ON BESSEL-RIESZ OPERATORS

Rubén A. Cerutti ${ }^{(1)}$

ABSTRACT: We consider a class of conv olution operator denoted $W^{\alpha} \varphi$ obtained by convolution with a generalized function expressible in terms of the Bessel function on first kind J_{γ} with argument the distribution $(P \pm i 0)$. We study some elementary properties of the operator $W^{\alpha} \varphi$ like the semigroup property $W^{\alpha} W^{\beta} \varphi=W^{\alpha+\beta} \varphi$; and $\left(\square+m^{2}\right) W^{\alpha} \varphi=W^{\alpha-2}$ for $\alpha>2$ where $\left(\square+m^{2}\right)$ is the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator $W^{\alpha} \varphi$ may be consider as a negative power of the Klein-Gordon operator

Key words: Bessel-Riesz potentials, fractional derivative, hypersingular integral

I. Introduction

This article deals with certain kind of potential operator defined as convolution with the generalized function $W_{\alpha}(P \pm i 0, m, n)$ depending on a complex parameter α and a real non negative one m.

The definitory formulae and several properties of the family $\left\{W_{\alpha}(P \pm i 0, m, n)\right\}_{\alpha} ; \alpha \in C$ have been introduced and studied by Trione (see [14]) specially the important followings two:
a) $W_{\alpha} * W_{\beta}=W_{\alpha+\beta}, \alpha$ and β complex numbers, and
b) $W_{-2 k}$ is a fundamental solution of the k-times iterated Klein-Gordon operator

Writing $W_{\alpha}(P \pm i 0, m, n)$ as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders $R_{\alpha}(P \pm i 0)$ which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel $W_{\alpha}(P \pm i 0, m, n)$.

We prove the composition formula $W^{\alpha} * W^{\beta} \varphi=W^{\alpha+\beta} \varphi$ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way.

Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the W^{α} Bessel-Riesz operator.

Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator.

[^0]
II. PRELIMINARY DEFINITIONS AND RESULTS

Let $t=\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ be a point of the n-dimensional space R^{n}. Let $P=P(t)$ be the quadratic non degenerate form in n variables

$$
\begin{equation*}
P=P(t)=t_{1}^{2}+\cdots+t_{p}^{2}-t_{p+1}^{2}-\cdots-t_{p+q}^{2} \tag{II.1}
\end{equation*}
$$

where $p+q=n$
Gelfand (cf.[4]) introduced the $(P \pm i 0)^{\lambda}$ distributions as the following limit

$$
\begin{equation*}
(P \pm i 0)^{\lambda}=\lim _{\varepsilon \rightarrow 0}\left(P \pm i \varepsilon|t|^{2}\right)^{\lambda} \tag{II.2}
\end{equation*}
$$

where $\varepsilon>0,|t|^{2}=t_{1}^{2}+\cdots+t_{n}^{2}$ and λ is a complex number.
Frequently we use an equivalent expression given by

$$
\begin{equation*}
(P \pm i 0)^{\lambda}=P^{\lambda}+e^{ \pm i \pi \lambda} P^{\lambda} \tag{II.3}
\end{equation*}
$$

where the generalized functions P_{+}^{λ} and P_{-}^{λ} are defined by

$$
P_{+}^{\lambda}=\left\{\begin{array}{cl}
P^{\lambda} & \text { if } P \geq 0 \\
0 & \text { if } P<0
\end{array}\right.
$$

and

$$
P_{-}^{\lambda}=\left\{\begin{array}{cl}
0 & \text { if } P>0 \\
|P|^{\lambda} & \text { if } P \leq 0
\end{array}\right.
$$

It is well known (cf.[4]) the Fourier transform of generalized functions associated with a quadratic form and in the particular case of $(P \pm i 0)^{\lambda}$ it results

$$
\begin{equation*}
F\left[(P \pm i 0)^{\lambda}\right]=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{R^{n}} e^{-i(t, y)}(P \pm i 0)^{\lambda} d t=C_{(\lambda, q)} \cdot(Q \mp i 0)^{-\lambda-\frac{n}{2}} \tag{II.4}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{(\lambda, q)}=\frac{e^{ \pm \frac{n}{2} q} 2^{2 \lambda+n} \pi^{\frac{n}{2}} \Gamma\left(\lambda+\frac{n}{2}\right)}{(2 \pi)^{\frac{n}{2}} \Gamma(-\lambda)} \tag{II.5}
\end{equation*}
$$

and $Q=Q(y)=y_{1}^{2}+\cdots+y_{p}^{2}-y_{p+1}^{2}-\cdots-y_{p+q}^{2} ;\langle t, y\rangle=\sum_{i=1}^{n} t_{i} y_{i}$.
where m is a positive real number; $J_{\gamma}(z)$ the Bessel function of first kind

$$
J_{\gamma}(z)=\sum_{p=0}^{\infty} \frac{(-1)^{P}\left(\frac{z}{2}\right)^{\gamma+2 p}}{p!\Gamma(p+\gamma+1)}
$$

and $\Gamma(z)$ is the gamma function

We start by observing that the family $\left\{W_{\alpha}(P \pm i 0, m, n)\right\}_{\alpha} ; \alpha \in C$ is a certain kind of generalization of the family of retarded functions supported in the light cone introduced by Marcel Riesz (cf.[7]) and by L. Schwartz (cf. [11]) and studied by Trione (cf. [5]) defined by

$$
W_{\alpha}(u, m)=\left\{\begin{array}{cl}
\frac{\left(m^{-2} u\right)^{\frac{\alpha+n}{4}}}{\pi^{\frac{n+2}{2}} 2^{\frac{\alpha+n-2}{2}} \Gamma\left(\frac{\alpha}{2}\right)} J_{\frac{\alpha-n}{2}\left[\left(m^{2} u\right)^{\frac{1}{2}}\right]} \begin{array}{c}
\text { if } t \in \Gamma_{+} \\
0
\end{array} & \text { if } t \notin \Gamma_{+} \tag{II.7}
\end{array}\right.
$$

where $u=t_{1}^{2}-t_{2}^{2}-\cdots-t_{n}^{2}$ and Γ_{+}is the cone

$$
\Gamma_{+}=\left\{t \in R^{n}: t_{1}>0, u>0\right\}
$$

$W_{\alpha}(u, m)$ that is an ordinary function if $\operatorname{Re} \alpha \geq n$ is a distributional entire function on α (cf [5]).

If in (II.7) we replace $J_{\frac{\alpha-n}{2}}$ by its Taylor series, when $m=0$ we obtain the ultrahyperbolic kernel due by Nozali (cf [6]), given by

$$
\begin{equation*}
\Phi_{\alpha}=\frac{\Gamma_{+}^{\alpha-n}}{C_{n}(\alpha)} \tag{II.8}
\end{equation*}
$$

where

$$
\Gamma_{+}^{\alpha-n}=\left(t_{1}^{2}+\cdots+t_{p}^{2}-t_{p+1}^{2}-\cdots-t_{p+q}^{2}\right)^{\frac{\alpha-n}{2}} ; t_{1}>0 ; p+q=n
$$

and

$$
\begin{equation*}
C_{n}(\alpha)=\frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{2-\alpha-n}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)} \tag{II.9}
\end{equation*}
$$

By putting $p=1$ in (II.8) and (II.9) we obtain inmediately

$$
R_{\alpha}(u)=\left\{\begin{array}{cl}
\frac{u^{\frac{\alpha-n}{2}}}{H_{m}(\alpha)} & \text { if } t \in \Gamma_{+} \tag{II.10}\\
0 & \text { if } t \notin \Gamma_{+}
\end{array}\right.
$$

where

$$
H_{m}(\alpha)=2^{\alpha-1} \pi^{-1+\frac{n}{2}} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha+2-n}{2}\right)
$$

$R_{\alpha}(u)$ is the hyperbolic kernel introduced by Riesz.
By putting $n=1$ in $R_{\alpha}(u)$, and taking into account the Legendre's duplication formula of $\Gamma(z)$:

$$
\Gamma(2 z)=2^{2 z-1} \pi^{\frac{1}{2}} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)
$$

we get

$$
I_{\alpha}=\left\{\begin{array}{cc}
\frac{t^{\frac{\alpha-1}{2}}}{\Gamma(\alpha)} & \text { if } t>0 \tag{II.11}\\
0 & \text { if } t<0
\end{array}\right.
$$

Or, equivalently $I_{\alpha}=\frac{t_{+}^{\frac{\alpha-1}{2}}}{\Gamma(\alpha)}$, where $t_{+}^{\frac{\alpha-1}{2}}$ is the distribution defined by

$$
t_{+}^{\lambda}=\left\{\begin{array}{cl}
t^{\lambda} & \text { if } t>0 \tag{II.12}\\
0 & \text { if } t<0
\end{array}\right.
$$

(cf. [4]). I_{α} is precisely the singular kernel of Riemann-Liouville studied by Riesz (cf. [7]) and also by Trione [12].

Definition 1. Let φ be a sufficiently good function, we introduce the convolution type operator $W^{\alpha} \varphi$

$$
\begin{equation*}
W^{\alpha} \varphi=W_{\alpha}(P \pm i 0, m, n) * \varphi \tag{II.13}
\end{equation*}
$$

which is defined in Fourier transform by the following equality

$$
\begin{equation*}
\mathfrak{I}\left|W^{\alpha} \varphi\right|=\mathfrak{I}\left[W_{\alpha}\right] \cdot \mathfrak{I}[\varphi] \tag{II.14}
\end{equation*}
$$

Because the function $W_{\alpha}(P \pm i 0, m, n)$ is expressed in terms of Bessel functions of first kind and that when $m=0$ it reduces at the Marcel Riesz ultrahyperbolic kernel $R_{\alpha}(P \pm i 0)(\mathrm{cf}[14])$ is why the operator (II.13) is called the Bessel-Riesz potential.

From the definitory formula of $J_{\gamma}(z)$, and putting by definition according Trione (cf. [14])

$$
\begin{align*}
& \binom{-\frac{\alpha}{2}}{\lambda} \Gamma\left(\frac{\alpha}{2}\right)=(-1)^{\gamma} \frac{1}{\gamma!} \Gamma\left(\frac{\alpha}{2}+\gamma\right) \tag{II.15}\\
& \text { and } H_{n}(\alpha+2 \gamma)=\frac{2^{\alpha+2 \gamma} \pi^{\frac{n}{2}} \Gamma\left(\frac{\alpha+2 \gamma}{2}\right)}{\Gamma\left(\frac{n-\alpha-2 \gamma}{2}\right)}
\end{align*}
$$

it results that the generalized function $W_{\alpha}(P \pm i 0, m, n)$ may be expressed as an infinite linear combination of the ultrahyperbolic causal (anticausal) Riesz kernel

$$
\begin{equation*}
W_{\alpha}(P \pm i 0, m, n)=\sum_{\gamma=0}^{\infty}\binom{-\frac{\alpha}{2}}{\gamma} m^{2 \gamma} \frac{(P \pm i 0)^{\frac{\alpha-n+2 \gamma}{2}}}{H_{n}(\alpha+2 \gamma)} \tag{II.16}
\end{equation*}
$$

This formula allow us to write the Fourier transform of W_{α} as

$$
\begin{equation*}
\mathfrak{I}\left[W^{\alpha} \varphi\right]=\sum_{\gamma=0}^{\infty}\binom{-\frac{\alpha}{2}}{\gamma} m^{2 \gamma}(Q \mp i 0)^{-\frac{\alpha+2 \gamma}{2}} \mathfrak{I}[\varphi] \tag{II.17}
\end{equation*}
$$

Taking into account (II.13) and (II.16) the operator $W^{\alpha} \varphi$ has the form

$$
\begin{equation*}
W^{\alpha} \varphi=\sum_{\gamma=0}^{\infty}\binom{-\frac{\alpha}{2}}{\gamma} m^{2 \gamma}\left[\int_{K_{+}} P^{\frac{\alpha-n+2 \gamma}{2}} \varphi(x-t) d t+e^{\frac{i \pi(\alpha-n+2 \gamma)}{2}} \int_{K_{-}}|P|^{\frac{\alpha-n+2 \gamma}{2}} \varphi(x-t) d t\right] \tag{II.18}
\end{equation*}
$$

where K_{+}and K_{-}denote the cones

$$
\begin{aligned}
& K_{+}=\left\{t \in R^{n}: P(t) \geq 0\right\}, \\
& K_{-}=\left\{t \in R^{n}: P(t) \leq 0\right\} .
\end{aligned}
$$

The integral in (II.18) converges if $\alpha>n-2 \gamma$ and in the case $\alpha \leq n-2 \gamma$ it admits an analytical continuation respecto to α (cf. [10]).

III. The generalized Bessel-Riesz derivative

To obtain an inverse operator of W^{α}, which is indicated by $\left(W^{\alpha}\right)^{-1}$, such that $f=W^{\alpha} \varphi$ it results that $\varphi=\left(W^{\alpha}\right)^{-1} f$, we introduce an operator $\left(W^{\alpha}\right)^{-1}$ that is a linear combination of hypersingular integrals of orders $\alpha-2 \gamma, \gamma=0,1, \ldots,\left[\frac{\alpha}{2}\right]$ plus an integral operator

$$
\begin{equation*}
\left(W^{\alpha}\right)^{-1}(f)=\sum_{\gamma=0}^{\left[\frac{\alpha}{2}\right]}\binom{\frac{\alpha}{2}}{\gamma} \frac{m^{2 \gamma}}{d_{n, l}(\alpha-2 \gamma)} T_{l, e}^{\alpha-2 \gamma} f+\sum_{\gamma=\frac{\alpha}{2}+1}^{\infty}\binom{\frac{\alpha}{2}}{\gamma} m^{2 \gamma} \frac{R_{-\alpha+2 \gamma}}{H(-\alpha+2 \gamma)} * f(\tag{III.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(T_{l, \varepsilon, \gamma}^{\alpha-2 \gamma} f\right)(x)=\int_{R^{n}}\left(P+i \varepsilon|t|^{2}\right)^{-\frac{n+\alpha-2 \gamma}{2}}\left\{\left(\Delta_{t}^{l} f\right)\right\} d t \tag{III.2}
\end{equation*}
$$

where $\left(\Delta_{t}^{l} f\right)(x)=\sum_{k=0}^{\infty}\binom{l}{k}(-1)^{k} f(x-k t)$ is the difference of order l of the function f at the point x with interval t. The operator $T_{l, \varepsilon, \gamma}^{\alpha-2 \gamma}$ shall be defined as "the hypersingular integral in differences" and it is a causal analogue of the integral definied by Samko (cf. [10]) for the elliptic case, and by Rubin ([8]) for the Bessel potentials and by us (cf. [1]) for causal Bessel potentials and the same for causal Riesz potentials (cf. [2] and [3]). And its Fourier transform is

$$
\begin{equation*}
\mathfrak{I}\left[T_{l,,, \gamma}^{\alpha-2 \gamma} f\right](\xi)=d_{n, l}(\alpha-2 \gamma)\left(Q \mp i \varepsilon|\xi|^{2}\right)^{\alpha-2 \gamma} \mathfrak{J}[f](\xi) \tag{III.3}
\end{equation*}
$$

where the constant $d_{n, l}(\alpha-2 \gamma)$ is given by

$$
\begin{gather*}
d_{n, l}(\alpha-2 \gamma)= \\
=\left\{\begin{array}{cc}
\frac{\pi^{\frac{n}{2}+1} e^{i \frac{\pi}{2} q} A_{l}(\alpha-2 \gamma)}{2^{\alpha-2 \gamma} \Gamma\left(1+\frac{\alpha-2 \gamma}{2}\right) \Gamma\left(\frac{n+\alpha-2 \gamma}{2}\right) \operatorname{sen} \frac{\pi}{2}(\alpha-2 \gamma)} & \text { if } \alpha-2 \gamma \neq 2,4,6 \ldots \\
\frac{(-1)^{\alpha-2 \gamma} \pi^{\frac{n}{2}} 2^{1-(\alpha-2 \gamma)} e^{i \frac{\pi}{2} q}}{\Gamma\left(1+\frac{\alpha-2 \gamma}{2}\right) \Gamma\left(\frac{n+\alpha-2 \gamma}{2}\right)} \frac{d}{d \alpha} A_{l}(\alpha-2 \gamma) & \text { if } \alpha-2 \gamma=2.4 .6 \ldots
\end{array}\right. \tag{III.4}
\end{gather*}
$$

This operator is such that it Fourier transform is.

$$
\begin{gathered}
\mathfrak{I}\left[\left(W^{\alpha}\right)^{-1}(f)\right]=\sum_{\gamma=0}^{\left[\frac{\alpha}{2}\right]}\binom{\frac{\alpha}{2}}{\gamma} m^{2 \gamma}(Q-i 0)^{\frac{n}{2}-\gamma} \mathfrak{I}[f]+ \\
+\sum_{\left.\gamma=\frac{\alpha}{2}\right]+1}^{\infty}\binom{\frac{n}{2}}{\gamma} m^{2 \gamma}(Q-i 0)^{\frac{\alpha}{2}-\gamma} \mathfrak{J}[f]=\sum_{\gamma=0}^{\infty}\binom{\frac{n}{2}}{\gamma} m^{2 \gamma}(Q-i 0)^{\frac{\alpha}{2}-\gamma} \mathfrak{J}[f]
\end{gathered}
$$

and taking into account that

$$
\begin{equation*}
\mathfrak{I}\left[W_{\alpha}(P \pm i 0, m, n)\right]=\sum_{\gamma=0}^{\infty}\binom{-\frac{n}{2}}{\gamma} m^{2 \gamma}(Q \mp i 0)^{-\frac{\alpha+2 \gamma}{2}} \tag{III.5}
\end{equation*}
$$

it result

$$
\mathfrak{I}\left[\left(W^{\alpha}\right)^{-1}(f)\right]=\sum_{\gamma=0}^{\infty}\binom{\frac{a}{2}}{\gamma} m^{2 \gamma}(Q-i 0)^{\frac{\alpha}{2}-\gamma}=\mathfrak{I}\left[W_{-\alpha} * f\right]
$$

Analogously to the Riesz derivative and causal Riesz derivative (cf. [9], [3] and [2]) and the causal Bessel derivative (cf. [1]) we define the generalized Bessel-Riesz derivative of order α of a function $f \in S$ when $\alpha \neq 1,3,5, \ldots$ by

$$
\begin{equation*}
\mathfrak{I}\left[D^{\alpha} f\right](\xi)=\sum_{\gamma=0}^{\infty}\binom{\frac{a}{2}}{\gamma} m^{2 \gamma}(Q \mp i 0)^{\frac{\alpha-2 \gamma}{2}} \mathfrak{J}[f](\xi) \tag{III.6}
\end{equation*}
$$

IV. Inversion of Bessel-Riesz potentials defined on $S^{\prime}\left(R^{n}\right)$.

In order to extend the inversion to Bessel-Riesz potentials defined on temperate distributions we need the relation between the derivative of certain order β and the Bessel-Riesz potential of order α of a function φ belonging to the space S. Let the operator $D^{\beta} W^{\alpha} \varphi$. To obtain an expression of this last operation we start by evaluate its Fourier transform.

$$
\begin{aligned}
& \mathfrak{J}\left[D^{\beta} W^{\alpha} \varphi\right]=\sum_{\gamma \geq 0}\binom{\frac{\beta}{2}}{\gamma} m^{2 \gamma}(Q-i 0)^{\frac{\beta-2 \gamma}{2}} \mathfrak{J}\left[W^{\alpha} \varphi\right]= \\
& \quad=\sum_{\gamma \geq 0}\binom{\frac{\beta}{2}}{\gamma} m^{2 \gamma}(Q-i 0)^{\frac{\beta-2 \gamma}{2}} \cdot \sum_{n \geq 0}\binom{-\frac{\alpha}{2}}{\gamma} m^{2 n}(Q \mp i 0)^{-\frac{\alpha+2 n}{2}} \mathfrak{J}[\varphi]= \\
& \quad=\sum_{\gamma \geq 0} \sum_{j=0}\binom{\frac{\beta}{2}}{j}\binom{-\frac{\alpha}{2}}{\gamma-j} m^{2 \gamma}(Q-i 0)^{\frac{\beta-\alpha-2 \gamma}{2}} \mathfrak{J}[\varphi]= \\
& \quad=\sum_{\gamma \geq 0}\binom{\frac{\beta-\alpha}{2}}{\gamma} m^{2 \gamma}(Q-i 0)^{\frac{\beta-\alpha-2 \gamma}{2}} \mathfrak{J}[\varphi]=
\end{aligned}
$$

From (III.5) making the change $\alpha \rightarrow \alpha-\beta$, we obtain

$$
\left.\mathfrak{I}\left[W_{\alpha-\beta} * \varphi\right]=\mathfrak{I} \mid W^{\alpha-\beta} \varphi\right]
$$

And by the uniqueness of the Fourier transform

$$
D^{\beta} W^{\alpha} \varphi=W^{\alpha-\beta} \varphi
$$

Thus, we have proved the following:
Theorem 2. Let α and β be real positive numbers, $\beta \leq \alpha$. Then is valid the following result

$$
D^{\beta} W^{\alpha} \varphi=W^{\alpha-\beta} \varphi
$$

Corollary: As a particular case when $\alpha=\beta, D^{\beta} W^{\alpha} \varphi=\varphi$.
In fact: From the last formulae, putting $\beta=\alpha$

$$
D^{\alpha} W^{\alpha} \varphi=W^{\alpha-\alpha} \varphi=W^{0} \varphi=\delta * \varphi=\varphi
$$

Now we can extend the Bessel-Riesz operator to temperate distributions.
Definition 3. Let T be a distribution belonging to S^{\prime}, and $\alpha>0$. Then Bessel-Riesz potential $W^{\alpha} T$ is definied by the relation:

$$
\begin{equation*}
\left(W^{\alpha} T, \varphi\right)=\left(T, W^{\alpha} \varphi\right) \tag{IV.1}
\end{equation*}
$$

It is clear that (IV.1) defines a functional in S^{\prime}.
For temperates distributions the following result holds.
Theorem 4. Let T_{1} and T_{2} be temperate distributions and $\alpha>0$. Then the two following assertions are equivalent

1. $T_{1}=W^{\alpha} T_{2}$, and
2. $T_{2}=\lim _{\varepsilon \rightarrow 0} D_{\varepsilon}^{\alpha} T_{1}$

Proof. We begin by proving 1$) \Rightarrow 2$).

We have
$\lim _{\varepsilon \rightarrow 0}\left(D_{\varepsilon}^{\alpha} T_{1}, \varphi\right)=\lim _{\varepsilon \rightarrow 0}\left(T_{1}, D_{\varepsilon}^{\alpha} \varphi\right)=\lim _{\varepsilon \rightarrow 0}\left(W^{\alpha} T_{2}, D_{\varepsilon}^{\alpha} \varphi\right)=\lim _{\varepsilon \rightarrow 0}\left(T_{2}, W^{\alpha} D_{\varepsilon}^{\alpha} \varphi\right) \stackrel{(1)}{=}\left(T_{2}, \varphi\right)$
The identity (1) results from Corollary of Theorem 2.
Now we shall prove 2) $\Rightarrow 1$).
If $T_{2}=\lim _{\varepsilon \rightarrow 0} D_{\varepsilon}^{\alpha} T_{1}$, we have
$\left(W^{\alpha} T_{2}, \varphi\right)=\left(T_{2}, W^{\alpha} \varphi\right)=\lim _{\varepsilon \rightarrow 0}\left(D_{\varepsilon}^{\alpha} T_{1}, W^{\alpha} \varphi\right)=\lim _{\varepsilon \rightarrow 0}\left(T_{1}, D_{\varepsilon}^{\alpha} W^{\alpha} \varphi\right)=\left(T_{1}, \varphi\right)$
From (IV.2) and (IV.3) the theorem follows.
V. The Inverse operator $\left(W^{\alpha}\right)^{-1}$, For $\alpha=2 k, K=1,2, \ldots$ AS LINEAR COMBINATION of CAUSAL RIESZ DERIVATIVES

We begin by consider the binomial expansion of the distribution

$$
\begin{equation*}
\left(m^{2}+P \pm i 0\right)^{k}=\sum_{j=0}^{k}\binom{k}{j}\left(m^{2}\right)^{k-j}(P \pm i 0)^{j} \tag{V.1}
\end{equation*}
$$

and remembering that

$$
\begin{align*}
& \left(m^{2}+P \pm i 0\right)^{k}=\left(m^{2}+P-i 0\right)^{k}=\left(m^{2}+P\right)^{k}, \text { and } \\
& (P \pm i 0)^{k}=(P-i 0)^{k}=(P)^{k} \quad \text { (cf. [?]) } \tag{V.2}
\end{align*}
$$

result that

$$
\begin{equation*}
\left(m^{2}+P\right)^{k}=\sum_{j=0}^{k}\binom{k}{j}\left(m^{2}\right)^{k-j} P^{j} \tag{V.3}
\end{equation*}
$$

Taking into account the inversion theorem for Bessel-Riesz potentials we have

$$
\begin{equation*}
\mathfrak{I}\left[\left(W^{2 k}\right)^{-1} f\right]=\mathfrak{I}\left[D^{2 k} f\right]=\mathfrak{I}\left[\left(m^{2}+\square\right)^{k} f\right]=\left(m^{2}+Q\right)^{k} \mathfrak{I}[f] \tag{V.4}
\end{equation*}
$$

Putting (V.4) in (V.3)

$$
\begin{equation*}
\mathfrak{I}\left[\left(W^{2 k}\right)^{-1} f\right]=\sum_{j=0}^{k}\binom{k}{j}\left(m^{2}\right)^{k-j}(Q-i 0)^{j} \mathfrak{I}[f] \tag{V.5}
\end{equation*}
$$

The Fourier transform of the causal Riesz derivative is given by

$$
\begin{equation*}
\mathfrak{I}\left[D^{\alpha} f\right]=(Q-i 0)^{\frac{\alpha}{2}} \mathfrak{I}[f] \text { (cf. [2]) } \tag{V.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{I}\left[\left(W^{2 k}\right)^{-1} f\right]=\sum_{j=0}^{k}\binom{k}{j}\left(m^{2}\right)^{k-j} \mathfrak{I}\left[D^{2 j} f\right] \tag{V.7}
\end{equation*}
$$

and it results

$$
\begin{equation*}
\left(W^{2 k}\right)^{-1} f=\sum_{j=0}^{k}\binom{k}{j}\left(m^{2}\right)^{k-j} \mathfrak{I}\left[D^{2 j} f\right] \tag{V.8}
\end{equation*}
$$

Moreover, taking into account that for causal Riesz derivative of order $2 j, j$ a non negative integer we have

$$
\begin{equation*}
\mathfrak{I}\left[D^{2 j} f\right]=\mathfrak{I}\left[\square^{j} f\right] \text { (cf. [2]) } \tag{V.9}
\end{equation*}
$$

where $€$ denotes the ultrahyperbolic differential operator

$$
€=\frac{\partial^{2}}{\partial t_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial t_{p}^{2}}-\frac{\partial^{2}}{\partial t_{p+1}^{2}}-\cdots-\frac{\partial^{2}}{\partial t_{p+q}^{2}}
$$

Then from (V.8) we arrive at

$$
\begin{equation*}
\left(W^{2 k}\right)^{-1}=\sum_{j=0}^{k}\binom{k}{j}\left(m^{2}\right)^{k-j} \square^{j} f \tag{V.10}
\end{equation*}
$$

This last formula is analogue to the following due to Samko obtained for the elliptic Riesz potential (cf. [9])

$$
\begin{equation*}
\left(B^{\alpha}\right)^{-1}=\sum_{j=0}^{\frac{\alpha}{2}}\binom{\frac{\alpha}{2}}{j}(\Delta)^{j} f \tag{V.11}
\end{equation*}
$$

where $\left(B^{\alpha}\right)^{-1}$ is the inverse operator of the Bessel operator of order α and Δ denote the Laplacian operator.

VI. Relations between the Bessel-Riesz operators and the Klein-Gordon OPERATOR

If $K^{l}=\left\{\square+m^{2}\right\}^{l}$ designates the ultrahyperbolic Klein-Gordon differential operator iterated l times, it was proved (cf. [14]) that $W_{2 l}(P \pm i o, m, n)$ is an elementary solution, i.e.

$$
\begin{equation*}
\left\{\square+m^{2}\right\}^{l} W_{2 l}(P \pm i o, m, n)=\delta \tag{VI.1}
\end{equation*}
$$

From this fact it may be proved the following
Theorem 5. Let α be a real number, $\alpha \geq 2 l ; l=1,2, \ldots$ Let K^{l} be the Klein-Gordon operator iterated l times and let $W^{\alpha} \varphi$ be the Bessel-Riesz operator of order α and φ; then

$$
K^{l}\left\{W^{\alpha} \varphi\right\}=W^{\alpha-2 l} \varphi
$$

Proof. By definition (II.13) we have

$$
\begin{equation*}
W^{\alpha-2 l} \varphi=W_{\alpha-2 l}(P \pm i o, m, n) * \varphi \tag{VI.2}
\end{equation*}
$$

From (II.13), (IV.1) we obtain

$$
\begin{equation*}
W^{\alpha-2 l} \varphi=W_{\alpha-2 l} * \varphi=W_{\alpha} * W_{-2 l} * \varphi=W_{\alpha} * K^{l} \varphi=W_{\alpha}\left\{K^{l} \varphi\right\} \tag{VI.3}
\end{equation*}
$$

and analogously

$$
\begin{equation*}
W^{\alpha-2 l} \varphi=K^{l}\left\{W^{\alpha} \varphi\right\} \tag{VI.4}
\end{equation*}
$$

Then, from (VI.3) and (VI.4) it results

$$
\begin{equation*}
K^{l}\left\{W^{\alpha} \varphi\right\}=W^{\alpha-2 l} \varphi \tag{VI.5}
\end{equation*}
$$

Theorem 6. The same hypothesis of Theorem 5. Then

$$
W^{\alpha} K^{l} \varphi=W^{\alpha-2 l} \varphi
$$

Proof. The proof is analogue to the proof of Theorem 5.
In this paragraph we obtain an expression that will be consider a negative fractional power of the Klein-Gordon operator. The fractional power of a differential operator here is interpreted in the same way that Samko (cf. [10])

The Klein-Gordon operator is given by

$$
\left(\square+m^{2}\right)=\left\{\frac{\partial^{2}}{\partial t_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial t_{p}^{2}}-\frac{\partial^{2}}{\partial t_{p+1}^{2}}-\cdots-\frac{\partial^{2}}{\partial t_{p+q}^{2}}+m^{2}\right\}
$$

From the fact that the application of the operator is reduce by Fourier transform to the following form

$$
\begin{equation*}
\mathfrak{I}\left[-\left(\square+m^{2}\right) \varphi\right]=\left(m^{2}+P(t)\right) \mathfrak{I}[\varphi] \tag{VI.6}
\end{equation*}
$$

i.e.: it is reduced to the multiplication by $m^{2}+P$, we introduce the fractional power of the Klein-Gordon operator as an operator which are defined in terms of Fourier transforms by means of multiplication by a fractional power of the $\left(m^{2}+P\right)$ generalized function.

From (VI.6) and (II.4) we may introduce an fractional power of the Klein-Gordon operator as

$$
\left[-\left(\square+m^{2}\right)\right]^{\alpha} \varphi=\mathfrak{I}^{-1}\left[\left(m^{2}+Q \mp i o\right)^{\alpha}\right] \mathfrak{J}[\varphi]
$$

Taking into account that the fractional power of the D'Alembertain is given by

$$
[-\square]^{\alpha} \varphi=\mathfrak{S}^{-1}\left|(Q \mp i o)^{\alpha}\right| \mathfrak{J}[\varphi] \text { (cf. [10]) }
$$

the formulae (II.17) may be written

$$
\begin{align*}
\mathfrak{I}\left[W^{\alpha} \varphi\right] & =\sum_{\gamma=0}^{\infty}\binom{-\frac{\alpha}{2}}{\gamma} m^{2 \gamma}(Q \mp i o)^{-\frac{\alpha+2 \gamma}{2}} \mathfrak{I}[\varphi] \\
& =\sum_{\gamma=0}^{\infty}\binom{-\frac{\alpha}{2}}{\gamma} m^{2 \gamma} \mathfrak{I}\left[\square^{-\frac{\alpha}{2}+\gamma} \varphi\right] \\
& =\mathfrak{I}\left[\left(\square+m^{2}\right)^{-\frac{\alpha}{2}} \varphi\right] \tag{VI.7.}
\end{align*}
$$

Then by the uniqueness of the Fourier transform we get

$$
\begin{equation*}
W^{\alpha} \varphi=\left(\square+m^{2}\right)^{-\frac{\alpha}{2}} \varphi \tag{VI.8}
\end{equation*}
$$

in S^{\prime} sense.

References

[1] Cerutti, R.A., 1995. The ultrahyperbolic Bessel operator: an inversion theorem. Mathematical and Computer Modelling. Vol. 22, $\mathrm{N}^{\circ} 2$.
[2] Cerutti, A.A. and S.E. Trione, 2000. Some properties of the generalized causal and anticausal Riesz potentials. Applied Math Letters, 13.
[3] Cerutti, R.A. and S.E. Trione, 1995. On the inversion of causal Riesz potentials. Trabajos de Matemática, 248. Instituto Argentino de Matemática, CONICET-UBA.
[4] Gelfand, I.M. and G.E. Shilov, 1964. Generalized functions, Vol. I, Academic Press, New York.
[5] Gonzalez Dominguez, A. y S.E. Trione, 1979. On the Laplace transforms of retarded Lorentzinvariant functions. Advances in Math. Vol. 31, $\mathrm{N}^{\circ} 1$.
[6] Nozaki, Y., 1964. On Riemann-Liouville integral of ultrahyperbolic type. Kodai Mathematical Seminar Reports, Vol. 6, $\mathrm{N}^{\circ} 2$.
[7] Riesz, M., 1949. L’integrale de Riemann-Liouville et le probléme de Cauchy. Acta Math., 81: 1-223.
[8] Rubin, B., 1987. Description and inversion of Bessel potentials by using hypersingular integrals with weighted differences. Differential Equations, 22, $\mathrm{N}^{\circ} 10: 1246-1256$.
[9] Samko, S.G., 1976. On spaces of Riesz potentials. Math. USSR, Izvestiya, Vol. 10, N ${ }^{\circ}$ 5: 1089-1117.
[10] Samko, S.; A. Kilbas and O. Marichevich, 1993. Fractional integrals and derivatives. Gordon and Breach.
[11] Schwartz, L., 1966. Théorie des distributions. Hermann, Paris.
[12] Trione, S.E., 1981. La integral de Rienmann-Liouville. Cursos y Seminarios de Matemática, Fasc. 29, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires.
[13] Trione, S.E., 1980. Distributional products, Cursos de Matemática N³. Instituto Argentino de Matemática, IAM, CONICET, Buenos Aires.
[14] Trione, S.E., 2000. On the elementary $(P \pm i 0)^{\lambda}$ ultrahyperbolic solution of the Klein-Gordon operator iterated k-times. Integral transforms and special functions, Vol. 9, $\mathrm{N}^{\circ} 2$.
[15] Prudnikov, A.; Y. Brychkov and O. Marichev, 1986. Integrals and Series. Elementary functions. Gordon and Breach, Londo.

[^0]: (1) Facultad de Ciencias Exactas y Nturales y Agrimensura - UNNE. Av. Libertad 5470 (3400) Corrientes, Argentina. E-mail: rcerutti@exa.unne.edu.ar

