, NCAR, July 2019

Traditional approaches:
n Global low rank
n Zero outer diagonals

Better approaches:
n Hierarchical low rank
n Reduced precision outer

diagonals

1M ✕ 1M dense sym DP matrix requires 4 TB, N3 ~ 1018 Flops

Geospatial statistics applications
Synthetic test matrix: random coordinate generation
within the unit square or unit cube with Matérn
kernel decay, each pair of points connected by
n linear exp to square exp decay, aij ~ exp (-c|xi - xj|p), p = 1,2

2D 3D

Large dense symmetric systems arise as
covariance matrices in spatial statistics

• Climate and weather applications have many
measurements located regularly or irregularly in a region;
prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial
random field, with parameters to be fit

• Leads to evaluating the log-likelihood function involving a
large dense (but data sparse) covariance

• Solve 𝛴-1 and determinant | 𝛴 | and depend upon Cholesky,
dominated by DPOTRF factorization routine (next slides)

inverse determinant

TLR vs. Intel MKL on shared memory
Geospatial statistics (Gaussian kernel) to accuracy 1.0e-8
n Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
n Two generations of linear algebra (classical dense and tile low rank)

Red arrows:
speedups from

hardware,
same algorithm

Green arrows:
speedups from

algorithm,
same hardware

Blue arrow:
from both

classical

tile low rank
w/StarPU

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

NB: log scale

Memory footprint for DP matrix of size 1M

4 TB

1 to 2 orders of
magnitude less,
depending upon

accuracy

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, EuroPar 2018

NB: log scale

Nearly 2 orders of
magnitude for 0.5M size
matrix on 16 nodes

HiCMA vs. ScaLAPACK on distributed memoryTLR vs. ScaLAPACK on distributed memory

Green arrow:
speedup from

algorithm,
same 16 nodes

NB: log scale

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Shaheen II at KAUST: a Cray XC40 system with 6,174 compute nodes, each of which has two 16-core Intel Haswell
CPUs running at 2.30 GHz and 128 GB of DDR4 main memory

TLR tour de force

64000

Cholesky factorization of a TLR matrix (DPOTRF) derived from
Gaussian covariance of random distributions, up to 42M DOFs, on
up to 4096 nodes (131,072 Haswell cores) of a Cray XC40
n would require 14.1 PetaBytes in dense DP
n would require 77 days by ScaLAPACK (at the TLR rate of 3.7 Pflop/s)

Millions of DOFs
Cao, Pei, Akbudak, Mikhalev, Bosilca, Ltaief, K. & Dongarra, Extreme-Scale Task-Based Cholesky Factorization
Toward Climate and Weather Prediction Applications. PASC ‘20 (ACM), 2020

NB: log scale

Execution trace, dense DPOTRF
Chameleon: Dense DPOTRF time 18.1s

4 nodes of Shaheen with a matrix size of 54K using StarPU runtime

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Execution trace, TLR DPOTRF
HiCMA: TLR DPOTRF time 1.8s (10X faster)

4 nodes of Shaheen with a matrix size of 54K, using StarPU runtime

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

Comparing the traces

Akbudak, Ltaief, Mikhalev, Charara & K., Exploiting Data Sparsity for Large-scale Matrix Computations, Euro-Par 2018

n Tile low rank has a higher percentage of idle time (red),
relative to flop-intensive dense tile

n Scales less efficiently relative to itself
n However, for a acceptable accuracy tolerance, it is

superior in time and energy

18.1 s

1.8 s

TLR (complex) LU factorization

DAG for 4x4
LU factorization

time →
concurrency
↓

Conventional tile LU factorization
(shown with complex data types, left)
is converted to a TLR LU factorization
with replacement of off diagonal blocks
with low rank compressed

Compress (once) on the fly, solve many with HLU

Compression overhead

per RHS solve time

Exterior Helmholtz problem: acoustic scattering BIE

Al-Harthi, Alomairy, Akbudak, Chen, Ltaief, Bagci & K., Solving Acoustic Boundary Integral Equations
using High Performance Tile Low Rank LU Factorization, Proceedings of ISC High Performance 2020

Rank distribution challenges
with 3D exponential kernels

n51
Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

The simple exponential kernel:

𝐶 𝑟; ℓ = 𝑒𝑥𝑝(−
𝑟
ℓ
)

is suited for rough correlations
such as the variation of wind
speed or temperature with
altitude, and leads to wide
rank disparities

initial ranks
following

Morton
ordering of 3D

field with
N=1.08M and

B=2700
for matrix of

400 x 400 tiles

final ranks
following
Cholesky

factorization

rank
variations

before and
after

factorization

ratio of 50 in rank!

ratio of 500 in rank!

small→smaller, large→larger

Rank distribution challenges
with 3D exponential kernels

n52

Threshold for treating an individual data-sparse tile as dense is relatively low
(effectively about 15% of tile size)
May be lower considering distribution of ranks

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

Ratio of rank to tile size with matrix size
1.08M; rank is a mathematical object;
tile size is an algorithmic parameter

Time and annotated flop rates for low rank
GEMM and dense GEMM (48 GF/s) for tiles size
2700, with ratios & threshold, as function of rank

NB: ratios in log scale

Dynamic data structure adaption:
treat near-diagonal high-rank tiles as fully dense

n53

Data layout Compute kernels Data flow

First, second and third panel factorization & update steps
P - POTRF, T - TRSM, S - SYRK, G – GEMM
Upper color: within tile band adaptively preserved as
dense
Lower color: handled as low rank tile

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

Sensitivity to tile size

n54

Auto-tuning is available based on a starting point for tile size B = 𝑵

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

Dense tile bandsize auto-tuning

n55

Time to
Solution

Auto-tuning
time on 512
nodes

Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 3D
Data-sparse Matrix Problems. IPDPS (IEEE), 2021

Boxes indicate
bandsize range
in which TLR and
dense flops for
all GEMM and
TRSM are within
a small range
around unity

Time spent
autotuning for
bandsize is about
0.1% of cost of
solution

Memory reduction & load imbalance

n56

Memory reduction Imbalance idle times on 16 nodes

Even after thresholding high-rank off-diagonal tiles as dense, a wide
distribution of smaller ranks remains.
Memory allocations per tile are reduced to those actually needed with
major reduction (up to 44x) in band adaptive TLR relative to earlier TLR
versions.
Dynamic runtime system deals with tile load variations gracefully.

Comparison with prior state-of-the-art

n57

For exponential kernel matrix of N = 2.16M on 256 nodes, new TLR
optimizations to account for rank variation save factor of 5x to 7.5x
across a range of relevant sizes for geospatial environmental statistics

Q. Cao, Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief, D. Keyes, and J. Dongarra, Extreme-scale Task-based
Cholesky Factorization Toward Climate and Weather Prediction Applications, PASC, 2020 (ACM)

5.24x
speedup

Tile release time to the runtime system (last tile is end of computation)

Sensitivity to accuracy thresholds

n58

N=2.16M bandsize
annotated

Effect of accuracy requirements on 512 nodes
Earlier results were for 10-9; here are three looser tolerances

Hierarchical Computations on
Manycore Architectures: HiCMA*

* appearing one thesis at a time at https://github.com/ecrc

Conclusions, recapped
n With controllable trade-offs, many linear algebra

operations adapt well to high performance on emerging
architectures through
§ higher residence on the memory hierarchy
§ greater SIMT/SIMD-style concurrency
§ reduced synchronization and communication

n Rank-structured matrices, based on uniform tiles or
hierarchical subdivision play a major role

n Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

n Many applications are benefiting
§ by orders of magnitude in memory footprint & runtime

Iconographic conclusion

today tomorrow

Reference

Akbudak, Ltaief,
Mikhalev, Charara,

Esposito & K.

Lecture Notes in
Computer Science

11014:811
(2018)

Reference

Cao, Pei, Akbudak,
Mikhalev, Bosilca,

Ltaief, K. & Dongarra

Platform for Advanced
Scientific Computing

Conf. (ACM)
(2020)

Reference

Cao, Pei, Akbudak,
Bosilca, Ltaief,
K. & Dongarra

Int. Par. & Distr.
Proc. Symp. (IEEE)

(2021, to appear)

Reference

Al-Harthi, Alomairy,
Akbudak, Chen,

Ltaief, Bagci & K.

Lecture Notes in
Computer Science

12151:209
(2020)

Very special thanks to…

Hatem Ltaief
Principal Research Scientist

Extreme Computing Research Center
KAUST

Closing haiku

By low rank’s blessing?

Curse of dimension,

Can you be mitigated

Thank you!

اركش

david.keyes@kaust.edu.sa

	Lecture 02: Tile Low-rank Methods and Applications (w/review)
	Citation

	SLS_keyes_lecture2

