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Background: Diabetic osteoporosis exhibits heterogeneity at the molecular

level. Ferroptosis, a controlled form of cell death brought on by a buildup of

lipid peroxidation, contributes to the onset and development of several illnesses.

The aim was to explore the molecular subtypes associated with ferroptosis in

diabetic osteoporosis at the molecular level and to further elucidate the potential

molecular mechanisms.

Methods: Integrating the CTD, GeneCards, FerrDb databases, and themicroarray

data of GSE35958, we identified ferroptosis-related genes (FRGs) associated with

diabetic osteoporosis. We applied unsupervised cluster analysis to divide the 42

osteoporosis samples from the GSE56814 microarray data into different

subclusters based on FRGs. Subsequently, FRGs associated with two

ferroptosis subclusters were obtained by combining database genes, module-

related genes of WGCNA, and differentially expressed genes (DEGs). Eventually,

the key genes from FRGs associated with diabetic osteoporosis were identified

using the least absolute shrinkage and selection operator (LASSO), Boruta,

support vector machine recursive feature elimination (SVM RFE), and extreme

gradient boosting (XGBoost) machine learning algorithms. Based on ROC curves

of external datasets (GSE56815), the model’s efficiency was examined.

Results: We identified 15 differentially expressed FRGs associated with diabetic

osteoporosis. In osteoporosis, two distinct molecular clusters related to

ferroptosis were found. The expression results and GSVA analysis indicated

that 15 FRGs exhibited significantly different biological functions and pathway

activities in the two ferroptosis subclusters. Therefore, we further identified 17

FRGs associated with diabetic osteoporosis between the two subclusters. The

results of the comprehensive analysis of 17 FRGs demonstrated that these genes

were heterogeneous and had a specific interaction between the two subclusters.
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Ultimately, the prediction model had a strong foundation and excellent AUC

values (0.84 for LASSO, 0.84 for SVM RFE, 0.82 for Boruta, and 0.81 for XGBoost).

IDH1 is a common gene to all four algorithms thus being identified as a key gene

with a high AUC value (AUC = 0.698).

Conclusions: As a ferroptosis regulator, IDH1 is able to distinguish between

distinct molecular subtypes of diabetic osteoporosis, which may offer fresh

perspectives on the pathogenesis of the disease’s clinical symptoms and

prognostic heterogeneity.
KEYWORDS

diabetic osteoporosis, ferroptosis, molecular clusters, machine learning,
prediction model
1 Introduction

According to the World Health Organization, diabetes

prevalence rates have been rising over the past few decades.

Currently, more than 463 million people worldwide have

diabetes, and by 2040, that figure is projected to double (1). Not

only is diabetes dangerous in its own right, but its numerous

complications also have a severe impact on patients. Diabetic

osteoporosis, as a chronic complication of the skeletal system, can

lead to major pain and skeletal deformities, as well as high levels of

disability and mortality, making the treatment and rehabilitation of

diabetic patients more difficult, not only affecting the quality of life

but also increasing the financial burden (2, 3). Unfortunately, less

attention has been paid to osteoporosis than to the complications

traditionally associated with diabetes such as macrovascular disease

and microvascular disease. Consequently, further exploration of the

pathogenesis and prevention of diabetic osteoporosis is warranted.

In contrast to apoptosis, necroptosis, and autophagy, ferroptosis

is a unique kind of iron-dependent programmed cell death that is

characterized by an excessive buildup of reactive oxygen species and

lipid peroxidation (4). Ferroptosis has been shown to be associated

with the pathophysiological mechanisms underlying several

illnesses and contribute to the onset and progression of such

diseases. A growing amount of research is now confirming that

ferroptosis may be a valuable research direction for the prevention

and treatment of osteoporosis (5–7). Nevertheless, the molecular

subtypes and processes relating to ferroptosis in diabetic

osteoporosis need to be elucidated. Thus, comprehending the

connection between FRGs and the development of diabetes

osteoporosis and locating molecular clusters based on FRGs helps

to understand the molecular heterogeneity of diabetic osteoporosis.

In the current work, we thoroughly identified and in-depth

investigated FRGs that differed in expression between healthy

people and patients with diabetic osteoporosis. 42 osteoporosis

patients were separated into two ferroptosis-associated subclusters

based on 15 distinct ferroptosis gene expression profiles linked to

diabetic osteoporosis, and the molecular interactions between the
02
two clusters were further investigated. In addition, utilizing multiple

machine learning methods, a robust prediction model was

established and validated by employing an external dataset. The

receiver operating characteristic (ROC) curve results demonstrated

that FRGs could be a prospective predictor of diabetic osteoporosis

subtypes. Figure 1 depicts the research flowchart for this study.
2 Materials and methods

2.1 Data source and processing

Through applying the R package of GEOquery, three microarray

datasets (GSE35958, GSE56814, and GSE56815) related to

osteoporosis were downloaded from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (8). The detailed

sample information for the three datasets is presented in Table 1.

Taking adj. P-Value < 0.05 and |log2fold change (FC)| ≥ 1 as the

cutoff value, the GSE35958 dataset was selected to be used for

differential gene expression analysis, which is based on the limma

package in the R software (9). We then screen diabetes-related genes

from two disease databases, including Comparative Toxicogenomics

Database (CTD) (http://ctdbase.org/) (10), and GeneCards (https://

www.genecards.org/) (11). In addition, ferroptosis-related genes

(FRGs) were obtained from the FerrDb database (http://

www.zhounan.org/ferrdb/) (12). Finally, 15 FRGs associated with

diabetic osteoporosis were obtained as the differentially expressed

genes (DEGs) between control and osteoporosis samples, and a

comprehensive analysis was performed.
2.2 Unsupervised clustering of FRGs
associated with diabetic osteoporosis

To further divide the osteoporosis into different subclusters

based on the expression level of the 15 FRGs associated with

diabetic osteoporosis, an unsupervised cluster analysis was
frontiersin.org
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performed to distinguish the 42 osteoporosis samples in the

GSE56814 dataset into distinct clusters by applying the R package

of ConsensusClusterPlus (13). The ideal cluster number was

confirmed using the CDF (cumulative distribution function) and

the area under the CDF curve.
2.3 Expression and gene set
variation analysis

We observed the expression of 15 FRGs associated with diabetic

osteoporosis in different subclusters by drawing the heatmap and violin

plot. We used GSVA, an unsupervised, non-parametric algorithm (14),

to assess the corresponding biological characteristics and pathway

activity of different ferroptosis subclusters of osteoporosis. The

“c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.v2022.1.Hs.symbols.gmt”

gene sets were utilized for the GSVA enrichment analysis, and

biological functions and pathways were judged to be substantially

enriched when the adjusted p-value was less than 0.05.
Frontiers in Endocrinology 03
2.4 Weighted gene co-expression
network analysis

We applied the R package of WGCNA to construct a co-

expression network of all genes in 42 osteoporosis samples (15).

Firstly, the gene expression matrix is loaded in the R software to

check for missing values and identify outliers. Secondly, we

construct a scale-free network to select a soft threshold value,

which is considered to be the parameter cutoff value for the

construction of the adjacency matrix. A network relationship is

usually defined by an adjacency matrix. Thirdly, we transformed the

adjacency matrix into a topology matrix allowing similarities

between genes to be represented at the expression and network

topology levels. To discover gene co-expression modules, block

module function, and module division analyses were lastly carried

out. The association between each module and osteoporosis was

determined, and the most pertinent modules were sorted based on

the Pearson correlation analysis results. The genes in these modules

were thought to be osteoporosis-related module genes.
TABLE 1 The detailed sample information for the three datasets.

Dataset Platform Count Osteoporosis Control

GSE35958 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 9 5 4

GSE56814 GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [transcript (gene) version] 82 42 40

GSE56815 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array 80 40 40
fron
FIGURE 1

The flow chart of the study design and analysis: DEGs analysis and subcluster identification; Comprehensive analysis; Machine learning and validation.
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2.5 Identifying DEGs of
ferroptosis subclusters

The R package of limma in Bioconductor was used to identify

DEGs by comparing the expression values between different

ferroptosis subclusters. The criteria were adj. P-Value < 0.05 and |

log2fold change (FC)| ≥ 1, and genes fulfilling this condition were

determined to be DEGs. The asymptotic volcano map and heatmap

displaying the DEGs were created using the ggplot2 and pheatmap

package, respectively.
2.6 Comprehensive analysis of FRGs
associated with diabetic osteoporosis of
ferroptosis subclusters

By integrating diabetes-related genes from the CTD and

GeneCards databases, FRGs from the FerrDb database, DEGs,

and osteoporosis-related module genes between ferroptosis

subclusters, altogether 17 FRGs associated with diabetic

osteoporosis of ferroptosis subclusters were obtained. We then

evaluate the efficiency of 17 genes using principal component

analysis (PCA). The ggcorrplot package and the ggplot2 package

were applied for the correlation analysis of 17 genes and expression

analysis in different subclusters. Enrichment analysis of gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways enrichment analysis were executed using

Metascape (https://metascape.org/gp/index.html), which is a

public database of gene annotation and analysis resources (16).
2.7 Robust prediction model created with a
variety of machine learning techniques

We applied the R packages “glmnet,” “caret,” “Boruta” and

“XGBoost” to build a machine learning model (17). The entire

dataset of 17 genes was subjected to the least absolute shrinkage and

selection operator (LASSO), Boruta, Support Vector Machine

Recursive Feature Elimination (SVM RFE), and extreme gradient

boosting (XGBoost) analyses to identify key genes that belong to

four predictive models. The 40 osteoporosis samples in GSE56815

were similarly divided into two different subclusters by 15 FRGs

associated with diabetic osteoporosis and used as an external dataset

to validate the efficiency of the four predictive models and key genes

by the ROC curves.
3 Results

3.1 Identification of FRGs specifically
expressed in diabetic osteoporosis

The expression profile data of 4 control samples and 5

osteoporosis samples in GSE35958 were normalized using the

“limma” package (Figures 2A, B). Based on the adj. P-Value <

0.05 and |log2fold change (FC)| ≥ 1, a total of 1102 DEGs, including
Frontiers in Endocrinology 04
677 up-regulated and 425 down-regulated genes, were identified by

differential analysis (Figure 2C). We obtained 3,8253 and 1,4818

diabetes-related genes from the CTD database and the GeneCards

database, respectively. The 259 ferroptosis-related genes (FRGs)

were obtained from the FerrDb database. We overlapped the DEGs,

diabetes-related genes, and ferroptosis-related genes, 15 overlapped

genes were obtained, namely FRGs associated with diabetic

osteoporosis, which was shown by the Venn diagram (Figure 2D).

The details of these genes were shown in Supplementary Table S1.

We can observe that the 15 FRGs associated with diabetic

osteoporosis are significantly differentially expressed between the

osteoporotic samples and the control samples by drawing a heat

map (Figure 2E). To clarify the relationship between the 15 FRGs,

Spearman correlation analysis was employed (Figure 2F). In

addition, the localization of the 15 FRGs on the chromosome is

shown in the loop graph (Figure 2G).
3.2 Identification of ferroptosis subclusters
in osteoporosis

We explored the ferroptosis subclusters in osteoporosis using

unsupervised clustering to analyze the expression of 15 FRGs

associated with diabetic osteoporosis in 42 osteoporotic samples.

The number of subtypes is most stable when k = 2 of the consensus

matrix, representing the two well-defined clusters (Figure 3A). As

shown in Figure 3B, the CDF curve for k = 2 has minimal

fluctuations in the consistency index range of 0-1.0. The CDF

diagram showed the relative change in area for variable values of

k (Figure 3C). Principal component analysis (PCA) further

supported the finding that the two clusters di ffered

considerably (Figure 3D).
3.3 Differences between
ferroptosis subclusters

To better understand the distinctions between the two ferroptosis

subclusters, we analyzed the expression differences and variations in

the pathway and biological activity of the 15 FRGs in the two

subclusters. The expression of 15 FRGs between the two

subclusters was apparently distinguished from that in the control

and osteoporotic samples (Figure 4A). Cluster1 exhibited higher

expression levels of FBXW7, G6PD, MAPK3, PML PGD, SLC1A5,

SQSTM1, TP53, and YWHAE, while Cluster1 exhibited higher

expression levels of ALOX5, BAP1, BRD4, CDKN1A, EGFR and

NNMT (Figure 4B). Biological function results from GSVA analysis

showed that nuclear protein containing complex, response to

wounding, and wound healing were downregulated in Cluster1,

while neurogenesis, cellular response to biotic stimulus, and

regulation of telomerase activity were upregulated in Cluster2

(Figure 4C). In addition, the enrichment pathway of Cluster1 is

mainly upregulated, such as in colorectal cancer, thyroid cancer, and

small cell lung cancer, while Cluster2 is mainly associated with the

downregulation pathway, like basal cell carcinoma, huntingtons

disease, and amyotrophic lateral sclerosis als (Figure 4D). The
frontiersin.org
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details of the GSVA analysis were shown in Supplementary Table S2.

These findings showed that there are notable differences between

ferroptosis clusters of osteoporosis patients in terms of the expression,

enriched pathways, and biological roles of 15 FRGs. For various

subclusters of ferroptosis, specific therapeutic approaches are needed.
3.4 Differential genes analysis between
ferroptosis clusters

The possible modules with the strongest connections to the

ferroptosis subclusters were constructed by the WGCNA algorithm,

based on the gene expression profiles. As shown in Figure 5A, the

sample with the serial number GSM1369716 was excluded as an

outlier. The ideal soft threshold for maintaining a network with

scale-free topology was determined to be 6 (R2 = 0.85) (Figure 5B).

Based on correlation clustering, the 15 signature modules were
Frontiers in Endocrinology 05
categorized and given various color labels (Figure 5C). The blue

module (4,591 genes) had the strongest connection with Cluster1

(R = -0.89) and Cluster2 (R = -0.89) among these modules

(Figure 5D). We observed a significant correlation between the blue

module and the module-related genes (cor = 0.91) (Figure 5E).

Subsequently, we identified the DEGs of the ferroptosis subclusters

using adj. P-Value < 0.05 and |log2fold change (FC)| ≥ 1 as the cutoff

value. 1,376 DEGs in total were found; 265 of them showed up-

regulation, whereas 1,111 showed down-regulation (Figures 5F–H).
3.5 Comprehensive analysis of FRGs
associated with diabetic osteoporosis of
ferroptosis subclusters

We obtained a total of 17 FRGs associated with diabetic

osteoporosis of ferroptosis subclusters, by combining genes from
D
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C

FIGURE 2

Differential FRGs screening in diabetic osteoporosis. (A, B) Normalization of gene expression data in samples, before (A) and after (B) normalization.
(C) Volcano plot of DEGs between osteoporosis and controls. (D) Venn plot showing 15 FRGs associated with diabetic osteoporosis by intersecting
the DEGs with diabetes-related genes and ferroptosis-related genes. (E) Representative heatmap of 15 FRGs associated with diabetic osteoporosis
between osteoporosis and controls. (F) Representative correlation plot of 15 FRGs associated with diabetic osteoporosis. Blue represents positive
correlation, and red represents negative correlation. The area of the pie chart represents the specific value of correlation coefficients. (G) The
location of 15 FRGs associated with diabetic osteoporosis on chromosomes.
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the database and dataset (Figure 6A). The details of genes were

shown in Supplementary Table S3. The PCA results revealed 17

FRGs associated with diabetic osteoporosis which effectively

distinguish between the two ferroptosis subclusters (Figure 6B).

In addition, the relationship network diagram of the 17 FRGs

associated with diabetic osteoporosis showed a significant positive

correlation with each other, contributing to a comprehensive

analysis of the interrelationship among the genes (Figure 6C).

Meanwhile, all genes except BNIP3 were highly expressed in

cluster1, as shown in Figure 6D. GO and KEGG enrichment

analyses were carried out to further investigate the probable

biological function and pathway activity of the 17 FRGs relevant

to diabetic osteoporosis. The significant results from GO

enrichment analysis revealed that 17 FRGs were primarily

associated with cellular response to external stimulus, response to

oxidative stress, and neuron apoptotic process (Figure 6E).

Moreover, 17 FRGs were mainly involved in various classical

signaling pathways based on the KEGG enrichment analyses,

including Lipid and atherosclerosis, Mitophagy animal, and
Frontiers in Endocrinology 06
Endocrine resistance (Figure 6F). Supplementary Table S4

displayed the findings of the GO and KEGG analyses in detail.
3.6 Construction of prediction model and
identification of key gene

Based on the whole dataset, we used four established machine

learning methods (LASSO, SVM RFE, Boruta, and XGBoost) to find

important genes from 17 FRGs associated with diabetic osteoporosis.

These algorithms yielded 4, 7, 16, and 6 genes, respectively

(Figures 7A–E). We then verified the efficiency of the four machine

learning algorithms by ROC curves utilizing GSE56815 as an external

dataset. All four algorithms had high area under curve (AUC) values

that were more than 0.8 and we considered the results of the prediction

models to be reliable (Figure 7F). IDH1 is a common gene belonging

to all four algorithms (Figure 7G). The details of genes were shown in

Supplementary Table S5. Considering the accuracy of the identified

genes, we plotted ROC curves with the external dataset GSE56815,
D

A B

C

FIGURE 3

Identification of molecular clusters based on FRGs in osteoporosis. (A) Consensus clustering matrix of FRGs when k = 2. (B) Cumulative distribution
function (CDF) plot when k value ranges from 2 to 8. (C) Relative change in the area under the CDF curve for k values from 2 to 8. (D) PCA of FRGs
in the osteoporosis samples (cluster 1 is marked in blue and cluster 2 in yellow).
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which showed a high predictive efficiency (Figure 7H). Ultimately, we

identified IDH1 from 17 FRGs as a prospective indicator of diabetic

osteoporosis subtypes through four highly efficient prediction models.
4 Discussion

Diabetic osteoporosis, a chronic complication of diabetes in the

skeletal system with a high risk of fracture, is not only a medical

problem but also a critical social problem, making early detection

and timely intervention extremely significant (18). The role of FRGs

in the underlying pathogenesis of diabetic osteoporosis has

attracted strong research interest from scholars both nationally

and internationally. In addition, studies have confirmed evidence of

ferroptosis in the bone tissue of diabetic osteoporotic rats, and

inhibitors of ferroptosis may improve osteoporosis symptoms (19).

However, the molecular mechanisms of FRGs in different molecular

subtypes of diabetic osteoporosis were not widely reported. The

molecular heterogeneity of diabetic osteoporosis is made more

understandable by the identification of molecular clusters based

on FRGs.

In the current study, we synthesized database data and gene

expression profiling data for the analysis of FRGs associated with

diabetic osteoporosis. In total, we identified 15 FRGs that can

distinguish diabetic osteoporosis from normal samples,
Frontiers in Endocrinology 07
suggesting that ferroptosis may exert an overarching role in

the pathological development of diabetic osteoporosis.

Subsequently, correlation and expression analysis between

ferroptosis regulators elucidated the complex relationship

between diabetic osteoporosis and normal individuals.

Furthermore, the expression of 15 FRGs associated with

diabetic osteoporosis allowed for the classification of 42

osteoporotic samples into two different categories. Expression

and enrichment analysis of the 15 FRGs exhibited significant

differences between the two molecular clusters, suggesting that

ferroptosis could be a prospective indicator of osteoporotic

subtypes. According to GSVA enrichment analysis, cluster1

was predominantly enriched in the cellular response to biotic

stimulus, regulation of telomerase activity, and stem cell

differentiation. Cluster2 was prominently associated with

nuclear protein containing the complex, response to wounding,

and wound healing. Ferroptosis as a heterogeneous regulator of

diabetic osteoporosis, we combined WGCNA and differential

expression analysis to identify 17 FRGs that could effectively

distinguish between the two subtypes. Ultimately, we identified

IDH1 from 17 FRGs as a prospective indicator of diabetic

osteoporosis subtypes, using multiple machine learning

algorithms and validated by uniting external datasets.

IDH1, a gene located on chromosome 2q34, encodes the

IDH1 protein consisting of 414 amino acids situated in the
D
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C

FIGURE 4

Difference analysis between the two ferroptosis clusters. (A) Representative heatmap of 15 FRGs between the two ferroptosis clusters. (B) Violin plot
of 15 FRGs expression between the two ferroptosis clusters. (C, D) GSVA enrichment analysis in different ferroptosis clusters showing biological
functions (C) and significantly activated pathways (D).
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cytoplasm and peroxisome (20). IDH1 is a homodimer that

forms an active NADP+ binding site among the structural

domains (21). NADP+ dependent IDH1 catalyzes the oxidative

decarboxylation of isocitrate to produce alpha-ketoglutarate,

which leaves DNA and histones in a demethylated state (22).

In previous studies, mutations in IDH1 were found in

association with a variety of malignancies and rare cases, such

as low-grade diffuse gliomas, periosteal cartilage tumours,

cholangiocarcinoma, acute myeloid leukaemia, and Ollier’s

disease and Maffucci’s syndrome (23). In malignancies, IDH1

mutations promote the accumulation of lipid reactive oxygen

species (ROS) by reducing the protein levels of glutathione

peroxidase 4 (GPX4), which subsequently leads to ferroptosis

(24). This phenomenon indicates that tumour-derived IDH1
Frontiers in Endocrinology 08
mutations sensitise cells to ferroptosis. IDH1 primarily exerts

metabolic effects in vivo, IDH1 ectopic expression suppresses the

production of brown adipocytes as a novel therapeutic target

against obesity and related metabolic diseases such as type II

diabetes and may represent a therapeutic target for the treatment

of metabolic diseases (25). Besides metabolic functions, IDH1

also regulates gene expression through epigenetic modifications

of histones. However, it has never been studied whether IDH1

affects ferroptosis and thus worsens the progression of diabetic

osteoporosis. Diabetes induces fat accumulation causing

atherosclerosis and narrowing of the vascular lumen, resulting

in inadequate blood supply to the bone (26). With a poor

vascular system, the blood supply to the bone tissue is

compromised which will not work properly and structural
D
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FIGURE 5

Identification of DEGs between ferroptosis subclusters. (A) Sample clustering dendrogram. (B) Analysis of scale-free fitting index and average
connectivity for various soft-threshold powers (b). (C) Identification of co-expression gene modules. The branches of the dendrogram cluster into 15
modules and each one was labeled in a unique color. (D) Representative module-trait heatmap was established based on the eigenvalues values of
the modules. (E) Representative scatter plot showing the correlation between the blue module and module-related. (F) Quantitative results of the
number of upregulated and downregulated DEGs. (G) Volcano plot of DEGs between two ferroptosis subclusters. (H) Heatmap of DEGs between
two ferroptosis subclusters.
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abnormalities, such as microcracks, may occur. However, it

has been demonstrated that IDH1 inhibition regulates the

progression of atherosclerosis by improving macrophage

viability and apoptosis, and may alleviate atherosclerosis by

activating NRF2 to ameliorate ox-LDL-induced ferroptosis in

macrophages (27). Furthermore, IDH1 production of NADPH

in the cytoplasm reduces intracellular oxidative stress, which as a

complication of diabetes can also lead to osteoporosis (28). In

this study, IDH1 was identified combined with machine learning

prediction models and expressed significantly different in the

analysis of diabetic osteoporosis subtypes. Moreover, plotting

the ROC curve with the external data set as the validation set

resulted in a high AUC value (0.698). The above results

sufficiently demonstrate that IDH1 has a high probability of

acting as a regulator of ferroptosis in differentiating the

heterogeneity of diabetic osteoporosis subtypes, which provides

a strong basis for further studies.

There are certain research limitations that need to be made

clear. We lacked a sufficiently large number of diabetic osteoporosis
Frontiers in Endocrinology 09
samples to assess the accuracy of ferroptosis genes in machine

learning model predictions and to validate the stability of

subpopulations. More prognostic information needs to be

gathered in further studies to assess the prognostic value of

ferroptosis in distinct subtypes of diabetic osteoporosis.

Additionally, IDH1 needs further literature support and

experimental validation as a regulator of iron death which

distinguishes diabetic osteoporosis subtypes.
5 Conclusion

In conclusion, we found two clusters of ferroptosis in diabetic

osteoporosis and confirmed the distinctive characteristics of each.

Four distinct machine learning prediction models (LASSO,

XGBoost, Boruta, and SVM) based on 17 ferroptosis genes

discovered ferroptosis regulators capable of distinguishing

diabetic osteoporosis subtypes. Ultimately, as a ferroptosis

regulator validated by the external datasets, IDH1 has the
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FIGURE 6

Comprehensive analysis of FRGs between ferroptosis subclusters. (A) Venn plot showing 17 FRGs associated with diabetic osteoporosis by
intersecting the DEGs and module-related genes with diabetes-related genes and ferroptosis-related genes. (B) PCA of 17 FRGs showing good
differentiation power between ferroptosis subclusters. (C) Representative gene relationship network diagram of 17 FRGs associated with diabetic
osteoporosis. (D) Violin plot of 17 FRGs expression between the two ferroptosis clusters. (E) The GO enrichment analyses results. Nodes represent
description. (F) The KEGG enrichment analyses results. Nodes represent description.
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capacity to precisely distinguish molecular subtypes of diabetic

osteoporosis, which may provide novel insights into the

pathophysiology of the clinical symptoms and prognostic

heterogeneity in diabetic osteoporosis.
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FIGURE 7

Construction of predictionmodel and identification of key gene. (A, B) 4 FRGs obtained using the LASSO algorithm based on theminimum lambda. (C) 7 FRGs
obtained using the SVM algorithm. (D) 16 FRGs obtained using the Boruta algorithm. (E) 6 FRGs obtained using the XGBoost algorithm. (F) Applying external
dataset to validate four predictive models. (G) The common gene belonging to all four algorithms. (H) Applying external dataset to validate the key gene.
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