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Background: The implementation of deep learning models for medical

image classification poses significant challenges, including gradual performance

degradation and limited adaptability to new diseases. However, frequent retraining

of models is unfeasible and raises concerns about healthcare privacy due to the

retention of prior patient data. To address these issues, this study investigated

privacy-preserving continual learning methods as an alternative solution.

Methods: Weevaluated twelve privacy-preserving non-storage continual learning

algorithms based deep learning models for classifying retinal diseases from

public optical coherence tomography (OCT) images, in a class-incremental

learning scenario. The OCT dataset comprises 108,309 OCT images. Its classes

include normal (47.21%), drusen (7.96%), choroidal neovascularization (CNV)

(34.35%), and diabetic macular edema (DME) (10.48%). Each class consisted of

250 testing images. For continuous training, the first task involved CNV and

normal classes, the second task focused on DME class, and the third task included

drusen class. All selected algorithms were further experimented with di�erent

training sequence combinations. The final model’s average class accuracy was

measured. The performance of the joint model obtained through retraining and

the original finetunemodel without continual learning algorithmswere compared.

Additionally, a publicly available medical dataset for colon cancer detection based

on histology slides was selected as a proof of concept, while the CIFAR10 dataset

was included as the continual learning benchmark.

Results: Among the continual learning algorithms, Brain-inspired-replay (BIR)

outperformed the others in the continual learning-based classification of retinal

diseases from OCT images, achieving an accuracy of 62.00% (95% confidence

interval: 59.36-64.64%), with consistent top performance observed in di�erent

training sequences. For colon cancer histology classification, E�cient Feature

Transformations (EFT) attained the highest accuracy of 66.82% (95% confidence

interval: 64.23-69.42%). In comparison, the joint model achieved accuracies of

90.76% and 89.28%, respectively. The finetune model demonstrated catastrophic

forgetting in both datasets.

Conclusion: Although the joint retraining model exhibited superior performance,

continual learning holds promise in mitigating catastrophic forgetting and

facilitating continual model updates while preserving privacy in healthcare deep
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learning models. Thus, it presents a highly promising solution for the long-term

clinical deployment of such models.

KEYWORDS

continual learning, medical image classification, model deployment, optical coherence

tomography, comparative analysis

1. Introduction

Continual learning refers to the process of continually training

and updating a deep learningmodel over time, as new data becomes

available. This approach is particularly pertinent for medical

image classification model deployment because any potentially

deployed deep learning model could suffer from a gradual decline

in performance from underlying distribution shifts over time.

By continuously retraining the model with new data, the model

could maintain high classification performance and adapt to

changes in the data distribution. However, in continual learning

scenarios, the conventional deep learning approach often leads

to catastrophic forgetting, where the model experiences memory

loss or a significant decline in performance on previous classes

after being trained on new tasks or datasets (1). This is a

commonly reported phenomenon in deep learning because the

model prioritizes its weights and biases optimization for the

new task, leading it to forget or overwrite previously learned

information. Alternatively, to mitigate catastrophic forgetting in

medical image classification, one potential solution is to retrain

the model with cumulative data whenever a new dataset becomes

available. However, retraining from scratch frequently in the

model’s deployment phase is not practical. Furthermore, data

privacy is of utmost importance in the medical domain, and

due to strict regulatory requirements, it may not always be

possible to access old data (2). Additionally, medical data is often

stored in dedicated servers, making it difficult to shuffle multiple

datasets. Researchers have proposed a number of continual learning

approaches to overcome catastrophic forgetting. However, there

have been few studies on medical imaging using continual learning.

Furthermore, achieving a trade-off between stability and plasticity

remains another challenge in the continual learning scenario.

Stability refers to retaining previously acquired knowledge, while

plasticity pertains to the model’s ability to learn new knowledge

from the new data.

In the context of continual learning, “non-storage”

refers to the absence of storing or retaining old data from

previous tasks or classes. Continual learning approaches

can be categorized into two broad groups: exemplar-based

and exemplar-free approaches. Exemplar-based approaches

store a small number of data or exemplars and reintroduce

them with the new data during training to prevent the

model from forgetting the old knowledge. Conversely,

exemplar-free approaches (non-storage) rely on regularization,

expansion, and generative replay to achieve similar goals

without storing exemplar data. Given concerns about

privacy and accessibility with medical data, the storage of

previous exemplar data from old studies is not feasible.

Therefore, exemplar-free continual learning approaches are

preferable for medical image classification models and preserve

healthcare privacy.

The training process for continual learning happens

sequentially in a series of tasks, and during each training

session, the model only has access to the data for the current

task. Task incremental, domain incremental and class incremental

are three common scenarios of continual learning. In task

incremental learning, the model has access to the task identifier

during inference, which obviates the need for the model to

differentiate between images from different tasks. Domain

incremental learning, on the other hand, does not require task

identification at inference time, since the output space of each

task is the same. Class incremental learning, the most clinically

relevant yet challenging scenario, involves the model’s inability

to access the task identifier at inference time, and the model

must therefore be capable of distinguishing between images from

all tasks. The class incremental learning is more closely aligned

with real-life scenarios and more suitable for real-world medical

image classification.

Hence, in this research, privacy-preserving exemplar-free

continual learning approaches were explored in class learning

scenarios for medical imaging classification targeting significant

and prevalent diseases using publically available datasets, namely

optical coherence tomography (OCT) (3) and PathMNIST (4). As

a benchmark for continual learning performance, CIFAR10 dataset

(5) was included.

2. Background

Continual learning involves training machine learning models

on data from a series of tasks D = {D1,D2, · · · ,DT}. Task Dt =

{(xti , y
t
i )}

nt
i=1 is the t

th task where xti ∈ Xt is an input, yti ∈ Yt is the

corresponding label and nt is number of classes in the task. During

training the tth task, only training data Dt is available while the

training data of previous tasks are no longer accessible. The tasks

are generally assumed to be distinct from one another. The goal of

continual learning is to train a parameterized model fθ :X → Y

that can predict the correct label for an unseen test sample from

any task. Here X = ∪T
t=1Xt is the input space and Y = ∪T

t=1Yt

is the output space. In continual learning, the marginal probability

distribution of inputs varies across tasks, i.e., P(X1) 6= P(X2). Based

on probability distribution of output space and whether the task

identity is provided at the inference time, there are three different

continual learning scenarios (6).
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2.1. Task incremental scenario

The probability distribution of output space varies between

tasks (P(Y1) 6= P(Y2)) and task identifier is provided at the time

of inference for task incremental scenario. Hence, it is possible

to train models with task-specific components in this scenario.

“Multi-headed” network architecture is commonly used for this

scenario where each task has its own output units, but the rest of

the network is shared among tasks.

2.2. Domain incremental scenario

The output space (and hence the corresponding probability

distribution) remains same across the tasks for domain incremental

scenario, i.e., {Y1} = {Y2} and P(Y1) = P(Y2). The problem

setting looks similar to domain adaptation (7). However unlike

domain adaptation, which focuses on achieving good performance

on new task, the goal of continual learning is to maintain good

performance on previously learned tasks while also achieving

reasonable performance on new tasks.

2.3. Class incremental scenario

Similar to task incremental scenario, the probability

distribution of output space varies between tasks in class

incremental scenario. However, the model does not have access

to task identifier at the time of inference which make it the most

complex scenario of continual learning. The network architecture

for class incremental scenario is generally “single-headed” where

a single output layer is used to make predictions for all tasks.

Sometimes “multi-headed” architectures are used for this scenario,

but it needs prediction of task identifier before predicting the

class label of the image at the time of inference. Figure 1 shows an

example of a “single-headed” model which is being trained in class

incremental scenario to classify OCT images into different retinal

pathologies. In many real-world applications, it is not practical

to assume that the task identifier will be available at the time of

inference, especially in the medical domain where the model is

often used to classify diseases. Therefore, an exclusive focus was

placed on this scenario in this research.

3. Exemplar-free continual learning
approaches

In this section, threemain categories of exemplar-free continual

learning approaches and associated algorithms were summarized.

3.1. Regularization-based methods

Regularization-based continual learning methods add a

regularization term to the training loss function that encourages

it to retain the knowledge it has learned from previous tasks

while also allowing it to adapt to new tasks. Regularization-based

methods can be further divided into weight-based and data-based

regularization methods.

The first group of regularization-based approaches aims to

prevent weight drift, which is considered to be crucial for

previous tasks. This is achieved by estimating the importance of

each parameter in the network after learning each task. When

training new tasks, the importance of each parameter is taken

into account and used to discourage its changes. For example,

Elastic Weight Consolidation (EWC) (8) uses a quadratic penalty

term to restrict modification of important weights. (9) proposed a

quadratic penalty method for continual learning of neural networks

that contain batch normalization layers. Synaptic Intelligence (SI)

method (10) uses synapse to measure the weights’ importance.

Memory Aware Synapses (MAS) (11) determines the importance

of weights using a Hebbian learning model, which is based on

the sensitivity of the output function. Riemanian Walk (RWalk)

(12) method uses Fisher Information Matrix approximation and

online path integral to calculate the importance for each parameter.

(13) defined a notion of uncertainty and made the variance of the

incoming weights of each node trainable. To maintain stability-

plasticity trade-off, they also included two regularization terms for

stability and plasticity respectively. Similarly, (14) added a drifting

regularization for stability and a Lasso regularization for plasticity.

There are a few methods which regularize gradients of weights. For

instance, Orthogonal Weights Modification (OWM) (15) maps the

weights modification (gradients) onto a subspace generated by all

the previous tasks in order to maintain the performance of previous

tasks. Gradient Projection Memory (GPM) (16) regularizes the

gradients by restricting the direction of gradient descent steps.

Likewise, (17) proposed conceptor-aided backpropagation (CAB),

in which gradients are shielded by conceptors (characterizes the

linear subspace formed by activation in a layer) against degradation

of previously learned tasks.

On the other hand, data-based regularization methods use

knowledge distillation (18) to prevent the model from forgetting.

Knowledge distillation refers to the technique of transferring the

knowledge of a model trained on previous tasks to a new model

that will learn new tasks. The basic idea is to use the output of

the model trained on previous tasks as a “soft target” for the

new model. The new model is trained to mimic the output of

the old model on the previous tasks, as well as learn new tasks.

Learning without Forgetting (LwF) (19) is one of the earliest

methods to use knowledge distillation for continual learning.

Extending on LwF, (20) proposed Learning without Memorizing

(LwM), which adds attention distillation loss by Gradient-weighted

Class Activation Mapping (Grad-CAM) along with knowledge

distillation loss to mitigate catastrophic forgetting. There are a few

methods such as PODNet (21), Attention Uncertainty (AU) (22)

and GeoDL (23) which incorporate exemplar memory in addition

to knowledge distillation techniques to address the challenge of

continual learning.

A major drawback of regularization-based approaches is that

they are highly sensitive to the selection of hyperparameters,

making it challenging to achieve a suitable balance between stability

and plasticity.
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FIGURE 1

An example for class incremental scenario in medical imaging classification: Continual learning based deep learning algorithm sequentially learns a

series of retinal pathologies in OCT such as CNV, DME, Drusen, and normal finding.

3.2. Expansion-based methods

In contrast to regularization-based methods, expansion-based

continual learning approaches focus on expanding the capacity of

the model to handle new tasks. This can be achieved by adding

new parameters or neurons to the model, or by creating multiple

versions of the model, each specialized for a specific task.

One popular approach of expansion-based continual learning is

called dynamic expansion, where the model’s capacity is expanded

by adding new neurons or parameters to the model as new tasks

are encountered. This approach allows the model to adapt to

new tasks by creating new representations or features that are

specific to the new task. Dynamically Expandable Network (DEN)

(24), Reinforced Continual Learning (RCL) (25) and Compacting

Picking Growing (CPG) (26) are some methods which fall under

this category.

Another approach is called task-specific expansion, where

either multiple versions of the model (each specialized for a

specific task) are created, or task specific classifier is added to the

model. This allows the overall system to handle multiple tasks

simultaneously. Progressive Network (27), Additive Parameter

Decomposition (APD) (28), Efficient Feature Transformation

(EFT) (29) and Expert Gate (30) are some of the methods that

utilize task-specific expansion to continuously learn new tasks

without forgetting previous tasks.

Most of the existing expansion-based methods are suitable for

the task-incremental scenario, i.e., they assume availability of task

identity at the time of inference. However, certain methods such

as Expert Gate, iTAML and EFT predict the task identifier prior

to predicting the correct class. Expansion-based methods typically

exhibit superior performance compared to regularization-based

methods. However, the requirement for two levels of inferences,

first determining the task identity and then the actual class label,

may decrease the overall performance of the model.

3.3. Generative replay-based methods

The idea of generative replay-based methods in continual

learning is to generate synthetic data that resembles the distribution

of old tasks, and use them to train the model along with the

data in new tasks. This allows the model to learn new tasks

while maintaining knowledge of previously learned tasks, without

the need to keep any exemplars from those tasks. Some popular

generative methods used in continual learning include generative

replay (GR) (31), Replay-through-Feedback (RtF) (32) and Brain

Inspired Replay (BIR) (33). GR utilizes a generative adversarial

network to generate previous data whereas RtF and BIR use a

variational autoencoder as generator.

The main disadvantage of generative method is that it takes

a long time to train the generative model. Furthermore, it has

been shown that generative models may struggle when dealing with

complex datasets (34).

4. Compared methods

In this study, pertinent algorithms from each category of

exemplar-free continual learning methods were selected. Within

the weight-based regularization methods category, EWC (8), SI
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(10), MAS (11), MUC-MAS (35), RWalk (12), OWM (15), and

GPM (16) were included. For data-based regularization, LwF (19)

and LwM (20) were selected. EFT (29) was chosen as the expansion-

based method, while GR (31) and BIR (33) were selected from the

generative-replay methods. The lower baseline (finetune) and the

upper baseline (joint) approaches were included for comparison.

Finetuning involves adapting a pre-trained model to new data

or tasks without starting from scratch, while joint training relies

on retraining the model on cumulative data from all tasks. A

comprehensive description of these selected algorithms is provided

in the Supplementary material.

5. Methodology

The model underwent incremental training on three tasks.

By definition, Model 1 was initially trained on the first task,

followed by expanding Model 1 into Model 2 through sequential

training on task 2 data. Similarly, Model 2 was further expanded

into Model 3 after being trained on task 3 data. The detailed

network architecture and hyperparameter values are provided in

the Supplementary material.

5.1. Datasets

Two medical datasets: optical coherence tomography (OCT)

(3) and PathMNIST (36) and one non-medical dataset: CIFAR10

(5) were selected. All images are in RGB color, normalized using

the mean and standard deviation of ImageNet. All three datasets

were split into three tasks and the set of classes in each task was

fixed across all experiments. The specific class description for each

dataset is specified below.

• OCT: This dataset contains over 108,309 publicly available

OCT training images, including four classes regarding the

condition of the retina: Normal (47.21%), Drusen (7.96%),

Choroidal Neovascularization (CNV) (34.35%), Diabetic

Macular Edema (DME) (10.48%). There are 250 testing

images for each class. The first task contains two classes:

Normal and CNV, the second task contains only DME

and the last task contains only Drusen. It was selected for

its highly imbalanced classes simulating a more realistic

continual learning scenario, particularly when the model

has already been trained on a large number of data in

earlier tasks and the new task only contains a small number

of training images. Furthermore, additional investigations

on continuous learning sequences were explored for the

significance of unbalanced data distribution, as reported in

the Supplementary material. Those scenarios include task 1

containing a large amount of data while task 3 containing the

least amount of data, and vice versa.

• PathMNIST: As part of MedMNIST dataset, PathMNIST

dataset is selected due to its distinguishing feature of

encompassing a greater number of disease classes. It consists

of histology slides with 9 different colon pathology classes. It

contains 89,996 training and 7,180 testing images. The number

of training images in a class varies from 7,886 to 12,885, with

an average of 10,000. The 9 classes are divided into three tasks

containing three classes each.

• CIFAR10: As a traditional continual learning benchmark,

CIFAR10 dataset was selected to compare the adaptability

and robustness of different algorithms. It consists of 60,000

natural images in 10 classes, such as cat and truck. There are

5,000 training images and 1,000 testing images per class. The

first task contains four classes while the two subsequent tasks

contain three classes each.

5.2. Statistical analysis

Experiments were conducted using three different seed values.

Following common practices in the field of continual learning

(12, 37), average accuracy and average forgetting were selected

as the evaluation metrics. Average accuracy measures the overall

performance of the model after training on task t is complete. It

is computed as At = 1
t

∑t
i=1 a

i
t , where ait is the accuracy of the

model on task i after training on task t. On the other hand, task-wise

accuracy was also introduced to highlight model adaptation and the

balance between stability and plasticity during sequential training,

measured by the intermediate and final accuracies of each task on

the intermediate (Model 1 and Model 2) and final model (Model

3). The forgetting metric was included by measuring the decline in

accuracy for each task by comparing the highest accuracy achieved

during training with the final accuracy after training is completed.

This provides an estimate of the extent model has been forgotten

based on its current state. The forgetting on task i after the model

has been trained on task t is given by f it = max
j∈{1,··· ,t−1}

(aij − ait).

The average forgetting of the final model is computed as F =
1

T−1

∑T−1
i=1 f iT .

6. Results

The average accuracy and forgetting of the final model (Model

3) after it has been trained on the three tasks sequentially are

calculated. The task-wise accuracy on each model is also measured

for a better insight into the balance between stability and plasticity.

6.1. Average accuracy and forgetting

The average accuracy and forgetting ofModel 3 are presented in

Table 1, and the effect of sequential training on the average accuracy

of the model is shown in Figure 2. For average accuracy, joint

training obtains best performance of 90.76%, 89.28% and 88.01%

respectively and it serves as the upper bound. Among all validated

algorithms, BIR shows the best retinal disease classification on

OCT and CIFAR10 performance with average accuracy of 62.00%

(95% CI 59.36-64.64%) and 64.68% (95% confidence interval (CI)

63.76-65.59%) respectively. EFT obtains the best colorectal cancer

histology classification on PathMNIST with average accuracy of

66.82% (95% CI 64.23-69.42%). Additionally, EFT demonstrates

consistent better accuracy and lower forgetting across different

datasets with average accuracy of 43.20% (95% CI 41.24-45.16%)
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TABLE 1 Average accuracy and forgetting of Model 3 for the three datasets.

Category Method OCT PathMNIST CIFAR10

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

Baseline Finetune 33.33 100 28.89 99.18 32.20 86.47

Joint 90.76 - 89.28 - 88.01 -

Regularization LwF 44.8 80.23 25.20 81.33 32.90 65.62

LwM 41.75 41.58 23.02 35.43 44.66 41.48

EWC 31.54 76.83 29.16 95.82 32.53 93.32

SI 43.60 21.27 32.40 28.94 28.51 40.62

MAS 31.73 83.69 29.97 74.54 36.18 80.07

MUC-MAS 39.32 76.87 33.49 52.19 33.84 65.10

GPM 41.16 26.41 39.51 24.96 36.47 36.18

OWM 38.93 83.10 52.42 16.34 48.30 42.18

RWalk 33.33 100 27.05 85.13 35.00 90.99

Expansion EFT 43.20 38.13 66.82 29.39 60.65 31.31

Generative GR 35.83 66.05 21.95 90.88 31.50 74.28

BIR 62.00 51.31 35.17 88.17 64.68 42.30

The bold values indicate best results for each column.

on OCT and 60.65% (95% CI 58.57-62.73%) on CIFAR10. RWalk’s

performance is poor and is comparable to the performance of

Finetune with catastrophic forgetting. Other algorithms such as

LwF, EWC, MAS, MUC-MAS and GR appear to have comparable

performance to Finetune in terms of average accuracy. However,

they are still able to retain some knowledge of previous tasks

(evident from their lower forgetting), in contrast to Finetune, which

almost completely forgets previous tasks, as can be observed in

Table 2. GR performs poorly on all datasets in contrast to similar

generative replay method BIR.

In terms of forgetting, although the accuracy of SI is not

high, it demonstrates the least forgetting (21.27% on OCT). For

PathMNIST and CIFAR10 datasets, OWM and EFT show the least

forgetting, measured by 16.34% and 31.31% respectively. We also

note that the performance of exemplar-free continual learning

methods is greatly influenced by the structure of the dataset. For

instance, OWM, which performs relatively well on PathMNIST

(52.42% accuracy, 16.34% forgetting) and CIFAR10 (48.30%

accuracy, 42.18% forgetting), does poorly on the unbalanced data

of OCT (38.93% accuracy, 83.10% forgetting). In contrast, SI

performs better on OCT (43.6% accuracy, 21.27% forgetting) and

performs relatively worse on PathMNIST (32.40% accuracy, 28.94%

forgetting) and CIFAR10 (28.51% accuracy, 40.62% forgetting).

In summary, EFT and BIR exhibit better overall accuracy

compared to the other selected exemplar-free continual

learning methods.

6.2. Task-wise accuracy

Based on Figures 3–5, the accuracy of each task is affected

after the model is trained on each task for OCT, PathMNIST and

CIFAR10 datasets respectively. Plots in Figures 3A, 4A, 5A show

the decline in accuracy of task 1 data after sequential training

on the three tasks. The X-axis represents the three models. It is

observed that although the initial accuracy on task 1 is almost

similar for all methods, it drastically declines (except for a few well-

performing methods such as EFT, BIR, etc.) after training on task

2. However, the accuracies of task 2 data vary widely (Figures 3B,

4B, 5B) depending on the stability-plasticity trade-off used by each

method. The initial accuracy of task 2 for methods such as SI, LwM,

and GPM is relatively low as, to maintain stability, the model is not

flexible enough to incorporate new knowledge. The same behavior

is observed for the task 3 data (Figures 3C, 4C, 5C), and the initial

accuracy of task 3 data varies with the algorithm.

Results reported in Table 2 provides a better picture of the

stability-plasticity trade-off employed by each algorithm where the

accuracy of each task on Model 3 was reported. Algorithms such as

LwF, EWC,MAS, RWalk andGR almost completely forget previous

tasks and their average accuracy reported in Table 1 is mainly

due to the high accuracy of task 3. Based on the relatively better

performance of EFT across three different datasets, it supports the

assertion that expansion-based methods, which add task-specific

nodes to the model, are better able to retain the knowledge of

previous tasks compared to regularization-based methods. As EFT

maintains a task-specific classifier, it is able to maintain relatively

better accuracies on each task.

It is noteworthy that for some algorithms such as LwM, SI, and

GPM, the final accuracy of task 1 is higher than the final accuracy

of task 2, which appears counterintuitive. However, as seen in

Figures 3B, 4B, 5B, to maintain stability, the initial accuracies

of task 2 are low to begin with. Therefore, when the model is

subsequently trained on task 3, the accuracy of task 2 further

declines and is lower than the final accuracy of task 1 (which was

high to begin with). This explains the behavior of having task 2’s

final accuracy lower than task 1’s final accuracy.

The majority of methods, except for EFT and OWM to some

extent, exhibit poor performance on the PathMNIST dataset. This
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FIGURE 2

The average accuracy on the three models. (A) Average accuracy on

OCT dataset. (B) Average accuracy on PathMNIST dataset. (C)

Average accuracy on CIFAR10 dataset.

could be attributed to the presence of overlapping features among

classes across different tasks. The limited success of OWM on this

dataset highlights the existence of feature overlap, as even with an

extensive training regime of 500 epochs and a learning rate of 1e7,

OWM struggled to identify a suitable subspace in the feature space

for the third task, despite its attempt to project the gradients of the

new task orthogonally to the subspace of previous tasks.

Another notable observation is that while methods like LwF

and BIR excel at retaining knowledge of the most recent task, they

tend to exhibit a higher degree of forgetting as the number of tasks

increases. For instance, although BIR demonstrates the highest

average accuracy in both OCT and CIFAR10, it still experiences

significant forgetting (51.31% on OCT and 42.30% on CIFAR10).

This indicates that although these models achieve high accuracy on

current tasks, they struggle to retain information about earlier tasks.

Additionally, regularization-based methods are highly sensitive to

hyperparameters, and even small changes to the regularization loss

coefficient can lead to vastly different results.

In the context where the later tasks have more training data

compared to the earlier tasks, BIR consistently maintains its

performance on the OCT dataset, even when the class sequence

is altered. This is demonstrated in the Supplementary material.

However, while EFT maintains its overall accuracy, its task-

wise accuracy exhibits variations for different sequences. GR’s

performance remains unaffected by data imbalance; however,

its overall accuracy remains low, and forgetting remains high.

Other regularization-based methods, including LwF, EWC, MAS

and MUC-MAS demonstrate similar patterns. For the remaining

regularization-based methods, such as LWM, SI, GPM, OWM

and RWalk changes in the task sequence impact their task-wise

accuracy. Despite this, their overall accuracy remains low.

In conclusion, striking a balance between stability and

plasticity poses a significant challenge, especially for regularization-

based algorithms. However, generative-based and expansion-

based methods show promise in enhancing classification accuracy

for tasks in the context of continual learning. Furthermore,

generative-based methods are well-suited for scenarios where data

is imbalanced across tasks. These approaches hold the potential

for addressing the complexities of retaining previously learned

knowledge while accommodating new information.

7. Discussion

In the field of medical imaging, deep learning models have been

widely used for classification tasks across various medical imaging

modalities. These models have been incorporated into real-world

practice for decision-making in diagnosis and treatment, as

evidenced by recent examples such as referable diabetic retinopathy

screening in ophthalmology using color fundus photography (38).

While deep learning models have provided a balance between

healthcare burden and disease management, emerging imaging

devices and new disease pathologies require further improvement

of existing models. Continual learning has the potential to mitigate

catastrophic forgetting and enable continual model updates,
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TABLE 2 Task wise accuracy of Model 3 for the three datasets.

Category Method OCT PathMNIST CIFAR10

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Baseline Finetune 0.0 0.0 100 0.0 0.0 86.67 0.0 2.53 94.09

Joint 99.47 97.47 75.33 95.99 85.93 85.92 86.03 86.47 91.55

Regularization LwF 0.53 39.33 94.53 0.63 15.09 59.83 0.14 21.76 76.79

LwM 63.13 0.93 61.20 28.97 26.69 13.38 36.65 26.81 73.51

EWC 0.01 0.13 94.47 1.01 5.20 81.27 0.01 0.01 97.57

SI 63.33 14.53 52.93 49.36 24.84 22.99 29.85 0.42 55.26

MAS 0.13 10.37 84.68 2.04 6.07 81.78 3.35 18.05 87.16

MUC-

MAS

9.28 20.99 87.69 18.81 4.14 77.51 5.58 18.69 77.26

GPM 90.66 1.73 31.07 79.77 2.23 36.53 58.1 4.0 47.30

OWM 14.40 13.60 88.80 77.72 73.18 6.35 32.35 49.61 62.94

RWalk 0.0 0.0 100 0.22 0.06 80.88 0.81 6.33 97.86

Expansion EFT 61.47 38.40 29.73 59.60 73.63 67.24 41.10 60.74 80.10

Generative GR 2.57 16.81 88.11 0.26 1.82 63.77 2.74 7.53 84.22

BIR 10.53 78.40 97.07 17.33 3.38 84.82 30.18 68.13 95.71

making it a promising solution for medical image classification

models. In our study, we focused on comparing exemplar-free

continual learning methods for medical image classification. We

observed that regularization-based methods generally struggled in

addressing catastrophic forgetting, while expansion-based methods

and generative replay-based methods showed potential in retaining

knowledge of earlier tasks. Although the AI field frequently reports

on objective metrics like forgetting, it lacks clinical reliability

and applicability. This is primarily due to its limited inter-

model variability and weak correlation with model performance as

demonstrated. Additionally, as the concept of continual learning

is still in its early stages within the medical field, determining

the average accuracy threshold for clinical deployment remains an

unexplored area that necessitates careful consideration of balancing

healthcare privacy concerns.

Our results show a considerable gap between best-performing

continual learning algorithms with traditional joint training model

which involves storing previous data and retraining themodel from

scratch. However, this conventional joint training model would not

exist in the real world due to its storage for retraining strongly

violating healthcare patient privacy. Despite challenges for current

continual learning-based methods to achieve optimal classification

performance, continual learning based deep learning model would

likely be the next paradigm for medical image classification models

with the aforementioned advantages. Another interesting topic is

the balance between loss in the deep learning model’s performance

and breakage in individual patient privacy. As the next paradigm

for deep learning in medical imaging, continual learning could

potentially offer cross-institutional training for expanding model

generalizability, learning about new diseases, and even enhancing

limited data on rare diseases. Federated Learning (FL) (39) offers

an alternative to deep learning when dealing with imbalanced

healthcare data and healthcare privacy issues, relying on distributed

localized model training and subsequent updating centralized

models without exchanging raw input data. This approach has

shown practical applicability in real-world scenarios, particularly

in multi-center collaborations focused on COVID-19 detection

during the recent pandemic (40) during the last pandemic. While

continual learning may appear similar to FL, its distinct strength

lies in the fact that knowledge is “memorized” within the model

parameters, eliminating the need for complex adjunct security

measures like differential privacy or blockchain integration in FL.

Moreover, in FL, all the training data is assumed to be available

simultaneously, albeit on different local clients. On the other

hand, continual learning deals with the temporal factor, where

training data arrives with time, and older training data may become

unavailable due to privacy concerns.

As for continual learning techniques, although many original

continual learning approaches achieve their best performance

in task incremental scenarios, class incremental scenarios are

more realistic in healthcare settings and continual learning

deployment in medical image classification due to intrinsic input

data complexity and uncertainty to task information. However,

not all existing continual learning algorithms perform well in the

class incremental learning scenario, due to their unique design

and inconsistent performance in different seeds. Additionally,

certain algorithms demonstrated robustness in handling data

imbalance across tasks. The strength of our research lies in being

the first comparative study that extensively analyzed all existing

privacy-preserving continual learning algorithms on two medical

imaging modalities. Such significant datasets were selected based

on their application in diseases with high prevalence, morbidity and

mortality. However, we acknowledge the limitation of not including

many other forms ofmedical imaging. In future work, it is pertinent
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FIGURE 3

Task wise accuracy of OCT dataset on the three models. (A) Task 1

accuracy. (B) Task 2 accuracy. (C) Task 3 accuracy.

to explore the influence of different input data types, for example,

chest X-ray, color fundus photography, computed tomography,

and magnetic resonance imaging.

FIGURE 4

Task wise accuracy of PathMNIST dataset on the three models. (A)

Task 1 accuracy. (B) Task 2 accuracy. (C) Task 3 accuracy.

8. Related work

With a growing interest in have been many approaches

proposed in the literature. This has been followed by several surveys
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FIGURE 5

Task wise accuracy of CIFAR10 dataset on the three models. (A) Task

1 accuracy. (B) Task 2 accuracy. (C) Task 3 accuracy.

and empirical papers that aim to provide an overview of the

field and evaluate the performance of these methods. To enable a

structured comparison between continual learning methods, Van

de Ven and Tolias (6) described the three scenarios of learning.

Parisi et al. (41) discussed continual learning from the perspective

of biological lifelong learning such as structural plasticity, memory

replay, curriculum and transfer learning etc. Delange et al. (42)

offered a comprehensive experimental comparison of 11 different

continual learning methods, however, they focused on easier

task incremental setting and assume that the task identifier

is known at the time of inference. In their interesting work

Farquhar and Gal (43) examined standard evaluation practices

and observed that based on the selection of experimental design,

some continual learning approaches look better than they are.

Qu et al. (44) grouped continual learning methods by their

representative techniques, including regularization, knowledge

distillation, memory, generative replay, parameter isolation etc.

The study conducted by Hayes et al. (45) presents a thorough

comparison between replay in the mammalian brain and replay in

artificial neural networks and identified the gaps between replay in

these two fields. Most of the empirical surveys (46–48) cover all

three scenarios of continual learning and select only a handful of

approaches suitable for each scenario for comparing performances.

Hence, these works do not deep dive into a more focused use

case of exemplar-free class-incremental setting which is particularly

relevant to the medical domain. Furthermore, they do not compare

these state-of-the-art algorithms on medical datasets. Research

conducted by Derakhshani et al. (49) is closest to our work, where

the authors have established a benchmark for classifying diseases

using the MedMNIST dataset. However, they have considered a

limited selection of five continual learning methods across all

three scenarios of continual learning. As exemplar-free methods,

they chose EWC (8), MAS (11), and LwF (19), while iCarL

(50) and EEIL (51) were selected as exemplar-based methods.

They reported iCarL achieving the highest performance on the

PathMNIST dataset with an accuracy of 58.46%. In contrast,

EFT (29), an expansion-based exemplar-free method, performed

the best (66.82%) on the PathMNIST dataset based on the

current study.

9. Conclusion

Three major continual learning methods namely

regularization-based, expansion-based, and generative replay-

based methods, and relevant algorithms were explained and

summarized in this research. Furthermore, twelve state-of-the-art

privacy-preserving continual learning algorithms were investigated

for medical imaging classification using deep learning models. BIR

algorithm achieved the best average accuracy on OCT for retinal

disease classification among all continual learning algorithms,

and EFT is the best-performing algorithm on PathMNIST for

colorectal cancer histology classification. It was suggested both

expansion-based and generative replay-based methods, specifically

EFT and BIR, show the greatest potential in continual learning

for medical applications. Given the frequent model updates

and the need for the integration of new medical knowledge,

continual learning has become an increasingly important topic

in healthcare model deployment. Nevertheless, the trade-off

between performance loss and patient privacy remains a crucial

consideration. Continual learning offers a promising avenue for
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improving model performance while preserving patient privacy,

and could potentially be the next paradigm for next-generation

deep learning-based medical image classification.
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