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TAF1B depletion leads to
apoptotic cell death by inducing
nucleolar stress and activating
p53-miR-101 circuit in
hepatocellular carcinoma
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Background: TAF1B (TATA Box Binding Protein (TBP)-Associated Factor) is an

RNA polymerase regulating rDNA activity, stress response, and cell cycle.

However, the function of TAF1B in the progression of hepatocellular

carcinoma (HCC) is unknown.

Objective: In this study, we intended to characterize the crucial role and

molecular mechanisms of TAF1B in modulating nucleolar stress in HCC.

Methods: We analyzed the differential expression and prognostic value of TAF1B

in hepatocellular carcinoma based on The Cancer Genome Atlas (TCGA)

database, tumor and paraneoplastic tissue samples from clinical hepatocellular

carcinoma patients, and typical hepatocellular carcinoma. We detected cell

proliferation and apoptosis by lentiviral knockdown of TAF1B expression levels

in HepG2 and SMMC-7721 cells using clone formation, apoptosis, and Western

blotting (WB) detection of apoptosis marker proteins. Simultaneously, we

investigated the influence of TAF1B knockdown on the function of the pre-

initiation complex (PIC) by WB, and co-immunoprecipitation (Co-IP) and

chromatin immunoprecipitation (ChIP) assays verified the interaction between

the complexes and the effect on rDNA activity. Immunofluorescence assays

measured the expression of marker proteins of nucleolus stress, fluorescence in

situ hybridization (FISH) assays checked the rDNA activity, and qRT-PCR assays

tested the pre-rRNA levels. Regarding molecular mechanisms, we investigated

the role of p53 andmiR-101 in modulating nucleolar stress and apoptosis. Finally,
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the impact of TAF1B knockdown on tumor growth, apoptosis, and p53

expression was observed in xenograft tumors.

Result: We identified that TAF1B was highly expressed in hepatocellular

carcinoma and associated with poor prognosis in HCC patients. TAF1B

depletion modulated nucleolar stress and apoptosis in hepatocellular

carcinoma cells through positive and negative feedback from p53-miR-101.

RNA polymerase I transcription repression triggered post-transcriptional

activation of miR-101 in a p53-dependent manner. In turn, miR-101 negatively

feeds back through direct inhibition of the p53-mediated PARP pathway.

Conclusion: These findings broaden our comprehension of the function of

TAF1B-mediated nucleolar stress in hepatocellular carcinoma and may offer

new biomarkers for exploring prospective therapeutic targets in HCC.
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Introduction

Hepatocellular carcinoma (HCC) remains a significant health

challenge worldwide, and its incidence increases yearly (1, 2). In

2020, hepatocellular carcinoma was the third most common cause

of cancer-related death and ranked sixth in incident cases (3). It is

estimated that in 2030, more than 1 million patients will die from

liver cancer annually (2). However, surgical resection and liver

transplantation are the primary options for treating HCC. However,

it is not indicated for patients with advanced HCC. In addition,

tumor metastasis and recurrence are the main reasons for poor

prognosis in HCC patients. Therefore, the treatment of HCC still

needs novel therapeutic targets and regimens.

Ribosome biogenesis is a well-known feature of cell growth and

proliferation (4). The nucleolus is a subnuclear compartment well

recognized for its involvement in ribosome production. Ribosome

biogenesis involves several processes, beginning with RNA

polymerase I (Pol I) transcription and progressing through pre-

rRNA processing and ribosomal assembly (5). Various cellular

stressors that disrupt ribosome biogenesis will lead to nucleolar

stress, and any error in the steps implicated in ribosome

biosynthesis may lead to nucleolus stress, featuring modifications

in nucleolus morphology and function (6, 7). In contrast, nucleolar

volume increases in tumor cells, which stimulates the massive

expansion of tumor cells by promoting ribosome biogenesis and

reducing nucleolar stress (8). Some studies have indicated that

nucleolus size may be available as a prognostic marker to determine

tumor progression. In addition, nuclear ribosome biosynthesis has

been demonstrated to facilitate cell cycle progression in breast

cancer and glioblastoma (9). Suppression of ribosome

biosynthesis activates the tumor suppressor protein p53

expression through the nucleolus stress response (10). These

phenomena indicate that ribosome biosynthesis and nucleolar

stress may be critical links in governing tumor progression.
02
We investigated the molecular function of TAF1B, a TBP-

associated factor (TAF) that regulates ribosome biosynthesis. Our

study identified a nucleolar stress disorder mediated by the Pol I

transcriptional machinery and its transcriptional cofactors that

facilitates hepatocellular carcinoma progression. Pol I has a low

affinity for promoter sequence elements; proper recruitment at the

promoter of the rDNA gene requires the assistance of specific

transcription factors (11). The primary transcription co-factors of

the pre-initiation complex (PIC) for Pol I in mammals are

selectivity factor 1 (SL1), chromatin-bound upstream binding

factor (UBF), and RRN3 (12, 13). In mammalian cells, Pol I

transcription is dependent on SL1, which is a complex of TBP,

TAF12, and at least four Pol I-specific TAFs: TAF1A (TAFI48),

TAF1B (TAFI63), TAF1C (TAFI110), and TAF1D (TAFI41) (14).

In addition, UBF binds throughout the rDNA in cells as a nucleolar

scaffold protein and promotes the decondensation of rDNA

chromatin (15). SL1 interacts cooperatively with UBF at the

rDNA promoter through its TAF1A and TBP subunits. This

stabilizes the association of UBF with the PIC and facilitates

rDNA transcription (16). RRN3 interacts directly with Pol I and

SL1 subunits TAF1B, TAF1C, and TAF1D. By tying Pol I to other

essential promoter-binding factors and aiding polymerase

recruitment to the PIC at the rDNA promoter, RRN3 is crucial in

directing specific transcription initiation at rDNA genes (17).

Genetic inactivation of PIC component RRN3 has been reported

to lead to nucleolar disruption, cell cycle arrest, and apoptotic cell

death (18).

Although SL-1 is required to initiate ribosomal RNA synthesis

by RNA polymerase I, its function in cancers is not fully

understood. In this study, we investigated the role of TAF1B, a

key component of SL-1, in HCC. We observed that inhibition of

TAF1B caused nucleolar stress and p53-mediated apoptosis. HCCs

are susceptible to p53-mediated apoptosis, but depletion of TAF1B

inhibits rRNA processing and ribosomal protein gene transcription.
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At a molecular level, we proved that impaired rRNA synthesis

elicited a DNA damage response, and rDNA damage contributed to

apoptosis in HCC. Our findings suggest that TAF1B might be a

novel target for treating HCC.
Materials and methods

Patients and tissue samples

Tissue samples were gathered from patients with hepatocellular

carcinoma who had undergone radical resection. Tumors and

paired paracancerous tissues collected were used for Western

blotting (WB) and immunohistochemical analysis. Each patient

signed an informed consent form for sample collection.
Cell culture

HEK293T, L-02, and HCC cell lines (HepG2, SMMC-7721,

Huh7, SK-Hep-1, Bel-7404, MHCC-97H, and Hep3b) were

purchased from American Type Culture Collection (Manassas,

VA, USA). L-02, HepG2, Huh7, SK-Hep-1, and Hep3b cell lines

were cultured in Dulbecco’s Modified Eagle Medium (DMEM;

#8120448, Thermo Fisher Scientific, Shanghai, China). SMMC-

7721 and Bel-7404 were cultured in Roswell Park Memorial

Institute (RPMI) 1640 medium (1640, #11875500, Thermo Fisher

Scientific, Shanghai, China). HEK293T was cultured in Minimum

Essential Medium (MEM; #11095072, Thermo Fisher Scientific,

Shanghai, China). All cells were maintained in a medium

supplemented with 10% fetal bovine serum (FBS; #10099, Gibco,

Shanghai, China) in a humidified chamber with 5% CO2 at 37°C.
Lentivirus production and transduction

The method for lentivirus production and transduction was

introduced previously. The oligos of shTAF1B RNAs (#1, #2, #3, #4,

#5, and #6) were synthesized in Genewiz (Suzhou, China) and

cloned in pLKO.1 lentiviral vector. The target sequences of shRNA

are listed in Table 1. Specifically, shRNAs mixed along with the

psPAX2 and pMD2.G plasmids were co-transfected into HEK293T
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cells with 80%–90% confluence in a six-well plate using

Lipofectamine 3000 reagent (#L3000015, Thermo Fisher

Scientific, Shanghai, China) to generate lentiviral particles for

gene transduction. Twenty-four hours after transfection, virus-

containing supernatants were collected and centrifuged at 300 g

for 5 min to remove suspended HEK293T cells. The supernatants

were mixed with polybrene at a final working concentration of 10

mg/mL to infect the target cells. At 48 h post-transduction, the target

cells were selected with 10 mg/mL of puromycin for 2 days and then

used for subsequent experiments. MiR-101 inhibitor (inhibit-miR-

101), U6 primer, and miR-101 primer were purchased from

GenePharma (Shanghai, China).
Immunohistochemical staining and TUNEL

For immunohistochemical staining, paraffin-embedded sections

(4 mm thick) were deparaffinized with xylene, hydrated with

decreasing concentrations of ethanol, processed in 10 mmol/L of

citrate buffer (pH 6.0), and heated in a microwave oven for 15 min

for antigen retrieval. Tissue sections were treated with 3% hydrogen

peroxidase in phosphate-buffered saline (PBS) for 10 min to block

endogenous peroxidase activity. Sections were blocked with 5% goat

serum for 30 min and incubated with primary antibodies overnight

at 4°C. Primary antibodies used for immunohistochemistry

included anti-TAFIB (1:150, #PA5-112957) acquired from

Thermo Fisher Scientific (Shanghai, China) and anti-p53 (1:500,

#2524) obtained from Cell Signaling Technology (Danvers, MA,

USA). MaxVision™HRP-Polymer IHC Kit (MXB Biotechnologies,

Fuzhou, China) developed the signal. Hematoxylin counterstained

the nucleus. According to the manufacturer’s instructions, TUNEL

staining uses a Colorimetric TUNEL Apoptosis Assay Kit (C1091,

Beyotime, Shanghai, China). First, paraffin-embedded sections (4

mm thick) were deparaffinized with xylene and hydrated with

decreasing ethanol concentrations. Then, 20 mg/mL of DNase-free

proteinase K was added and incubated for 15–30 min at 20°C–37°C,

rinsed with PBS, and incubated with 3% H2O2 in PBS for 20 min at

room temperature. Biotin labeling solution was prepared and

incubated with sections at 37°C for 60 min in the dark. Cells were

rinsed with PBS and incubated with streptavidin–horseradish

peroxidase (HRP) working solution and DAB color-developing

solution. Next, sections were dehydrated with increasing

concentrations of ethanol to xylene. Finally, tissue sections were

observed with the microscope (DMEX30, Sunny Optical

Technology, Zhejiang, China).
Colony formation assay

The shTAF1B lentivirus was transfected into HepG2 and

SMMC-7721 cells, and the cells were inoculated in six-well plates

(2,000/well) and incubated for 10 days. Cells were then immobilized

in 4% paraformaldehyde for 15 min, washed three times with PBS,

and stained with 1% crystal violet for 15 min. The colony counts

were conducted using ImageJ software.
TABLE 1 The targeting sequences of shRNA.

Name 5’-3’ sequences

shTAF1B RNA#1 GCCACAATGTTACAGAGAGAT

shTAF1B RNA#2 GCAGGTGAGCTTCATTTGATT

shTAF1B RNA#3 CCTACGGTATTAGAAGATAAT

shTAF1B RNA#4 GCCTTAAAGAACCTTGGAGTA

shTAF1B RNA#5 CCTACGGTATTAGAAGATAAT

shTAF1B RNA#6 GCAGGTGAGCTTCATTTGATT
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Apoptosis assay

Apoptotic cells were detected using the FITC Annexin V

Apoptosis Detection Kit with PI (#640914, BioLegend, San Diego,

CA, USA). The cells were harvested, washed with cold PBS, and re-

suspended with cold 1× binding buffer, according to the

manufacturer’s instructions. In a microcentrifuge tube, 100 µL of

cell suspension was transferred and added with 5 µL of FITC

Annexin V. Then, 10 µL of propidium iodide solution was added.

The cells were gently vortexed and incubated for 15 min at room

temperature (25°C) in the dark. Next, 400 µL of Annexin V Binding

Buffer was added to each tube. At least 10,000 cells per sample were

collected using an LSRFortessa Cell Analyzer (BD Biosciences, San

Jose, CA, USA) and analyzed with FlowJo software (Ashland,

OR, USA).
Western blotting

Cells were collected and lysed with 1× sodium dodecyl sulfate

(SDS) buffer supplemented with phenylmethylsulfonyl fluoride

(PMSF) and 1% phosphatase inhibitor (Beyotime), and then the

protein content of different fractions was assayed using the

bicinchoninic acid (BCA) method. The cell lysates were boiled for

10 min and centrifuged at 16,000 g for 10 min at 4°C to remove

cellular debris. Equal amounts of proteins (25 mg) were separated on
10% SDS–polyacrylamide gel electrophoresis (SDS–PAGE) gels,

transferred to polyvinylidene difluoride (PVDF) membranes

(Millipore, Billerica, MA, USA), closed with 5% bovine serum

albumin (BSA) for 1 h at room temperature, and incubated

overnight at 4°C with primary antibodies. Primary antibodies,

including anti-TAF1B (1:500, #PA5-112957) and anti-TAFID

(1:1,000, #PA5-25509), were purchased from Thermo Fisher

Scientific (Shanghai, China). Anti-Bcl-2 (1:1,000, #4223), anti-Bax

(1:1,000, #5023), anti-Caspase-9 (1:1,000, #9502), anti-Cleaved-

Caspase-9 (1:1,000, #7237), anti-Caspase-3 (1:1,000, #9662), anti-

Cleaved-Caspase-3 (1:1,000, #9661), anti-Caspase-7 (1:1,000,

#12827), anti-Cleaved-Caspase-7 (1:1,000, #8438), anti-p53

(1:1,000, #2524), and anti-PARP (1:1,000, #9542) were purchased

from Cell Signaling Technology (Danvers, MA, USA). Anti-TAFI

p48 (TAF1A) (1:500, #sc-393600) and anti-TAFI p110 (TAF1C)

(1:500, #sc-374551) were purchased from Santa Cruz Biotechnology

(Dallas, TX, USA). Anti-TAF12 (1:1500, #ab229487) and anti-TBP

(1:800, #ab818) were purchased from Abcam (Cambridge, UK).

The membranes were then blotted with HRP-conjugated secondary

antibodies for 1 h at room temperature. Chemiluminescent signals

were acquired using the Tanon 4200SF system (Tanon

Biotechnology, Shanghai, China).
Co-immunoprecipitation

For co-immunoprecipitation, the cells were treated with

Pierce™ Classic Magnetic IP/Co-IP Kit (#88804, Thermo Fisher

Scientific, Shanghai, China). According to the manufacturer’s

instructions, the cells were carefully removed and washed with
Frontiers in Oncology 04
cold PBS. Hard immunoprecipitation (IP) lysis was added to the

cells and incubated on ice for 5 min with periodic mixing. Next, the

lysates were transferred to a microcentrifuge tube and centrifuged at

~13,000 g for 10 min to pellet the cell debris. Cell lysates were

combined with 5–10 mg of IP antibody per sample in a

microcentrifuge tube and incubated overnight at 4°C to form the

immune complex. The IP antibodies were as follows: anti-TAFI p48

(TAF1A) (1:200, #sc-393600), anti-RRN3 (1:100, #ab112052), and

anti-UBF (1:200, #sc-13125). Then, pre-washed magnetic beads

were added and incubated at room temperature for 1 h with mixing.

The beads were collected with a magnetic stand and washed three

times. Next, 100 mL of Elution Buffer was added to elute the

immune complex. Finally, the samples were mixed with Lane

Marker Sample Buffer and analyzed by Western blotting with

indicated antibodies.
ChIP and ChIP-PCR

For chromatin immunoprecipitation (ChIP), the cells were

treated with SimpleChIP® Enzymatic Chromatin IP Kit

(Magnetic Beads) (#9003, Cell Signaling Technology, Danvers,

MA, USA). First, the cells were treated with 1% formaldehyde for

10 min for chromatin crosslinking and subsequently with glycine

for 5 min for neutralizing, according to the manufacturer’s

instructions, and then washed with cold PBS and collected on ice.

Acquired chromatin was precipitated with the indicated antibody at

4°C overnight. The antibodies were as follows: anti-POLR1A (1:50,

#24799), anti-TAFI p48 (TAF1A) (1:30, #sc-393600), and anti-TBP

(10 µg for 25 µg of chromatin, #ab818). Immunoprecipitated

products were collected after incubation the next day. The beads

were washed, and bound chromatin was eluted and centrifuged.

Chromatin was then digested with RNase and proteinase K. After

DNA purification, the binding site was evaluated using qPCR with

Roche LightCycler® 480 Quantitative PCR System (Indianapolis,

IN, USA). The qRT-PCR primers are listed in Table 2.
Immunofluorescence and FISH

The cells were fixed in a 4% paraformaldehyde suspension for

immunofluorescence and spun onto slides. Then, they were

permeabilized with 0.5% PBS-Triton X-100 for 10 min and

blocked with 5% goat serum for 1 h. Next, the slides were

incubated overnight with indicated antibodies at 4°C followed by

the appropriate secondary antibody, either 488 conjugated goat

anti-mouse IgG (ab150120, Abcam, Cambridge, UK) or 594

conjugated goat anti-mouse IgG (ab150077, Abcam, Cambridge,

UK). The primary antibodies were as follows: anti-fibrillarin (1:100,

#ab5821) and anti-nucleophosmin (1:200, #ab10530). For

fluorescence in situ hybridization (FISH), the cells were treated

with the RNA FISH Probe Kit (GenePharma, Shanghai, China).

First, they were fixed in a 4% paraformaldehyde suspension and

spun onto slides, according to the manufacturer’s instructions, and

100 mL 0.1% Buffer A was added and incubated for 15 min at room

temperature. Buffer A was removed and washed twice with PBS; 100
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mL of 2× Buffer C was added and incubated for 30 min at 37°C. The

probe mixture was prepared, and Buffer C was discarded. Then, 100

mL of the denatured probe mixture was added and set overnight at

37°C for hybridization in a dark place. Next, the probe mixture was

removed, and 100 mL of 0.1% Buffer F was added and washed for

5 min. Subsequently, 2× and 1× Buffer C were added. The slides

were mounted in Antifade Reagent with DAPI (#8961, Cell

Signaling Technology, Danvers, MA, USA) and underwent

microscopy. Quantitation was performed using ImageJ software

(National Institutes of Health, Bethesda, MD, USA).
Real-time PCR

The total RNA was extracted using TRIzol reagent (#DP424,

Tiangen Biotech, Beijing, China), according to the manufacturer’s

instructions. Purified RNA was reverse transcribed to cDNA using

PrimeScript™ RT Master Mix (#RR036A, Takara Biomedical

Technology, Beijing, China). qRT-PCR was then performed using

SGExcelFast SYBR Mixture (#B532955-0005, Sangon Biotech,

Shanghai, China) following standard reaction conditions on

Roche LightCycler® 480 Quantitative PCR System (Indianapolis,

IN, USA). The relative expression of target RNA was calculated

using the 2−DDCt method and normalized by the housekeeping gene

b-actin level. The qRT-PCR primers are listed in Table 3.
Tumor xenograft

SMMC-7721 cells (3 × 106 cells/mouse) or SMMC-7721 cells

transduced with lentivirus containing shRNA targeting TAF1B

were mixed with 100 mL of serum-free culture medium and

subcutaneously injected into the nude mice. Tumor size was

measured every 5 days using a digital caliper. Tumor volume was

calculated using the following formula: tumor volume = (Width2 ×

Length)/2. The mice were euthanized until the most considerable
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and processed for further evaluation.
Bioinformatic analysis

The TAF1B in human patient samples was analyzed using the

web-based tool Gene Expression Profiling Interactive Analysis

(GEPIA; http://gepia.cancer-pku.cn) using The Cancer Genome

Atlas (TCGA) data. Overall survival (OS) and disease-free survival

(DFS) were plotted using the Kaplan–Meier survival analysis. The

group cutoff was set as Cutoff-High (%) = 50% and Cutoff-Low (%) =

50%, the confidence interval was 95%, and data were considered

statistically different if log-rank p-value <0.05. The correlation was

calculated using Pearson’s correlation coefficient. p < 0.05 was

considered significant.
Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics 26

software (Armonk, NY, USA) and GraphPad Prism 9.1. Values

were calculated using Student’s two-tailed t-test or two-way

ANOVA. The p-values were expressed as follows: *p < 0.05; **p <

0.01; n.s., no significance.
Results

TAF1B is overexpressed in HCC and is
associated with worse clinical outcome

First, Western blotting detected TAF1B expression in normal

human liver cells (L-02) and HCC cell lines (HepG2, SMMC-7721,

Huh7, SK-Hep-1, Bel-7404, MHCC-97H, and Hep3B). We found

that the expression of TAF1B protein was significantly increased in
TABLE 2 Sequence of primers used for ChIP-qPCR.

rDNA region position forward position reverse

upstream -988 GCTTCTCGACTCACGGTTTC -798 GGAGCTCTGCCTAGCTCACA

upstream -410 GATCCTTTCTGGCGAGTCC -272 GGAGCCGGAAGCATTTTC

promoter -48 GAGGTATATCTTTCGCTCCGAGTC -14 CAGCAATAACCCGGCGG

5’ETS 851 GAACGGTGGTGTGTCGTT 961 GCGTCTCGTCTCGTCTCACT

18S 4013 AAACGGCTACCACATCCAAG 4148 CCTCCAATGGATCCTCGTTA

28S 10319 GAACTTTGAAGGCCGAAGTG 10450 ATCTGAACCCGACTCCCTTT

IGS 18499 TGGTGGGATTGGTCTCTCTC 18572 CAGCCTGCGTACTGTGAAAA
TABLE 3 Sequence of primers used for qRT-PCR.

Name Forward Reverse

pre-rRNA GCTGACACGCTGTCCTCTG TCGGACGCGCGAGAGAAC

b-actin AGAGCTACGAGCTGCCTGA AGCACTGTGTTGGCGTACAG
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HCC cell lines compared to L-02 cell lines (Figure 1A). We

examined the expression of TAF1B in four HCC patients by

immunohistochemistry staining. The results indicated a

significant increase in TAF1B staining intensity in tumor tissues

compared to paracancerous tissues (Figure 1B). Furthermore, we

analyzed the correlation between TAF1B expression and the clinical

outcome of HCC patients. We found that high expression of TAF1B

not only shortened the overall survival but also reduced the disease-

free survival in HCC patients (Figures 1C, D).
Depletion of TAF1B induces apoptotic cell
death in HCC

Next, we investigated whether TAF1B is crucial for the

survival of hepatocellular cancer cells. To inhibit the expression

of TAF1B, we tested several shRNA targeting TAF1B and finally

chose #2 and #6 with the best knockdown efficiency for

subsequent experiments (Figures 2A, S1). As shown in

Figure 2B, the colony formation experiments noted that

knockdown TAF1B significantly reduced the cell population in

HepG2 and SMMC-7721 cells. To further characterize the effect of

TAF1B on HCC cells, we examined cell apoptosis. Flow cytometry

analysis showed that depletion of TAF1B induced prominent cell

apoptosis revealed by counting the Annexin V-positive cells

(Figure 2C). Then, we examined the marker proteins involved in

cell apoptosis, and WB experiments revealed that TAF1B

depletion significantly downregulated BCL-2 expression and

upregulated BAX, cleaved-CASP9/CASP9, cleaved-CASP3/

CASP3, and cleaved-CASP7/CASP7 in HepG2 and SMMC-7721
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cells (Figure 2D). These discoveries suggested that TAF1B

depletion effectively inhibited the viability of hepatocellular

carcinoma cells and significantly promoted apoptosis.
TAF1B deficiency represses the
transcriptional function of RNA
polymerase I

As mentioned above, the PIC, which consists of SL-1, RRN3,

and UBF, was reported to be crucial for cell survival (18). Given that

TAF1B is a component of SL-1, we hypothesized that TAF1B

depletion caused cell death by influencing the PIC’s function. We

examined the abundance and the interaction of the major

components of the PIC. The results showed that the protein levels

of TAF1A, TAF1C, TAF1D, TAF12, and TBP were not changed

after TAF1B knockdown by WB assays (Figure 3A). However, the

results of co-immunoprecipitation (Co-IP) experiments

demonstrated that TAF1A would no longer bind to UBF. In

contrast, the binding between TAF1A and RRN3 did not change

significantly when TAF1B was removed (Figure 3B). Upon TAF1B

depletion, not only the interaction among these protein

components of PIC was impaired, but the binding of PIC TAF1A

with the rDNA promoter was also diminished as revealed by ChIP

assays (Figure 3C). Moreover, we found that the binding of Pol Ia
(POLR1A), the large unit of Pol I, with rDNA was prominently

attenuated after TAF1B inhibition. Nevertheless, the binding of

TBP to rDNA was not significantly changed (Figure 3D). These

observations suggested that the lack of TAF1B impaired the

transcription function of Pol I in HCC cells.
A B

C D

FIGURE 1

TAF1B overexpression is substantially related to poor survival and clinical outcomes in HCC. (A) TAF1B was highly expressed in HCC cell lines than in
L-02 cell lines by WB assays (n = 3). (B) TAF1B expression in the cancerous tissue and paracancerous tissues from HCC patients. Scale bar, 200 µm.
(C, D) The analysis of overall survival and disease-free survival of HCC patients stratified by TAF1B expression in TCGA. Data are shown as means ±
SD (n = 3). **p < 0.01. HCC, hepatocellular carcinoma; WB, Western blotting; TCGA, The Cancer Genome Atlas.
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TAF1B repression causes nucleolus stress
and decreases the expression of pre-rRNA

Reduced ribosome synthesis due to weakened Pol I

transcriptional action ultimately causes nucleolar stress. The

disturbance of nucleolar structure and changes in nucleolar

protein distribution and dynamics are biological hallmarks of

rRNA transcription block (6).

Fibrillarin (FBL) and nucleophosmin (NPM) are the primary

nucleolar proteins in the stage of proliferating eukaryotic cells and

play a significant role in nucleolar stress. When nucleolar stress

occurs, the expression levels of these FBL and NPM increase with a

transfer of proteins from the nucleus to the cytoplasm. Consistent

with this, we discovered in immunofluorescence assays that TAF1B

knockdown caused nucleolar structure segregation and changed

nucleolar protein localization, including nucleolus fusion and a

decrease of FBL staining (Figure 4A), and the translocation of

granular component proteins NPM to nucleoplasm (Figure 4B). In

addition, FISH tests revealed a decrease in rDNA transcription

when TAF1B was depleted in HepG2 cells compared to the negative

control (Figures 4C, D). Also, the expression of pre-rRNA mRNA

was reduced in TAF1B-depleted HepG2 cells due to the decreased

Pol I transcription rate (Figure 4E). These data suggested that

TAF1B knockdown resulted in nucleolar stress in HepG2 cells.
Frontiers in Oncology 07
Depletion of TAF1B activates the nucleolar
surveillance pathway and induces p53-
dependent apoptotic cell death of HCC

Numerous studies have shown a strong relationship between

p53 activation and nucleolar stress (6). After nucleolar stress,

ribosomal proteins are released from the nucleolus and

intracellular accumulation of p53 (19). We found that the

knockdown of TAF1B increased the expression of p53 protein in

HCC cells (Figure 5A). To explore whether the nucleolar stress and

its associated cell apoptosis are p53-dependent, we inhibited p53 in

TAF1B-depleted HepG2 cells. As shown in Figures 5B, C,

suppression of p53 did not substantially reduce the nucleolar

stress induced by TAF1B depletion, indicated by the nucleolar

distribution of FBL protein and pre-rRNA expression. These

findings showed that in the case of TAF1B knockdown, p53

activation is a subsequent effect of nucleolar stress. Hence,

inhibiting p53 does not appreciably reduce nucleolar stress. The

examination of cell apoptosis provided further evidence.

Suppression of p53 reduced cleavage of caspase-3 in TAF1B-

deficient HepG2 and SMMC-7721 cells (Figure 5D). Moreover,

the proportion of Annexin V-positive cells examined by flow

cytometric analysis was decreased after p53 inhibition in TAF1B-

deficient HepG2 and SMMC-7721 cells (Figure 5E), suggesting
DA B

C

FIGURE 2

Knockdown of TAF1B induces apoptotic cell death in HCC. HepG2 and SMMC-7721 cells were transduced with lentiviruses expressing either control
(scramble) or shRNAs (#2 and #6) targeting TAF1B. (A) The efficiency of shRNA mediated knockdown of TAF1B in HepG2 and SMMC-7721 cells.
(B) Clone formation assay detected cell proliferation after the knockdown of TAF1B in HepG2 and SMMC-7721 cells. The representative images were
taken 3 days after transduction. Scale bar, 100 µm. (C) The apoptosis of HCC cells was analyzed by flow cytometry. Right, the population of
apoptotic cells was calculated as Annexin V-positive cells. (D) Western blotting analysis of signaling cascade (BCL-2, BAX, CASP9, cleaved-CASP9,
CASP3, cleaved-CASP3, CASP7, and cleaved-CASP7) involved in apoptotic cell death. Cell lysates were collected 3 days after transduction. The band
intensity was calculated by ImageJ software and marked. Scr, scramble; #2, shTAF1B#2; #6, shTAF1B#6. Data are shown as means ± SD (n = 3).
**p < 0.01. HCC, hepatocellular carcinoma.
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repression of p53 protected cell from apoptosis caused by

TAF1B deprivation.
MiR-101 is involved in TAF1B deprivation-
induced p53 increase and cell apoptosis

It is reported that the activation of miR-101 expression in the

p53-miR-101 circuit by inhibiting RNA polymerase I regulates the

late stage of nucleolar stress (20). We found that the overall

expression level of miR-101 was lower in hepatocellular

carcinoma samples than in non-tumor liver tissues through the

analysis of TCGA database (Figure 6A). Knockdown of TAF1B
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increased the expression of miR-101 in cultured HepG2 cells

(Figure 6B). Furthermore, the elevation of miR-101 was p53-

dependent, as inhibition of p53 by shRNA abolished TAF1B

depletion-induced miR-101 increase by qRT-PCR assays

(Figure 6C). Accumulation of p53 and enhanced PARP cleavage

were detected in cells expressing miR-101 during nucleolar stress,

synergistically regulating ribosome biogenesis. Our findings further

affirmed that suppression of miR-101 reduced the abundance of p53

and cleaved-PARP proteins (Figure 6D). Similar to the observation

of p53 inhibition in TAF1B-deficient cells, the treatment of miR-

101 did not attenuate nucleolar stress revealed by nucleoplasmic

translocation of NPM (Figure 6E) but reduced cell apoptosis

indicated by Annexin V-PI staining (Figure 6F).
D
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C

FIGURE 3

Depletion of TAF1B impairs the transcriptional function of RNA polymerase I HepG2 cells were transduced with lentiviruses expressing scramble or
TAF1B shRNA#6. The cell lysates were collected 3 days after transduction. (A) The abundance of the components of the SL-1 complex was
examined by Western blotting. (B) TAF1A-specific antibody was used to immunoprecipitate endogenous TAF1A from HepG2 cell lysates with
indicated treatment. The binding of RRN3 and UBF with TAF1A was examined by Western blotting. (C, D) The binding of TAF1A, TBP, and RNA
polymerase Ia to the rDNA promoter was analyzed by ChIP-qPCR. The positions of amplification primers were indicated numerically. Data are
shown as means ± SD (n = 3). *p < 0.05; **p < 0.01; n.s,, no significance; ChIP, chromatin immunoprecipitation.
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FIGURE 4

Suppression of TAF1B induces a nucleolar stress response. HepG2 cells were transduced with lentiviruses expressing scramble or TAF1B shRNAs. The
cells were fixed and stained by indicated antibodies 3 days after transduction. (A, B) Knockdown of TAF1B induced redistribution of fibrillarin (FBL)
and nucleophosmin (NPM). Scale bar, 10 µm. (C) The representative images of the fluorescence in situ hybridization (FISH) for rDNA with DAPI
counterstain. Scale bar, 10 µm. (D) Quantitation of FISH (C); rDNA area expressed as a percentage of nuclear (DAPI) area (n = 8). (E) The expression
of pre-rRNA mRNA was determined by qRT-PCR (n = 3). Data are shown as means ± SD. *p < 0.05; **p < 0.01.
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FIGURE 5

Lack of TAF1B induces p53-dependent apoptotic cell death in HCC. (A) The expression of the p53 protein was examined by Western blotting after TAF1B
knockdown in HepG2 cells. The cell lysates were collected 3 days after the transduction of TAF1B shRNA. (B) Nucleolar stress was shown by FBL distribution.
HepG2 cells with indicated manipulation were fixed and stained 3 days after transduction with TAF1B and p53 shRNAs. Representative images are shown.
Scale bar, 10 µm. (C) The production of pre-rRNA was determined by qRT-PCR (n = 3). (D, E) Cell apoptosis was examined by WB assays and flow
cytometry after Annexin V/PI co-staining. Data are shown as means ± SD (n = 3). *p < 0.05; **p < 0.01; n.s., no significance. HCC, hepatocellular carcinoma;
FBL, fibrillarin; WB, Western blotting.
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Knockdown of TAF1B promotes
hepatocellular apoptotic cell death in vivo

Finally, we examined the effect of TAF1B inhibition on tumor

development in vivo. We inoculated SMMC-7721 cells expressing

scramble or TAF1B shRNA into nude mice. As shown in Figure 7A,
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the knockdown of TAF1B significantly reduced the growth of SMMC-

7721 cell-derived tumors. In addition, the size and weight of the

tumors formed by the tumor cells lacking TAF1B were considerably

decreased (Figure 7B). Immunostaining and TUNEL assay showed

that the expression of p53 and apoptotic cell death significantly

increased in TAF1B-depleted tumors (Figures 7C, D).
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FIGURE 6

MiR-101 is involved in the induction of nucleolar stress after TAF1B knockdown. (A) Expression levels of miR-101 in HCC and non-cancerous liver
tissues were determined in the NCI cohort. The miRNA-Seq data were downloaded from The Cancer Genome Atlas (TCGA) Genomic Data
Commons (GDC) portal (https://portal.gdc.cancer.gov/repository) and analyzed using RStudio. NT, non-tumor; T, tumor. (B) The expression levels of
miR-101 in cultured HepG2 cells 48 or 72 h after transduction of shTAF1B-expressing lentiviruses (n = 3). (C) qRT-PCR examined the expression of
miR-101. As denoted, HepG2 cells were transduced with scramble or shTAF1B#6 plus shp53. RNA was collected 3 days after transduction.
(D) Inhibition of miR-101 alleviated the increase of the protein levels of p53 and cleaved PARP after TAF1B knockdown. (E) The immunofluorescence
staining of nucleophosmin (NPM) of HepG2 after miR-101 inhibitor treatment. Scale bar, 10 µm. (F) Flow cytometry analyzed the apoptotic cell death
of HepG2 cells transduced with shTAF1B#6 after treatment with miR-101 inhibitor. The percentages of Annexin V-positive cells were calculated
(n = 3). Scr, scramble; #6, shTAF1B#6. Data are shown as means ± SD. *p < 0.05; **p < 0.01; n.s., no significance; HCC, hepatocellular carcinoma.
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Discussion

Ribosome biogenesis is a well-known feature of cell

development and proliferation. It has lately emerged as an

effective cancer therapeutic target. The first critical step in

ribosome biogenesis is rRNA transcription by Pol I. As a result,

medicines that preferentially target Pol I transcription are emerging

as a novel class of anticancer therapeutics. Some selective Pol I

inhibitors have shown potential therapeutic benefits. CX-3543, for

example, has broad anti-proliferative and apoptotic effects on

cancer cells and displayed remarkable anti-tumor growth

capabilities in breast and pancreatic cancer xenograft models (21).

Surprisingly, the following generation of CX-3543, that is, CX-5461,

demonstrated efficacy in human cancer cells with overloaded

ribosomal biogenesis compared to normal cells (22, 23).

According to our findings of the significant high expression of

TAF1B in hepatocellular carcinoma tissues and its poor prognosis,

we conclude that targeting TAF1B may give another method of

treating malignancies by interfering with the transcriptional activity

of Pol I.

TAF1B is a TFIIB-like component of the basal transcription

machinery for RNA polymerase I (24). It has been reported to be

positioned in the RNAP1-PIC, similar to TFIIB in the RNAP2-PIC

(14). Disruption of TAF1B by RNA interference reduced rRNA

synthesis, leading to decreased ovarian germline stem cell

proliferation in Drosophila (25). However, investigations of

TAF1B in human diseases are scarce. Similar to a previous study,
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we observed reduced rRNA production in HCC cells after TAF1B

inhibition, suggesting its conserved function in evolution. Clone

formation and apoptosis assays revealed that inhibition of TAF1B

expression in HCC significantly repressed cell proliferation and

promoted cell apoptosis. Considering the crucial function of TAF1B

in Pol I transcription, we checked the main transcriptional cofactors

of PIC. We discovered that TAF1B depletion mainly affected the

binding interaction between TAF1A and UBF to regulate rDNA

activity, thus promoting HCC death. Immunofluorescence

experiments further confirmed our conjecture that FBL and NPM

were transferred from the nucleus to the cytoplasm in TAF1B-

depleted HCC, symbolizing nucleolar stress activation.

The p53 tumor suppressor protein is an integration point in

response to various cellular stresses. Activating p53 can promote

transcription of p21, leading to G1/S growth arrest or BAX-inducing

apoptotic cell death (26). Nucleolar stress can provoke cell cycle

arrest or apoptosis via p53-dependent and p53-independent

signaling pathways. During nucleolar oxidation, NPM undergoes

S-glutathionylation on cysteine 275. It triggers the dissociation of

NPM from nucleolar nucleic acids and promotes NPM binding to

HDM2 (27), which blocks the E3 ligase activity of HDM2 and

induces p53 accumulation. c-Myc, E2Fs, and SP1 are the major non-

p53 TFs that respond to ribosomal stress (6). Under impaired rRNA

biosynthesis, free ribosomal proteins RPL5 and RPL11 can form a

complex with c-Myc mRNA and recruit microRNAs to repress c-

Myc expression, leading to inhibition of cell proliferation through

suppression of c-Myc and its target gene expression (28). In this
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FIGURE 7

Depletion of TAF1B inhibits HCC tumor growth in vivo. The nude mice were randomly divided into two groups. SMMC-7721 cells (3 × 106 cells/
mouse) were implanted into the armpits of the mice. (A) Tumor growth of SMMC-7721 cells expressing scramble or TAF1B shRNA (n = 5). Tumor
size was measured every 5 days. (B) Representative image of tumor-burden mice. The image of tumors dissected from tumor-burden mice (left).
The measurement of weight of dissected tumors (right) (n = 5). (C) The representative images of p53 immunochemical staining in the tumors
derived from SMMC-7721 cells (left). Scale bar, 25 µm. Right, quantitation of staining intensity of p53 IHC staining (n = 5). (D) TUNEL staining of
SMMC-7721-derived tumor. Left, representative images; right, quantitation of TUNEL-positive cells (n = 5). Data are shown as means ± SD.
**p < 0.01. HCC, hepatocellular carcinoma; IHC, immunohistochemistry.
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study, we observed that cell apoptosis induced by TAF1B

deprivation was p53-dependent. Inhibition of p53 indeed

improved TAF1B-induced cell apoptosis, while nucleolar stress

was not attenuated, emphasizing that the activation of p53 was

triggered by nucleolar stress. Although most activation of the

nucleolar stress response relies on p53 activity, some p53

knockout cells induce DNA damage or replication and ribosomal

stress in a checkpoint kinase 1 (Chk1) phosphorylation-dependent

manner, effectively reducing the proliferation of cancer cells (29).

Thus, cell cycle arrest can occur even in the absence of p53.

Various stresses change the biogenesis, modification, and

function of miRNAs. However, the investigation of the role of

miRNA in nucleolar stress is rare. Our results demonstrated that

nucleolus stress was implicated in miR-101 activation and that

nucleolus stress-induced miR-101 biogenesis was mediated at the

post-transcriptional level. This is consistent with the study of Naoto

Tsuchiya et al. (20) that the p53-dependent modulation of miR-101

biogenesis occurs only in the context of nucleolus stress.

Meanwhile, our study found that miR-101 was involved in

TAF1B depletion-induced p53 accumulation. Inhibition of miR-

101 decreased the accumulation of p53. Interestingly, p53 inhibition

abolished the enhanced miR-101 expression under TAF1B

knockdown. Similar to p53, inhibition of miR-101 moderately

attenuated apoptotic cell death but did not improve nucleolar

stress, suggesting that both p53 and miR-101 were downstream

effectors of the nucleolar stress response pathway.

Taken together, we found TAF1Bwas crucial for Pol I function and

the cancer progression in HCC. Inhibition of TAF1B caused significant

nucleolar stress and apoptotic cell death. The activation of the p53-

miR-101 circuit was involved in TAF1B-induced cell apoptosis.

Targeting TAF1B may serve as a novel approach for HCC treatment.
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