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Catheter ablation of ventricular
tachycardia: strategies to improve
outcomes
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Catheter ablation of ventricular arrhythmias has evolved considerably since it
was first described more than 3 decades ago. Advancements in
understanding the underlying substrate, utilizing pre-procedural imaging, and
evolving ablation techniques have improved the outcomes of catheter
ablation. Ensuring safety and efficacy during catheter ablation requires
adequate planning, including analysis of the 12 lead ECG and appropriate
pre-procedural imaging. Defining the underlying arrhythmogenic substrate
and disease eitology allow for the developed of tailored ablation strategies,
especially for patients with non-ischemic cardiomyopathies. During ablation,
the type of anesthesia can affect VT induction, the quality of the electro-
anatomic map, and the stability of the catheter during ablation. For high risk
patients, appropriate selection of hemodynamic support can increase the
success of VT ablation. For patients in whom VT is hemodynamically unstable
or difficult to induce, substrate modification strategies can aid in safe and
successful ablation. Recently, there has been an several advancements in
substrate mapping strategies that can be used to identify and differentiate
local late potentials. The incorporation of high-definition mapping and contact-
sense technologies have both had incremental benefits on the success of ablation
procedures. It is crucial to harness newer technology and ablation strategies with
the highest level of peri-procedural safety to achieve optimal long-term outcomes
in patients undergoing VT ablation.
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Introduction

Catheter ablation has an important role in the management of patients with

ventricular tachycardia (VT) (1, 2). Advances in pre-procedural imaging, intra-

procedural mapping, and ablation techniques have improved the outcome of catheter

ablation. As catheter ablation becomes a first-line therapy, it is crucial to employ a

systematic approach for clinical assessment, mapping, and ablation of VT. The goals

of ablation includes (a) elimination or reduction of the underlying arrhythmia, (b)

maintaining patient safety and (c) limiting collateral injury to improve long term

outcomes. In this review we will address the importance of understanding the

underlying substrate, pre-procedural planning, and strategies to improve mapping and

ablation of VT.
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Pre-procedural planning

Understanding the substrate

A careful evaluation of the patient history, 12 lead ECG, and

imaging are critical for understanding the mechanism and

localization of the origin of VT. Anatomic substrate,

electrophysiological characteristics and approach to catheter

ablation are different among patients with ischemic and non-

ischemic cardiomyopathies. While the scar in ischemic

cardiomyopathy is usually sub-endocardial, patients with non-

ischemic cardiomyopathy (NICM) often have patchy VT circuits

located in mid-myocardium and epicardial location (3, 4).

Patients with non-endocardial scars may require epicardial

access, bipolar ablation, and more advanced ablation techniques

(5). Patients with NICM, who have failed prior endocardial

ablations, often have more extensive scar in the epicardium with

more than 50% of these patients requiring an epicardial ablation

(6, 7). In addition, these substrates can progress, especially in

conditions like sarcoidosis, hypertrophic cardiomyopathy, and

arrhythomgenic right ventricular dysplasia (8). Treatment of the

underlying disease is important to prevent disease progression,

recurrence of arrhythmias and heart failure hospitalizations.
ECG characterization

Evaluation of the ECG in sinus rhythm and VT (if available)

can help characterize the site and extent of the underlying scar.

Presence of q waves in sinus rhythm can provide a clue

regarding the location of myocardial scarring. In patients with

NICM, fragmented QRS complexes can be used to aid scar

localization (9). The 12 lead ECG allows for localization of the

“exit site” of VTs with a predictive accuracy of >70% to guide

initial mapping efforts (10). Utilizing the 4-quadrant approach

allows for easy localization of cardiac structures where the VA

may exit from. It is important to understand that depending on

the size of the circuit, this exit site may be up to 2–5 cm2 away

from the critical isthmus (10). Clinical and automated VT-ECG

algorithms have been developed to predict SOO, but its use

remains limited (11, 12). Several algorithms are available for

identification of potential epicardial VT exits, although they are

less useful in patients with extensive scar (13, 14). Irregular cycle

lengths and pleomorphism of underlying VT morphology are

potential indicators of underlying myocardial inflammation (15).

Electrocardiographic imaging (ECGI) is a non-invasive mapping

strategy that combines a computed tomography scan of the chest

and with a continuous 256-lead ECG recorded by a multi-

electrode vest to accurately predict the VA exit site (16).
Pre-procedural imaging

Pre-procedural imaging can be very useful in guiding the

operator towards the areas of interest and increasing success rate
Frontiers in Cardiovascular Medicine 02
of ablation. Contrast enhanced MRI (CMR) has become the

cornerstone of pre-procedural imaging because of its ability to

delineate myocardial scar (17, 18). In patients with idiopathic

PVCs or VT, CMR can visualize areas of scarring that may have

not identified on routine echocardiography. Most importantly,

CMR can help guide electro-anatomic mapping and delineate

areas of potential substrate for ablation. Along with ECG, CMR

can be used to determine the predominant scar pattern and

likelihood of mid-myocardial and epicardial ablation targets (19).

Beyond the need for up-front epicardial access, CMR can also be

used to identify the critical site for VT circuits based on the

signal intensity and transmurality of the scar (20, 21). Delayed

gadalonium enhancement, and grey border zones zones have

good correlation with conducting channels and can identify

critical isthmus sites in >70% of cases (22). However artifacts

related to ICD lead remain one of the major limitations in

interpretation of images in patients with cardiac implantable

electronic devices (CIEDs). Recent studies have tested the

feasibility of wideband inversion recovery CMR protocols in

patients with CIEDs (23, 24). These sequences significantly

reduced hyperenhancement artifacts, offering a potential solution

for patients with ICDs.

Computed tomography is a viable option when MRI is not

feasible. It has higher spatial resolution than CMR and its use is

increasing as a pre-procedural tool during VT ablation

(Figure 1). However, it is limited by a lower contrast-to-noise

ratio within myocardial tissue, contributing to inferior scar

delineation (25). CECT combined with dynamic, perfusion

imaging has been shown to accurately characterize LV scar and

border-zone substrates (26). Recent studies have evaluated the

role of CT imaging (with post-processing using proprietary

MUSIC software, IHU LIRYC Bordeaux and Inria Sophia

Antipolis, France), in identifying ridges/channels which denote

preserved myocardial tissue surrounded by scar (thinned out

areas) that could potentially be targets for ablation (27, 28).

Cardiac anatomy and substrate characterization identified by

CMR and CT imaging can be integrated into the EAM systems

for guidance during the ablation procedure (21, 29). With this

technique, areas of scar identified on CT imaging correlate well

with low voltage areas on the EAM system (both unipolar and

bipolar voltage maps) (30, 31).

In patients with acute inflammatory cardiomyopathies, a

fluorodeoxyglucose-positron emission tomography (FDG-PET)

scan have an incremental advantage in diagnosis and assessing

the extent of inflammatory burden. In patients with

inflammatory cardiomyopathies like sarcoidosis, the results of CA

during the inflammatory phase are poor and the recurrence rates

were higher (32). Combining FDG PET with CMR allows for

better characterization of scar burden and myocardial

inflammation (33).

Lastly, cardiac computed tomography (CT) can also provide an

accurate roadmap of anatomy and to minimize complications.

Major collateral injury to adjacent structures like the heart, liver

and coronary vessels have been reported in 4%–10% of patients

during subxiphoid percutaneous epicardial access (34, 35). We

recently used a pre-procedural CT imaging to plan epicardial
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FIGURE 1

Utility of Pre-procedural imaging. Three dimensional volume rendered CT image of heart showing submitral posterobasal aneurysm (green dots) (A). 3D
Electroanatomic Images in RAO and PA showing earliest activation in the aneurysm (white arrow) (B). RFA at this site eliminated the PVCs.

Subramanian et al. 10.3389/fcvm.2023.966634
access in patients undergoing VT ablation. This allows the operator

to pre-determine the ideal site, angle, and trajectory of needle

insertion to avoid collateral injury (36). Prior knowledge of the

needle course can aid in increasing the safety of epicardial access,

especially in patients with a distorted anatomy.
Strategies for vascular access,
anesthesia, and hemodynamic support

Safe vascular access and approach

Vascular complications due to access site issues are to be strictly

avoided. Complications are due to multiple large-bore access sites

followed by intra-procedural systemic anticoagulation. Ultrasound

guidance has been shown to improve the safety by reducing

vascular access-related complications (37). Ultrasound guided

femoral puncture has a short learning curve and does not interfere

with the normal workflow of EP procedures. Meta-analysis of

observational trials have showed up to a 65% reduction in major

and minor vascular complications using ultrasound guidance for

femoral vein access in EP procedures (38). Patients with both

aortic and mitral mechanical valves present a challenge to achieve

LV endocardial access. In these rare circumstances, both a

transapical access and inter-ventricular septal access have been

described. A detailed description of the epicardial access technique

and challenges is beyond the scope of this manuscript.
Anesthetic considerations

Discussions between the electrophysiologist and

anesthesiologist prior to procedure can be extremely useful in

helpful in increasing the success rate of CA and mitigating

complications. Depending on the patient and the operator, VT
Frontiers in Cardiovascular Medicine 03
ablation is usually performed under general anesthesia or under

monitored anesthesia care (MAC). Advantages of MAC with

sedation are avoiding anesthetics that can potentially depress

myocardial contractility and decrease the inducibility of VT (39).

Idiopathic PVCs may be difficult to induce, and it is better to

avoid intravenous anesthetics that reduce sympathetic tone

(dexmedetomidine, midazolam, and propofol) in these patients.

For patients undergoing prolonged, complex procedures who

have unstable rhythms or poor cardiopulmonary reserve, GA is

preferred. Controlling patient ventilation during GA aids in

maintaining a constant tidal volume and I:E (Inspiratory:

expiratory) ratios. This can help to improve the quality of the

electro-anatomical map as well. Controlled apnea during the

procedure can be a useful strategy to improve catheter contact

during ablation. In addition, an end inspiratory breath hold can

also provide a safer needle trajectory during epicardial access, by

minimizing collateral damage to adjacent structures (36).

Neuromuscular blockade agents should be avoided when the

planned ablation site is closer to the phrenic nerve, as they can

prevent phrenic nerve localization by pacing (39).
Hemodynamic support

In recent years, mechanical circulatory support has be used as

both an emergent “rescue” and prophylactic therapy for high-risk

patients undergoing VT ablation. Acute hemodynamic

compromise can occur not only during sustained VT, but also

during sinus rhythm or right ventricular pacing. The PAAINESD

score is a risk stratification tool that has been used to guide

selection of patients for mechanical circulatory support (MCS)

(40). The advantages of MCS are mapping of a greater number

of VTs using activation and entrainment mapping in a sicker

cohort of patients. Intra-aortic balloon pumps, TandemHeart,

Impella axial blood flow pump, and extracorporeal membrane
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oxygenation have all been used in VT ablation. The major

advantages of percutaneous ventricular assist devices, compared

to IABP, is that patients maintain end-organ perfusion during

VT for longer periods (41). The decision to use MCS during VT

ablation needs to be individualized. Integrated care between

cardiologists, surgeons, and anesthetists is important for planning

vascular access, optimizing hemodynamics during VT ablation.
Role of intra-procedural imaging

Intra-procedural imaging for VT ablation involves two major

aspects—image integration into the electro-anatomic mapping

(EAM) system and real-time imaging during ablation. Integrating

CMR images with EAM can enhance the scar definition and has

the potential to facilitate targeted approaches to VT ablation.

When patients undergoing MRI-derived scar-guided ablation were

compared to those undergoing traditional ablation, there is a lower

incidence of recurrence in the former (29, 42). Integrating CT

imaging can also be an useful strategy as it can delineate

epicardial fat, coronary anatomy, and the course of the phrenic

vessels (25, 30). Intra-cardiac echocardiography is commonly used

during VT ablation. It is an useful tool to understand catheter

contact when mapping intracavitary structures such as papillary

muscles and moderator band (43). In addition it can serve as an

important safety tool for asses pericardial effusion and assessing

ablation lesion depth (44). Real-time CMR guided ablation

procedures have been described in a few case series (45). The

advantages of this system is ability to image and assess the entire

myocardium and ablation lesions in real time. Real-time CMR

system may substantially change the work-flow during VT ablation.
Optimizing anticoagulation during
ablation

Anticoagulation strategies during VT ablation are dependent on

right vs. left sided ablation and whether the patient was already using

a vitamin K antagonist or direct oral anticoagulant prior to the

procedure. During ablation of left sided VT, therapeutic

anticoagulation is crucial and special considerations are needed

depending on the LV access route. During LV endocardial ablations,

full dose heparin is generally given once trans-septal access is

achieved. An initial bolus of 100 U/kg followed by intermittent

boluses or continuous infusion of heparin to main an ACT >300s is

ideal (46). It is important to have a continuous flush of the side arm

of the access (transeptal) sheath with heparinized saline.
Mapping strategies

Mapping during sinus rhythm: creating the
substrate map

For patients with VTs that are difficult to induce or

hemodynamically unstable, activation and entrainment mapping
Frontiers in Cardiovascular Medicine 04
cannot be performed. Substrate-mapping strategies have a crucial

role and are required for successful VT ablation. Most VT exit

sites are in the periphery of the scar (i.e., borderzone), while the

critical isthmus resides within the dense scar. In the

endocardium, bipolar peak-to-peak voltage definitions are used

to describe preserved tissue (>1.5 mV), borderzone tissue (0.5–

1.5 mV) and dense scar (<0.5 mV) (47). The limitations of

relying on bipolar peak-to-peak electrograms are that it can be

affected by several biophysical determinants, including mapping

bipole electrode geometry and orientation. Dichotomizing cardiac

tissues into scar vs. healthy tissues based on single bipolar

voltage cut offs can be misleading. Hence, ablation based on the

geography of low bipolar voltage based scar is generally avoided

(48, 49). Several authors have described that areas of relatively

higher voltage can be within the scar. These areas correspond to

surviving bundles of myocardial cells within the scar tissue,

functioning as conducting channels. By applying a stepwise

reduction in the definition of abnormal voltage from 0.5 to

0.1 mV, it was found that most conducting channels have voltage

scar definitions of <0.2 mV (50, 51). By adjusting the bipolar

voltage limits, these voltage channels can be identified in greater

than 85% of patients with mappable ischemic VT (52). However,

the specificity of these channels to predict the location of the VT

isthmus is only 30%. In the presence of normal endocardial

bipolar voltage, a low tissue unipolar voltage (<8.3 mV for LV

and <5.5 mV for RV free wall) is considered a sensitive marker

of myocardial disease in the intramural and epicardial tissues

(53, 54). However, these strategies are unable to reliably identify

whether this residual excitable substrate is in the epicardial or

mid-myocardial layers. Recently, Qian and colleagues found that

endocardial unipolar voltages were significantly higher in sites

with deep intramural excitable substrates compared with

transmural scars (55).

Fractionated electrograms are considered indicative of

preserved myocardial fibers interspersed within a fibrous scar

tissue. The heterogeneities in the cellular electric properties and

local tissue architecture create regions of discontinuous slow

conduction (56). Due to reduced intercellular coupling,

irregularities in depolarization and propagation in adjacent cells

become separated in time, causing distinct fractionated

deflections in the local electrogram. Local Abnormal Ventricular

Activities (LAVAs) refer to sharp high-frequency ventricular

potentials occurring after far-field electrograms and display

double or multiple high frequency signals (57). They are

generated by poorly coupled viable fibers within the scar. Jais

and colleagued coined this term to qualify multicomponent

electrograms that can be buried in a broader far-field

electrogram. Complete elimination of LAVA was associated with

a superior survival free from recurrent VT during follow up (57).

Late potentials are characterized by low amplitude, usually

fractionated signals, with a bipolar amplitude <1.5 mV. They are

detected after the local ventricular electrogram and QRS. These

late potentials originate from slow-conducting surviving bundles

of myocardium in areas of fibrotic scar tissue (58). Isolated late

potentials are defined as the second or subsequent electrograms

that are separated from the initial ventricular electrogram by an
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isoelectric interval (isolated component >20 ms after the end of the

QRS) or very late potentials (isolated component >100 ms after the

end of the surface QRS) (59). Electrograms during sinus rhythm in

the delayed isochrones of activation, especially in regions of

deceleration (crowding of isoschrones of activation) have been

shown to be in anatomic proximity to the critical isthmuses of

VT circuits (60). Iscochronal late activation mapping utilizes this

principle to help target ablation to crowded isochrones (defined

as color-coded zones encompassing >40 ms per 10 cm). Ideally,

ILAMs are displayed as eight equally distributed isochrones of

activation, which represent 12.5% of the window of activation.

The creation of isochronal display of sinus rhythm activation

within scar allows for visualization of both slow conduction and

late activated regions (61, 62).

However, some sites yielding late potentials during sinus

rhythm can be bystander sites during VT, despite being areas of

slow conduction. Late potential mapping can have a very low

sensitivity and moderate specificity for VT channels, especially in

patients with a large scar burden. The presence of multipotential

electrograms, long stimulus-QRS intervals during pace mapping,

and the presence of late potentials inside voltage channels can

increase the specificity of late potentials (63). Hence it may be

prudent to combine identification of both abnormal voltage areas

and abnormal local electrogram characteristics as optimal targets

of VT ablation.

Substrate-based mapping strategies that target only late

potentials may miss critical arrhythmogenic substrates, especially

in early activating regions such as the septum. A source-sink

mismatch or fibrotic barrier between up and downstream

elements can produce a functional block within the scar (64).

One of the strategies to increase identification of late potentials is

to decouple the abnormal ventricular potentials from far-field

ventricular potentials by changing the activation wavefront

through differential pacing (65). Changing the pacing wavefront

can unmask LAVA that were not obvious during sinus rhythm.

Utilizing these strategies, LAVAs can be targeted during substrate

mapping and subsequent ablation. The dynamic responses to

differential pacing can vary among patients depending on their

electrophysiological differences in scar related conduction

abnormalities. The Physio-VT mapping model utilizes different

responses of individual intracardiac electrograms to RV and LV

pacing vs. sinus rhythm to improve VT substrate resolution and

mapping (62).

Reduced cell-to-cell coupling due to altered distribution of gap

junction proteins can contribute to slowing or conduction block at

faster rates. This regional heterogeneity can be unmasked by

programmed ventricular extra-stimulus pacing. This kind of

pacing can potentially identify late potentials within scar or at scar

border zones that are likely to participate in the initiation and

maintenance of VT. Decremental evoked potentials (DEEPs)

mapping utilizes a specific S1–S2 protocol to deliver extrastimulus

mapping from the right ventricle. DEEP mapping has been found

to be more specific than late potential mapping for identifying

critical targets with in the diastolic pathway of VT (66).

Another strategy described by Di Biase and colleagues is scar

homogenization. This usually involves ablation of the entire scar,
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tissue (67). In this strategy, the authors targeted all endocardial

and epicardial signals persisting longer than 70 ms or displaying

4 or more deflections or an amplitude less than 1.5 mV. While

this strategy may eliminate VT, there is concern if extensive

ablation may result in worsening LV function post procedure.

This approach may be useful in patients with small scars and

relatively preserved ventricular function.

Current substrate-based ablation strategies emphasize the need

for high density mapping to identify and target all multicomponent

electrograms. High density multi-electrode mapping has brought

about a paradigm shift in substrate characterization during VT

ablation. Local electrogram voltages are dependent on the

recording electrode size, inter-electrode spacing, and direction of

wavefront propagation (68). The use of multi-electrode mapping

catheters with small (1.0 mm) closely spaced electrodes resulted

in a 22% smaller low voltage area (<1.5 mV) and a 47%

reduction in dense scar size (<0.5 mV) in animal models (69,

70). Another advantage of these high-density catheters is that

they minimize the effects of far-field signals and aid in the

identification of heterogeneity within low-voltage scars. Higher

mapping densities are associated with a better endocardial LAVA

identification and ablation outcomes.

Pace-mapping within scar can identify slow conduction areas

by a long-stimulus to QRS interval latencies (>40 ms), that can

correlated with VT isthmus sites (71). However, operators need

to remember that a long stimulus-QRS interval can also occur in

bystander regions. de Chillou and colleagues elegantly described

the identification of the critical isthmus of the VT circuit by

pace-mapping (72). A good pace map obtained from a scar

border region can suggest an approximate location of the VT

exit. More importantly, a discrepancy in QRS morphology

between VT and pace-map does not necessarily imply the site is

located far from the VT circuit. An abrupt transition from an

area of perfect pace-mapping to an area of poor match (such as

the entrance site) can correspond with the VT isthmus. During

pace mapping it is important to remember that multiple exits

can arise from scar and functional block can occur during VT,

that may not be present in sinus rhythm.
Mapping during ventricular tachycardia

Non-inducibility of the clinical tachycardia is a major

limitation while attempting to map and ablate VT. Earlier reports

indicate difficulty in induction of VT in approximately 25%–40%

of patients of idiopathic left ventricular tachycardia (73). Using a

systematic induction protocol along with the appropriate use of

pharmacological agents resulted in a high induction rate of

fascicular VT (74). In a subset of patients, sustained idiopathic

left ventricular VT could only be induced by pacing from within

the left ventricle. Isoproterenol enhances induction of sustained

VT in up to 70% of patients without VT at baseline. In some

patients, the administration of a low dose of a class 1A drug may

enhance the slow conduction of specialized Purkinje fibers and

facilitate induction of stable VTs. Nazer and colleagues found
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that an initial programmed electrical stimulation and entrainment

mapping under conscious sedation was important for patients with

NICM referred for epicardial ablation. In their series, empiric

ablation of endocardial and epicardial scar would have missed

the clinical VT in 20% of patients (75).

For those patients with inducible and hemodynamically

tolerated VT, point by point activation mapping can be

performed during VT focusing on the abnormal electrograms.

Local electrograms that are activated during mid-diastole,

especially those in the middle 25%–75% of diastole, should be

targeted. Entrainment mapping remains one of the cornerstones

of activation mapping strategies during stable VTs (76, 77). Local

electrograms from the mapping catheter can exhibit a lot of

artifacts during entrainment, making it difficult to interpret the

electrograms. The use of adjacent electrodes can be a useful

strategy when interpreting entrainment (78). In addition, using

the N + 1 technique difference allows entrainment mapping to be

used when the local electrogram from the pacing catheter has

artefacts after high output pacing (79). Understanding the effect

of variables such as pacing current strength, electrode size/

spacing, filtering, and noise can help us avoid errors in

interpretation during entrainment mapping.

Due to the incorporation of contact mapping technologies that

utilize multielectrode acquisition, there is an improved

understanding of activation within the myocardial wall during

VT from a 3D perspective. Integration of epicardial and

endocardial recordings during VT can be an useful strategy to

infer about mid-myocardial activation (80). Tung and colleagues

performed simultaneous endocardial and epicardial activation

mapping and found that in activation patterns can occur on both

myocardial surfaces (65). A 3D perspective of the VT circuit can

enhance the precision of the ablative therapy and support a

greater role for adjunctive strategies to address arrhythmias

harbored in the mid-myocardium and subepicardium.

High density multipolar mapping systems allow for a collection

of greater numbers of EGMs from smaller, more closely spaced

electrodes during VT. Several animal and human studies have

shown that one of the advantages of HD mapping is that far-

field signals are significantly lessened by reducing the bipole

spacing, improving near-field detection (81, 82). These HD

catheters Advisor HD-Grid, Abbott, Abbott Park, Illinois;

Optrell, Pentaray and Octaray, Biosense Webster, Diamond Bar,

California; Orion, Boston Scientific, Marlborough, MA) can

enhance mapping resolution in areas of low voltage and scar,

enabling detection of areas of preserved myocardial fibers, and

identification of diastolic electrograms during VT. Conventional

catheters would likely classify these low voltage areas as dense

scar. Mapping of the entire diastolic pathway, utilizing

multielectrode mapping catheters, has been associated with a

higher freedom from VT recurrence (83).
Strategies to improve ablation

Radiofrequency ablation as an effective therapy for VT is based

on the principle of delivering solid and durable lesions. One of the
Frontiers in Cardiovascular Medicine 06
major determinants of lesion formation is an adequate contact

between the catheter tip and the myocardial surface. One of the

major technological advancements was the development of

sensors at the distal tip capable of monitoring contact, contact

force (CF) (84, 85). During VT ablation, a median contact force

of 10 g within the scar zone has been shown to have the best

correlation with effective lesion formation (86, 87). Although

there is also evidence that contact force sensing catheters may

not change long-term outcomes, it is important that we continue

to explore markers of ablation efficacy (88).

In a certain subset of patients, especially those with mid-

myocardial substrates, there is a growing need to develop new

strategies for deeper lesion formation. Alternatives such as half-

normal saline and dextrose solution are able to create larger

lesions compared to saline irrigation (89). Modulating impedance

is another strategy to augment lesion size, by increasing

radiofrequency current using similar power settings. Clinically

this can be achieved by placing additional surface dispersive

electrode patches. However, it is important to remember that

increasing current density with low-ionic irrigants, lowered

impedance, and high power settings has the potential to increase

the risk of complications, including steam pops.

Utilizing two catheters for either simultaneous unipolar

ablation or bipolar ablation can be used to achieve transmural

lesions. Bipolar ablation uses two catheters connected to the

radiofrequency generator (1 to the output terminal and 1 to the

ground reference), placed on opposite surfaces of the myocardial

tissues. This can also be achieved with simultaneous unipolar

ablation with 2 catheters connected to separate radiofrequency

generators. Observational case series have found these techniques

to useful to terminate VT in patients who unsuccessful unipolar

ablation of septal substrates (90) (Figure 3). Recently, another

tool developed for deep lesion formation utilizes a catheter with

an irrigated 27 gauge retractable needle-tipped electrode (91).

This allows radiofrequency ablation to be delivered directly inside

the myocardial wall, overcoming the issue of intramural lesion

delivery. Remote magnetic navigation is an alternative to manual

catheter control, and has shown to be a safe and feasible

alternative (92).

Identification of the optimal endpoints for VT ablation is

crucial to improve the success rate of this procedure. The

response to programmed electric stimulation at the end of the

procedure has been traditionally used to evaluate not only the

acute success but also to predict the long term outcome. The

guidelines endorse noninducibility of PES as an endpoint for VT

ablation (93). However, several studies have not been able to

show a direct association between VT non-inducibility and long-

term arrhythmia-free survival. Many potential confounders might

affect VT inducibility including periprocedural antiarrhythmic

drug therapy, type of anaesthesia, and heterogenous PES

protocols. Santangeli and colleagues compared RV stimulation

with LV stimulation within the scar in a series of 156 patients

undergoing catheter ablation of post-infraction VT. RV

stimulation induced clinical VTs in 31% of cases whereas

stimulation within the scar induced clinical VTs in close to 70%

of patients (93). The authors hypothesized that some RBBB VTs
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FIGURE 3

Bipolar ablation for intramural substrate. A case of cardiac sarcoidosis with an intramural substrate. Bipolar ablation was delivered through an endocardial
and epicardial catheter at the basal lateral wall. The distance between the tips of the ablation catheters was 10 mm. There was termination of the
tachycardia during ablation.

FIGURE 2

Importance of multielectrode mapping. A Case of ARVC with VT storm: substrate mapping with (A) multipolar catheter (1 mm electrode size) showed
isolated late potentials within the scar; (B) mapping with the ablation catheter (3.5 mm tip electrode) at the same site could not pick up these signals.
However, pacing at same site captured with latency.
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FIGURE 4

Summary of approach to VT ablation in patients with and without structural heart disease.
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are best induced with lateral LV stimulation. Noninvasive PES

(NIPS) has been used in some centres a few days after catheter

ablation to identify patients at increased risk of VT recurrence.

Studies suggest that performing NIPS a few days after the

procedure should be strongly considered as an endpoint for

catheter ablation of scar related VT (94).

Regarding substrate-based ablation approaches, there is an

increasing need for novel endpoints beyond non-inducibility to

evaluate the completeness of linear lesions and the elimination of

abnormal electrograms. Studies that have assessed the role of late

potential ablation in scar related VT have adopted procedural

endpoints ranging from complete elimination of late potentials to

failure to capture with high output pacing. Berruezo and

colleagues also used elimination of all conductive channels and

found that this method resulted in a very high rate of VT-free

survival during median follow up of 11 months (95). A box

lesion set approach has also been utilized to eliminate all

potentially arrhythmogenic areas within the scar.
Use of anticoagulation in the
post-procedure period

There are limited data regarding the effectiveness and

safety of post-ablation anticoagulation strategies after VT
Frontiers in Cardiovascular Medicine 08
ablation. In the post op period, the benefits of anticoagulation

need to be weighed against the risks of bleeding. Siontis and

colleagues found that using a slowly escalating bridging

regiment of UFH, followed by 3 months of oral

anticoagulation is associated with low thromboembolic and

bleeding risk after infract-related VT ablation (96). In the

absence of extensive ablation, they found that antiplatelet

therapy alone was a reasonable strategy. Recently, the

STROKE-VT trial suggested that DOAC use following

endocardial and/or epicardial ablation for left ventricular

arrhythmia ablation was associated with a reduced risk of TIA

or stroke (97). The risk of bleeding and thrombotic

complications need to be considered and anticoagulation

needs to be individualized.
Conclusion

Safety and efficacy of catheter ablation for ventricular

tachycardia has steadily improved. Better understanding of

the pathophysiology of VT, advanced mapping systems as well

as development of contact force sensing catheters have

resulted in improved outcomes. Substrate modification

strategies helps to safely and successfully ablate VTs in

sick cohort of patients, as it eliminates the need for repeated
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induction of VT for mapping. Most importantly, utilizing a

systematic approach to mapping and ablation of VT is crucial

for management of these patients and improving overall

clinical outcome.
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