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Abatract: In recent years studies of nanomaterials have been explored in the field of microbiology 

due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, 

and they may be synthesized from natural products from plant or animal origin. The therapeutic 

applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. 

Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The 

ratio of nanoparticles surface area to their volume is high and that allows them to be an 

advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis 

of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic 

strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against 

infections from bacteria, fungi and viruses were the focus of this review. Further, their potential 

advantages, drawbacks, limitations and side effects are also included here. Researchers are 

characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the 

subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious 

question to scientists beyond anything. 
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1. Introduction 

Infectious disease, in recent times, is a great concern in public health. Around the world, 

microbial infection causes mortality in millions of people every year [1–4]. Further, the microbes 

can turn resistant to antibiotics due to their high mutative capacity and morphological changes [5–7]. 
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A nanoparticle (NP)-based treatment approach could be promising to overcome the drug-resistant 

effects of the microbes. Further, NPs can have innate antimicrobial activities [8,9]. NPs can 

generate reactive oxygen species (ROS), which can damage DNA and proteins and block the growth 

of bacteria, fungi and viruses. Antibiotics conjugated with nanoparticles have therefore been 

thought to be an efficient antimicrobial regimen [10]. The antibiotic cefaclor attached to gold 

nanoparticles (52–22 nm) showed significant antibacterial activity [11,12]. Biogenic selenium 

nanoparticles have anti-biofilm activity and effectively retard the growth of Pseudomonas 

aeruginosa, a Gram-negative bacteria [13,14]. Similarly, TiO2 nanoparticles have been found to 

inhibit the formation of fungal biofilms [15]. 

Nanotechnology can help the world’s medical community to fight against virus infection     

also [16,17]. For example, studies have been done successfully on the effects of nano-materials as 

antivirals against the virus SARS-CoV-2, inhibiting its entry into cells, its RNA replication and, 

finally, its release [18–20]. In addition, nano-materials provide a wide range of opportunities for 

diagnosis, treatment and in controlling the biofilm formation. Recent advances of applications of 

various nanomaterials in the diagnosis and treatments of microbial infections have been reviewed 

elsewhere [21–24]. However, their impact on human tissues and the environment should be assessed 

before implementations in large-scale industry are carried out [25].  

Here, we discuss several aspects of using nanoparticles in infectious diseases, their pros and 

cons, challenges for nanoparticles and future prospects. 

2. Nanoparticles/Nanocomposites and their antimicrobial properties  

Nanoparticles (NPs) belong to a group of substances having diameters ranging from 1–100   

nm [26–29], and they possess the ability to penetrate the bacterial cell wall, which is made up of 

peptidoglycan. NPs can dismantle the peptidoglycan layer from Gram-positive bacteria and also 

overcome antimicrobial resistance [5,30,31],  

2.1. NPs and their antibacterial activities (Table 1) 

Table 1. Antiviral nanoparticles and antibacterial activities. 

Antibacterial Nanoparticles Functions 

Gentamicin coated phosphatidylcholine–chitosan hybrid 

nanoparticles [32] 

Inhibit the growth of Gram-positive and Gram-

negative bacteria [32]  

Supramolecular polyelectrolyte complexes, (like NH3
+ 

of 

the β-cyclodextrin-chitosan complexes with the negatively-

charged SO3
- 

groups) [33].  

Silver sulfadiazine molecules complexed with β-

cyclodextrin releases silver ions which damages 

the bacterial cell wall [33]  

Vancomycin antibiotic encapsulated in polymersomes [34] Antibacterial effects against methicillin-resistant S. 

aureus [34] 

Mannose-chitosan complex nanoparticles [35] Mannose-chitosan complex nanoparticles have 

antibacterial activities against gram-positive and 

gram-negative bacteria [35] 

Teicoplanin-containing polylactic-co-glycolic  

acid (PLGA) nanoparticles [36]  

Showed an antibacterial effect on S. aureus [36]  

Continued on next page 
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Antibacterial Nanoparticles Functions 

Pistacia lentiscus L. var. chia essential oil can be 

encapsulated within PLA nanoparticles [37]  

Showed an inhibitory effect on gram-positive and 

gram-negative bacteria [37]  

Silver nanoparticles with PLA nanocoatings and with 

polyethylene terephthalate nanofibers [38]  

Works against gram-positive and gram-negative 

bacteria, both [38]  

2.2. NPs as an antiviral regimen (Table 2) 

Viruses can infect prokaryotes as well as eukaryotes. Vaccines are effective in some of viral 

diseases such as smallpox, polio, etc, yet further opportunities to overcome antiviral drug resistance 

is possible by using NPs [39,40]. 

Table 2. Antiviral nanoparticles and their functions. 

Antiviral Nanoparticles Functions 

Chitosan nanoparticles complex with peptides derived 

from HIV-1 P24 protein [41].  

Showed reduced toxicity and sustained peptide drug 

release [41].  

NPs attached with hydroxypropyl-β-cyclodextrin and 

loaded with Dolutegravir [42].  

Results in improved permeation of the drug through 

nasal mucosa without damaging the mucosa [42].  

2.3. Application of NPs in fungal and parasite infections (Tables 3 and 4) 

Table 3. Antifungal nanoparticles and their functions. 

Antifungal Nanoparticles Functions 

Administration of miconazole and farnesol together 

with chitosan NPs [43]  

The minimum inhibitory concentration (MIC) of 

nanosystems against C. albicans is similar to the 

values for the miconazole free drug [43]  

Chitosan nanoparticles incorporating itraconazole 

[44]  

Potentially inhibits the growth of C. neoformans, C. 

albicans and A. fumigatus [44]  

Nanocapsules containing modified polysaccharide for 

the delivery of amphotericin B [45]  

This nanosystem showed significant antifungal 

activity against C. albicans strains, compared to the 

free drug [45]  

Table 4. Antiparasitic nanoparticles and their functions. 

Antiparasitic Nanoparticles Functions 

A poorly water-soluble compound, Triclabendazole, 

encapsulated within chitosan [46–49]  

Found successful in treatment of fascioliasis [46]  

 

Showed an inhibitory effect on Leishmania 

promastigotes protozoan parasites [47]  

Some industrial and biomedical applications of nano-materials as alternatives to commercially 

available antibiotics and anti-fungal medications are reviewed in [22,24] (Tables 5 and 6). 
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Table 5. Nanomaterials with antifungal activities. 

Targets Antifungal 

activity 

Nanoparticle type Route of administration References 

Trichophyton rubrum AmB, CLT SLN, SLN Topical [50,51]   

Candida albicans CLT, ECN, 

MN 

SLN-based stearate, 

SLN, SLN 

Topical [52–54]   

Candida species MN SLN-bearing 

Hydrogel, SLN 

Topical, Oro mucosal [55,56]   

Aspergillus flavus ITZ; VRZ SLN Ocular [57,58] 

Candida glabrata VRZ SLN Ocular [59] 

Candida species FLZ SLN Topical [60] 

Dermatophyte GF SLN N/A [61] 

Candida tropicalis AmB Ag N/A [62] 

Aspergillus niger AmB Ag N/A [63] 

Fusarium culmorum AmB Ag N/A [63] 

Aspergillus brasiliensis NYS, FLZ Ag N/A [64] 

Malassezia furfur KTZ Ag Topical [65] 

Paracoccidioides 

brasiliensis 

AmB PLGA N/A [66] 

Candida parapsilosis AmB CS-coated PCL Oral [67] 

Aspergillus fumigatus AmB L/CS N/A [68] 

Table 6. Nanomaterials with antibacterial activities. 

Biomaterials Potential applications Bacteria Reference 

Cotton/silk fabrics 

containing reduced graphene 

oxide (RGO) and Ag/Cu 

NPs 

Antimicrobial protective medical 

textiles 

P. aeruginosa 

E. coli 

S. aureus 

[69] 

Polyvinyl alcohol containing 

Ag/Cu NPs 

Antibacterial contact lenses S. aureus 

P. aeruginosa 

[70] 

Lysozyme-coated Au  

NPs in combination with β-

lactam 

Diabetic wound healing S. aureus 

Acinetobacter calcoaceticus 

P. aeruginosa 

E. coli 

Klebsiella pneumoniae 

Bacillus subtilis, B. cereus 

[71] 

Keratin containing Ag NPs Skin wound healing and tissue 

recovery 

E. coli 

S. aureus 

[72] 

Ag NPs-loaded bacterial 

cellulose hydrogels 

Moist wound-healing hydrogels S. aureus 

P. aeruginosa 

[73] 

3. Nanoparticles (NPs) and their biological compatibility (Table 7) 

When NPs come into contact with blood, they may initiate some biological effects, which 

could be good or bad. Hence, it is important to determine the blood-NPs compatibility before they 

can be used in humans [74,75]. A few observations are the following: 

• The blood-NPs compatibility depends on the size, structure and formulation of the NPs [74,76]. 

• Biopolymeric NPs have been found compatible when used in the treatment of asthma, 

tuberculosis and lung cancer [77,78].  
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Table 7. Comparative biocompatibilities of several NPs. 

NPs In vitro and in vivo toxicity  

Dendrimers No toxic effects [79] 

Au NPs No toxic effects [80] 

Carbon nanotubes No toxic effects [81] 

Superparamagnetic Fe3O4 

nanoparticles (SPIONs) 

No toxic effects [82] 

Silica-based NPs Si NPs cause toxicity to immune cells and tissues. The main mechanisms 

were pro-inflammatory responses, oxidative stress autophagy and so on. 

Surface and shape modifications may mitigate the toxicity effects of Si NPs, 

providing a new way to produce these NMs with less toxic impact [83,84]. 

Ag NPs • Induce cell shrinkage, apoptosis [85,86] 

• Release free radicals and cause DNA damage [87]  

• Immunotoxicity in rats [88,89] 

• Ag NP-biopolymer showed anti-bacterial activity but no toxic 

effects on mouse fibroblasts (NIH-3T3), human osteosarcoma cells (MG63) 

or human hepatocarcinoma cells (HepG2) [90,91] 

Fe3O4-Au NPs No toxicity was observed in any cell types in culture [92] 

Manganese ferrite (MnFe2O4) NPs Showed biocompatibility at 125 μg/mL or below in 4T1 cells (a murine 

breast cancer cell line) [93] 

Ferrite NPs (Fe3O4, ZnFe3O4 and 

NiFe3O4) 

Showed toxicity against HeLa cell lines at and above 100 μg/mL dosage 

[94] 

TiO2 NPs These NPs are non-toxic (at <l00 μg/mL) to humans [95] 

CaFe2O4 NPs Showed toxicity in humans at >250 μg/mL concentration [96] 

4. Nanoparticles (NPs): Encapsulation and biodegradability 

Since the accumulation of nanoparticles in the spleen and liver may turn out as toxic, 

biodegradable NPs (BNPs) should be more appropriate than non-degradable NPs [97]. Other 

significant factors are the following: 

• Nanopolymers are biodegradable and can encapsulate other therapeutic regimens to deliver 

them to the action site [98].  

• Polysaccharides, proteins and some synthetic polymers are the main sources of BNPs.  

• Polymersomes (or polymer vesicles) can be used for drug delivery as their coronas and 

membranes can be modified for biomedical active different groups. Polymersomes are very suitable 

drug deliver agent for bacterial infection, and cancer therapy, as well.  

• Antibacterial polymersomes are divided into three categories:  

1. polymersomes as antibiotic nanocarriers,  

2. intrinsically antibacterial polymersomes and  

3. antibacterial polymersomes with supplementary means, including photothermal and 

photodynamic therapy.  

• Similarly, the anticancer polymersomes are divided into two categories:  

1. Polymersome-based delivery systems, and  

2. Anticancer polymersomes with supplementary means.  

In this review, the prospective antibacterial and anticancer polymersomes are discussed. 
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4.1.  Selection of polymers and the synthesis of BNPs 

The end application is the main criterion for the selection of the polymer, but their size, bio-

compatibility, biodegradability and the capability of encapsulation of the drug materials are 

similarly important factors to be considered [99]. Some of the different biodegradable polymers and 

their merits for use as BNPs are listed in Table 8 

Table 8. Some polymers for the synthesis of BNPs. 

Poly lactic-co-glycolic acid 

(PLGA) 

• Produce biodegradable products, lactic and glycolic acids [100] 

• Generally used in the production of nanovaccines, gene delivery and also the 

production of protein/peptide-based nanomedicines [100,101] 

Poly lactic acid (PLA) • PLA is biocompatible and biodegradable, breaking down to lactic acid in the 

body [102] 

Gelatin • Gelatin is a polyampholyte and is used in food products and also in medicine 

[103] 

Polycyclic 

aromatic compounds (PACs) 
• Upon biodegradation, PACs produce compounds toxic to the central nervous 

system [104] 

5. Nanoparticles-mediated microbial targeting strategies 

NPs may be considered by the human body as a foreign particle, so macrophages / phagocytic 

cells can remove them from blood circulation. Therefore, the surfaces of NPs should be modified to 

allow them to bypass the immune system of the body [105], so they can stay in the vascular system 

for a longer period of time and may reach their target safely [106]. PEGylation of NPs results in less 

interaction with phagocytes and being sustained longer in the circulation system [107]. Similarly, 

tocopherol PEG-1000 succinate can modify NPs, which then in turn exhibit increased adhesion 

towards tumor cell surfaces [108,109].  

The conventional methods of drug delivery have several limitations, such as poor 

biodistribution, lack of selectivity and limited effectiveness [110,111]. Attachment of NPs to the 

therapeutic drug can make possible site-specific delivery and can reduce any undesirable side 

effects [112,113]. Representative clinical trials with small molecule-based targeting have been 

tabulated elsewhere [114,115].  

5.1. Evidence for the attachment of NPs to therapeutic drugs for site-specific delivery 

The use of nanotechnology in medicine is mostly for targeted drug delivery and also to reduce 

toxicity and side effects of the drugs. Until recently, it was not realized that these carrier systems 

themselves may cause risks to the patient. Therefore, a conceptual understanding of biological 

responses to nanomaterials is needed to develop [116–123].  

6. Limitations 

• The major concern is to maintain the proper size and shape of mono-dispersed NPs with 

stability during synthesis [124].  

• NPs may accumulate in different bio-organs, which may cause problems in normal biological 
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function in the future [125].  

• Since NPs may escape the immune challenge of the body, they may cause some sort of 

inflammation or toxicity [126].  

• NPs can generate ROS, which are major contributors of inflammation, oxidative stress and 

apoptosis [127].  

• Still, there are many other disadvantages in using NPs. For example, toxicity, environmental 

harm and organ damage may be caused by nanoparticles [128].  

• Nanoparticles, after a threshold limit, may be toxic in nature and have to be degraded 

chemically.  

• Some identified toxic mechanisms are through the production of ROS, which is cytotoxic, 

genotoxic, and neurotoxic, also. Those toxic effects of nanoparticles’ depends on its type, size, 

surface area, shape, aspect ratio, surface coating, crystallinity, dissolution and agglomeration 

properties. Therefore, it is important to consider of any toxic effects of nanoparticles when it is 

being synthesized [129,130].  

6.1. Limited availability and side effects 

It has already been demonstrated that many nanoparticles in lab rats have resulted in lung 

inflammation and blood clotting, and in the human body they could trigger unwanted reactions like 

damage to cells and organs [131].  

• Nanoparticles produce ROS and oxidative stress, which may cause neurodegenerative diseases 

such as Alzheimer’s and Parkinson’s diseases [132].  

• Uptake of the nanoparticles through the olfactory epithelium can also take place, leading to 

epithelial cell injury, which can compromise the basic functions of the nose [133].  

• Silica exposure causes oxidative stress. At high doses, silica induces membrane damage and 

cytotoxicity [134]. 

• Another limitation of using nanotechnology in medicine is its high expense. The use of 

nanomedicine would increase the cost of health care, which would make its access difficult for the 

poor [135]. Furthermore, the ethical, social and legal facets of nanomedicine need to be handled 

tactfully to gain civic backing. Though efforts are being made to increase the understanding of using 

nanomedicine in living beings, there is still ambiguity surrounding the risks that humans would be 

exposed to with its use. As a result, the clinical trials involving nanomedicine pose distinctive 

challenges. The leading ethical issues encompass assessing, managing and communicating the risk 

during clinical trials. To evade the possibility of public criticism, it becomes imperative to educate 

the people about the benefits and pitfalls of nanomedicine [136]. 

7. Nanoviricide (NV-387) 

A new antiviral regimen could emerge as an antimicrobial. NV-387 is a self-assembling, 

uniform and tailorable linear homopolymer designed and designated as a TheraCour platform 

polymer. Here, the monomer is functionalized by attaching polyethylene glycol (PEG) connected 

covalently with a site-targeting ligand [137] (Figure 1).  
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Figure 1. Schematic design of TheraCour NV-387 biopolymer. 

This binding results in avidity and that force leads to passive fusion of the virus. Further, being 

encapsulated, the loaded drug can be released from the polymer backbone in a covalent system 

immediately [19,138,139], TheraCour platform polymer (NV-387) adds further advantages 

providing an extreme level of tailorability, also: 

(A) Different ligands can be chosen for different targets.  

(B) By changing the appropriate lipid length and balancing the PEG-monomer chain length, one can 

balance the hydrophobic/hydrophilic balance of the PEG Polymer. The longer lipid chain would be 

more suitable for dermal delivery of the drug as a cream or ointment. In contrast, short lipid chains 

would result more hydrophilic in nature and merely assist in conformational stability and adherence 

to the cell membrane.  

(C) The rate of release of the API can be modified by tailoring the connector, like pH-sensing, or 

esterase or protease-specific functions, etc.  

(D) The polymerization can be controlled within the limits (Flory equation), to provide a desirable 

clearance characteristics.  

NV-387 is a non-crystalline semi-solid, off-white, waxy in texture material (at room 

temperature). It’s theoretical molecular formula is C104H188N2O44S4. The calculated formula weight 

of the polymer repeat unit (RU) is 2298.85 g/mol. The degree of polymerization, “n”, in P10M2DT 

(HDA)x (MMSA)y polymer is 8 ± 2 [19]. Pharmaceutical properties, formulations for injection, 

physical properties, and chemical properties are all available elsewhere [19]. 
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7.1. Chemical charateristics of TheraCour biopolymer NV387 

NV-387 is a non-crystalline semi-solid, off-white, waxy in texture material (at room 

temperature). It’s theoretical molecular formula is C104H188N2O44S4. The calculated formula weight 

of the polymer repeat unit (RU) is 2298.85 g/mol. The degree of polymerization, “n”, in P10M2DT 

(HDA)x (MMSA)y polymer is 8 ± 2 [19]. 

Pharmaceutical properties, formulations for injection, physical properties, and chemical 

properties are all available elsewhere [19]. 

These materials have been shown to be capable of (a) site-directed (address-based) cell or virus 

targeting, (b) protective active pharmaceutical ingredient (API) encapsulation, (c) direct delivery of 

such encapsulated APIs into the address-specified cell or virus, (d) tailorable circulation lifetime 

and (e) sustained delivery characteristics, while at the same time being biocompatibility, non-toxic, 

non-immunogenic, and biodegradable [137]. 

7.2. Antiviral activity of TheraCour polymer, NV387: 

In viral diseases, TheraCour platform based nanopolymer, NV-387, is noticeable. The 

therapeutic principle of NV-387 is based on its unique structure. As we know that the virus 

envelope carry a lipid membrane derived from the host cell membrane, the TheraCour polymer can 

attack viruses. Interestingly, no active API is required in this scenario if the ligand is properly 

chosen for making the biopolymer. Once the virus is attached by the micelle carrying ligands, lipid-

lipid mixing essentially pulls the lipid membrane of the virus to the site of the attack and the virus 

gets dispersed, resulting a naked virus capsid that cannot infect cells (Figure 2) [139–143]. 

 

Figure 2. TheraCour Platform Technology based Nanoviricide is a Cell Mimic. A 

nanoviricide “looks like” a human cell to the virus. A nanoviricide micelle encapsulates 

the virus particle, even they mutate, and dismantle the virus structure. Step 1: A 

NanoviricideTM binds to virus particle; Step 2: Lipid-Lipid fusion of NanoviricideTM 

with virus particles; Step 3: Encapsulation of virus particle by NanoviricideTM; Step 4: 

NanoviricideTM destroy the virus particle.  
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7.3. Nanoviricide polymeric micelle works against SARS-CoV-2 

This model is the most advanced in the antiviral field. In particular, a drug, targeting for 

SARS-CoV-2 virus, NV-CoV-2 has completed preclinical studies including GLP Safety/Toxicology 

and is expected to enter human clinical trials soon. Another derivative, NV-CoV-2-R that 

encapsulates remdesivir within the core of NV-CoV-2 has shown effectiveness significantly 

surpassing that of the standard remdesivir formulation, which correlates with significantly improved 

pharmacokinetics of remdesivir in vivo in animal model studies. Some uses of TheraCour polymer 

are the entire drug use chain are shown in Tables 9 and 10.  

Table 9. TheraCour drug solves problems in the drug use chain. 

Vehicle Administer Blood Stream Specific Targeting Cell Membrane 

TheraCour Injection Encapsulated “Nano Velcro Snaking” Take API Across 

Liposomes Infusion Unstable Not Much Success Partial Effect 

Cremophore Infusion Unstable None Some Effect? 

Cydex Infusion Full Apart None None 

PEGylation Infusion Stable None None 

Polydrug Injection Stable None Depends 

Polypeptides Infusion Injection Stable None None 

Dendrimers Infusion Injection Toxic  Hard Sphere 

Few Points 

May Take API Across 

Table 10. TheraCour approach is a unique beneficiaL feature than other nanomedicine 

approaches. 

Vehicle TheraCour Dendrimer PLA/PLGA Virus Based Nanoshells, Metalics 

Nanoscale Velcro 

Effect with Wrap-On 

Yes No No No No 

Technology 

Complexity 

Simple Complex Medium Complex Complex 

Safety Safe No Medium No Medium 

Specific Targeting Yes: 

Flexible 

Wrap-ON 

Yes: Limited 

by Hard Bal 

No No May be 

Detection Yes Yes No No May be 

Extended Release Yes May be Yes Yes Accumulate 

Controlled Release Yes May be Yes No No 

Efficacy Improvements Yes,  

Very Large 

Yes No (Slow 

release only) 

Yes but 

infectious 

May be 

SARS-CoV-2 belongs to a -family of human coronavirus, which causes the severe lower 

tract infectious disease called COVID-19 [144]. Throughout the world this pandemic disease virus 

once evolved in November 2019 is continuously mutating to a new form and infecting people till 

date. The newer variants (Omicron BA.2) possess greater transmissibility with R0 as 12 [145].  

The once effective drugs against SARS-CoV-2, like remdesivir (Gilead), molnupiravir (Merck), 

and Paxlovid™ (Pfizer) turnout with significant limitations in humans.  Molnupiravir is reported as 

mutagenic and further has poor efficacy. Paxlovid is virostatic and the virus rebounds once the drug 

is withdrawn. Remdesivir is highly effective in vitro studies, however, in vivo, its efficacy is not 

satisfactory at all. This may be due to the instability of Remdesivir in the body circulation       

system [146,147]. 
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NV-387 is highly effective in cell cultures against coronavirus hCoV-NL63 which like SARS-

CoV-2, binds to the ACE2 cell receptor [140]. hCoV-229E that binds to a different cellular receptor, 

Aminopeptidase N (APN), also can be inhibited by NV-387, indicating itself as a broad-spectrum 

anti-coronavirus nanopolymer [20,147,148]. 

7.4. Encapsulation of the virus leads to its disintegration 

The mechanism of nanoviricide’s function is shown through electron photomicrographs (Figure 3). 

In this study, the murine cytomegalovirus (MCMV) was incubated with a nanoviricide containing 

sialic acid as a ligand. The light area at top right corner in Figure 3-II indicates that the lipid coat 

was deformed due to the binding of nanoviricide micelle in that area. The loss of the viral envelope 

results the lack of viral glycoproteins required for cellular entry and thus becomes non-infectious. 

Figure 3-III shows that only virion capsids remain as a result of the attack. We have demonstrated a 

convincing success of our drug NV-CoV-2-R which is an encapsulated remdesivir into the 

polymeric micelle (NV-CoV-2), in inhibiting the virus growth in animal models [139,142]. 

 

Figure 3. Effects of Two Different Nanoviricides Binding to Murine Cytomegalo virus 

(MCMV). I: Control virion: MCMV containing multiple capsids and a lipid coat with 

coat proteins; II & III: MCMV virion treated with two different nanoviricides. Virion 

disruption with capsids spilling out.  

7.5. Safety Studies of NV-387, and NV-CoV-2 

NV-387 is a TheraCour biopolymer (API) which on formulation was converted to a drug 

product against corona virus, and designated as NV-CoV-2. Safety studies on NV-387/NV-CoV-2 

indicate that:  
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• No abnormal respiratory function or in neurobehavioral aspects were notices in all doses of the 

test compounds was observed in a rat model.  

• No change in body temperature after the i.v. administration of NV-CoV-2 in rats. 

• Heart rate, blood pressure, cardiac rhythm, and ECG parameters of cynomolgus monkeys were 

noticed normal after i.v. administration of NV-CoV-2 in them [19]. 

• Additionally, NV-387/NV-CoV-2, both were non-immunogenic, non-mutagenic, and non-

genotoxic in a rat model.  

8. Discussion and conclusions 

The use of nanomaterials has been increasing, with concerns about drug-nanomaterial stability, 

biocompatibility and biodegradability; and there is interest in control and tailored payload release of 

the drug, without any side effects, and improving patient compliance [149,150]. With these 

concerns, recently, nucleic acid-based cross-linkers, as they are able to self-assemble into a stable 3-

dimensional structures, have gained much attention [149–151]. In addition, nucleic acids can act as 

a targeting agent through engineered aptamer and drug payload carriers. They also have shown the 

ability to control the release of proteins [152–155]. Owing to these versatile characteristics, it is 

expected that nucleic acid-based hydrogels will be an important regimen in the future for targeted 

drug release.  

Treatment of infectious disease with antibiotics becomes a challenge when the organisms 

evolve drug resistance. Therefore, discovery of methods of treatment and/or therapeutic regimen 

warrants great priority. Nanotechnology offers an innovative advance in NP-based bio-imaging, 

which can be used for early detection, diagnosis and treatment of many diseases, especially those 

that are caused by drug-resistant microorganisms. Nanoparticles have been shown, due to their 

unique size, shape, charge and surface area, to possess unique activity against different microbial 

infections. In addition, NPs find their other uses in drug delivery, gene delivery and targeted therapy 

of various diseases including cancer.  

The development of nanotechnology for the synthesis of NPs/nanocomposites can be used to 

treat various diseases which are difficult to treat with the conventional approaches. However, the 

limitations and health risks that are associated with these nano-sized particles should not be ignored. 

Nowadays, in many cases, nanotherapy along with the conventional antibiotic therapy is used to 

overcome microbial resistance. NPs/nanocomposites may resolve difficulties in managing 

complicated diseases. However, safety and efficacy issues of NPs are now the main concern before 

their use in humans.  
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