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Abstract: This research focuses on designing and controlling a MIMO (Multiple Input and Multiple Output) two-
link robot using a mix of Sliding Mode Control (SMC) and artificial intelligence (specifically, Radial Basis 
Function Neural Network (RBFNN)). In the first section, we present the model dynamics of this system in the 
state space. Then, in the second section, we provide a new approach in which we attempt to identify the optimum 
performance and attain stability in finite time by predicting the nonlinear dynamics of the system and also reducing 
the disturbance and uncertainty impacts on the system using artificial intelligence. And, by examining the 
Lyapunov function we can prove the stability of the system. Based on the simulations of the new technique 
presented in the latter portion of this work, we illustrate and enhance the superiority of our methodology over 
existing ways, their positive outcomes, and their effectiveness in time tracking, stability, and robustness. 
 
Keywords: Two-link robot, Normal sliding mode control, Artificial intelligence, Lyapunov function, Non-linear 
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1. Introduction 
 
In all industrial sectors, automatic systems are 

becoming increasingly crucial. This makes quality 
control in terms of speed, security, and resilience 
extremely important, and as a result, this sector has 
become increasingly vital over the past 20 years. 
Because of this, commercial enterprises research this 
area in an effort to create new techniques that will 
lessen disturbance, perturbations, and uncertainties 
and therefore improve system stability. 

One of the most common robots in the industrial 
sector is the two-link robot [3, 4, 5, 8, 12, 14, 26, 27], 
which is specifically employed in the manufacture of 
cars and airplanes. Due to the fact that speed and 
stability are crucial for this sort of robot, various 
societies attempt to research this type of robot in order 

to provide alternative methods for its optimum control 
and application. 

Since sliding mode control has been researched for 
so long, it is currently one of the most popular technics 
used in nonlinear control theory. The literature has 
numerous studies on sliding mode control and its 
extensions, including [1, 2, 4, 7, 8, 10, 11, 15, 24]. The 
goal of sliding mode control in recent years has been 
to produce finite-time convergence to the equilibrium 
of the relevant closed-loop system. 

Artificial neural networks [3, 12, 14, 22] have been 
used to model nonlinearities rather frequently. A 
neural network is among the strongest approximators 
because it can estimate any nonlinearities with 
arbitrary precision as its size and complexity increase. 
Due to their effectiveness, neural networks are also 
widely used to identify and control nonlinear systems. 
For the underlying nonlinearity, neural networks are 
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used in the majority of these works as nonlinear 
models. 

The combination of SMC and neural networks is 
applied in many research, but in this work, we will try 
to use SMC as a sliding manifold and RBFNN [21, 22, 
23] to estimate the unknown dynamics of the hidden 
state in order to make the system more robust  
and stable.  

To guarantee the stability of the two-link robot 
system using normal Sliding Mode Control, and RBF 
neural network, we study the Lyapunov function [3, 4], 
to know the strength of this strategy. 

At the begging of this paper, we will present the 
two link-robot models, in the second part we will 
describe the proposed strategy, after that, the third part 
will show the results of our proposed two-link robot 
control strategy, and, the conclusion and perspective 
will be the last part. 
 
 

2. Two-link Robot Model 
 

The two-link robot represented in Fig. 1. model is 
expressed as follows [4, 26, 28]: 
 ( ) + ( , ) + ( ) =  = . − . − . , 

(1) 

 
where q, i, and T are the angle, current, and torque 
respectively of the two-link robot. 
 
 

 
 

Fig. 1. Two-link robot model. 
 
 

And B, J, and E represent the diagonal matrices that 
depend on the temperature, the thermo- dynamics 
parameters, and the initial conditions. ( ), ( , ),	and G(q) are the positive-definite 
symmetric inertia matrix, the centrifugal forces, and 
the gravitational matrices respectively. Here 

 ( ) = 	 	
, 

 
where 

= + + 4 + 4 cos	( ) = + 2 cos	( ) =	 + 2 cos	( ) =	  
 

and ( , ) = 	 	
, 

 
where 
 = −2 sin	( ) = −2 ( + )sin	( ) =	−2 sin	( ) = 	0 
 
and 
 ( ) = 	 sin( + ) +	 sin( )sin( + )  

 
This system is represented in state space as follows: 
 =  =  =	 ( ) + ( , ) +	 ( , )  =	  =  = ( ) + ( , ) +	 ( , ) , 

(2) 

 
where 
 

x = [ ]  
U = [ ]  ( ) = [ ( ) ( )]  
 ( , ) = 	 ( , ) ( , )	( , ) ( , )   

 
 

3. The Control Strategy 
 
3.1. Control Law  
 

Let’s take the two following sliding surfaces:  
 = + +	  = + +	 , 

(3) 

 
where , ,  and  are the positives constants and 

and  are the angle errors of  and  respectively 
which are expressed as following:  
 = −  and  =	 −	  (4) 

 
and ,  are the desired trajectories, which are 
represented in Fig. 2. 
 
Now, we derive the sliding surface:  
 S = + +	 	S = + +	 	 (5) 
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From equations (4),  
 S = −	 + +	 	S = −	 + +	 	 (6) 

 
And from equation (6) and using equation (2), we find:  
 S = ( ) + ( , ) +	 ( , )  −	 +	 +	 	S = ( ) + ( , ) +	 ( , )  −	 +	 +	  

(7) 

 
 

 
 

Fig. 2. Desired trajectory   and . 
 
 

To guarantee the stability of the system we define 
the Lyapunov function:  
 V =	12 12    and =	  (8) 

 
The system is stable if the derivative of the Lyapunov 
function  is negative, which means that:  
  =	 	< 0 and  =	 	< 0 (9) 
 
That’s why we define the sliding surface derivative:  
  S = 	− sgn(S ) and S = 	− sgn(S ) (10) 

 
where and  are the positive constants. 

Using the equations of (7), and to be satisfying to 
the condition (9), we can write the control laws as 
follows,  
 =	 1( , ) [ − ( ) −	 ( , )−		 − 	−	 ( )] =	 1( , ) [ − ( ) −	 ( , )−		 − 	−	 ( )] 

(11) 

 

In order to force the system to track the desired 
trajectory, minimize errors, guarantee stability, and use 
artificial intelligence as a way to estimate the unknown 
dynamics and the nonlinear dynamics of the system to 
define new control laws more performances and 
efficiencies. 
 
 
3.2. Approximating the Unknown Dynamics 

and Nonlinear Functions using Artificial 
Intelligence  

 
In this section, we will see how we develop the 

algorithm using a neural network, which their role is to 
approximate the nonlinear  and  of the system, in 
order to force the system to track the desired trajectory 
x1d and x4d. 

To approximate  and we build an RBFNN 
network, which is based on radial basic function, their 
role is to give an approach to a non-linear function 
(Fig. 3).  

 
 

 
 

Fig. 3. Radial Basis Function Neural Network  
or RBFNN. 

 
 
The RBFNN is a neural network that contains three 

layers: the input layer, is to take the data from the 
feedback errors  and , the hidden layer where each 
node contains a radial basic function as an activation 
function, and the output of each node is defined as a 
Gaussian function.  
 ℎ ( ) = exp(−‖ − ‖ ) (12) 

 
where = [ ]  (k=1,2) is the input of the 
neural network,  is a center vector of each hidden 
layer node with the same dimension as y, ‖ −	 ‖ 
represent the Euclidean distance the input and each 
hidden node, and  is a positive scalar of each  
hidden node.  

And the output layer calculates the estimated 
function based on the output of each node on the 
hidden layer using the following expression:  

 ( ) = ℎ ( ) (13) 
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From equations (12) and (13), the nonlinear 
estimates are as follows:  
 (x) = 	 . [	ℎ ( )]	 and (x) = 	 .[	ℎ ( )] (x) = . [	ℎ ( )]	 and (x) = 	 .[	ℎ ( )], (14) 

 
where , , and and are the approximated 
weights and the ideal weights of the network 
respectively.  

The control lows will be as follow: 
 =	 1( , ) [ − ( ) −	 ( , )−		 − 	 −	 ( )] 

 =	 1( , ) [ − ( ) −	 ( , )−		 − 	−	 ( )] 
(15) 

 

So, 
 = − (x) − . ( ) 

 = − (x) − . ( ), (16) 

where 
  (x) = ( − ). [	ℎ ( )]  

 (x) = ( − ). [	ℎ ( )]  (17) 

 
Then,  
 (x) = . [ ℎ ( )]   and  (x) = 	 . [	ℎ ( )]    (18) 
 
where (x) and (x) are the difference between the ideal 
and estimated unknown dynamic function,  

= −  and = −  are the 
difference between the ideal and the approximated 
weight. 

 

 
 

Fig. 4. Proposed approach. 
 
 
3.3. Stability Analysis  
 

To make the system stable we define the Lyapunov 
function as in [10]:  
 

_ = 	 12 + 12 1 1 _ = 	 + 2 2, 
(19) 

 

where  and  are the positive constants.  
The derivative of the equation of the Lyapunov 

functions is written as follows: 
 _ = 	 − 1 1 

 _ = 	 −	 2 2 
(20) 

From (16) and (18), we find:  
 

_ =    − 1. [ ℎ ( )] + 1 1	 −1. ( 1) 
 _ =    − ( 2. [ ℎ ( )] + 2 2			) −− 2. ( 2) 

(21) 

 
We assume that the terms  and   are:  
 = − 1 [ ℎ ( )] 

 = − 1 [ ℎ ( )] (22) 

 
So, using the results of (22) and the equations in 

(21), the system will be stable and the derivative of _  and V _  are satisfied to the Lyapunov 
theory 
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V _ = 	−	K . sgn(S )	 0	V _ = 	−	K . sgn(S )	 0	 (23) 

 
From equations (20) and (24), we can assume that 

the system is stable and it will obtain the sliding 
manifold in finite time.    
 
 
4. Simulation  

 
In this section, we share the findings as well as the 

criteria that guided the creation of our plan. We test 
the strength of the neural network structure we suggest 
and evaluate its effectiveness using the sliding mode 
control.  

 
 

4.1. Simulation 1  
 

In this simulation we will take the parameter gain 
values of the sliding manifold λ1 =25, λ2 = 2000,  
λ3 = 20, and λ4 = 1500, then we find the following 
results with = cos	( )  and = cos	( )  are 
desired trajectory (Figs. 5-10). 

 
 

 
 

Fig. 5. Estimated dynamic unknown function F1. 
 
 

 
 

Fig. 6. Estimated dynamic unknown function F2. 
 
 

 
 

Fig. 7. The control law  generated using the dynamic 
functions estimates. 

 

 
 

Fig. 8. The control law  generated using the dynamic 
functions estimates. 

 
 

Fig. 9. Desired trajectory  and estimate trajectory . 
 

 
 

Fig. 10. Desired trajectory  and estimate trajectory . 
 
 

4.2. Simulation 2 
 

Now, let’s take the parameter gain values λ1 = 12.5, 
λ2 = 1000, λ3 = 10, and λ4 = 750 of the sliding 
manifold, then we find the following results (Figs. 11-
16). 
 

 
 

Fig. 11. Estimated dynamic unknown function F1. 
 

 
 

Fig. 12. Estimated dynamic unknown function F2. 
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Fig. 13. The control law  generated using the dynamic 
functions estimates. 

 
 

 
 

Fig. 14. The control law  generated using the dynamic 
functions estimates. 

 
 

 
 

Fig. 15. Desired trajectory  and estimate trajectory . 
 
 

 
 

Fig. 16. Desired trajectory  and estimate trajectory . 
 
 
4.3. Simulation 3 

 
Now, let’s take the same parameter gains as 

simulation 2, with = 2cos	( ) and = 2cos	( ) 
being the new desired trajectory, then we find the 
results (Control laws and estimate trajectories) as 
following (Figs. 17-20). 

 
 

Fig. 17. The control law  generated using the dynamic 
functions estimates. 

 
 

 
 

Fig. 18. The control law  generated using the dynamic 
functions estimates. 

 
 

 
 

Fig. 19. New desired trajectory  and estimate  
trajectory . 

 
 

Fig. 20. New desired trajectory  and estimate  
trajectory . 

 
 

5. Conclusions and Perspective 
 

The paper presents a controller that estimates the 
dynamic functions of the two-link robot with two 
control laws using SMC and radial basis function 
neural networks. This newly designed controller 
performs well in terms of time convergence and 
stability, as illustrated by the simulation as in [8] and 



Sensors & Transducers, Vol. 261, Issue 2, June 2023, pp. 33-40 

 39

[12]. To get the greatest outcomes for this task, we will 
attempt to improve it by utilizing new and more 
relevant methods in future works.  
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