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Abstract: This work deals with a robust Fault-Tolerant Control (FTC) design for a class of uncertain systems. 
Fault resilience is associated with a robustness bound generated by a sufficient Linear Matrix Inequality (LMI) 
condition for static state feedback stabilization. This design control approach is based on solving an optimization 
problem expressed in terms of LMI with three different programming solvers which are mincx (MATLAB), 
lmisolver (SCILAB) and cvxopt (PYTHON). Numerical validations were carried out, first on an academic model, 
then on the model of a PV energy conversion system connected to a DC-DC boost converter. Then, a robustness 
analysis for fault resilience associated with a control law gains, obtained using the three solvers, was realized to 
investigate the best performance. This approach was finally validated on an experimental test bench. 
 
Keywords: Fault, Tolerant control,  Robust state feedback control, LMI, DC/DC boost converter, MATLAB, 
SCILAB, PYTHON. 
 
 
 
1. Introduction 
 

Cyber-physical Systems (CBS) are increasingly 
complex and sophisticated. The challenge is to exploit 
new technologies and hardware to make them more 
efficient and autonomous [1]. Sensors are associated 
with CBS to get precise environment information, 
allowing the system to be autonomous, as much as 
possible. However, this poses two major problems: (a) 
how to make the system react effectively based on 
real-time sensor data? (b) how to take into account a 
fault sensor during operation? Fault Tolerant Control 
(FTC) studied in the field of control theory, can solve 
this problem. It is applied as a tool in transport [2], 
energy [3], industry 4.0 [4], etc. In the case of a partial 
fault, the FTC problem can be formulated as a state 

feedback control (SFC) problem for an uncertain 
system with a norm-bounded uncertainty. Then, a 
controller guaranteeing a certain level of performance 
for the largest uncertainty domain is designed. When 
the fault is total, a SFC augmented with an observer or 
outright, an output feedback control (OFC) law, are 
suitable. Finally, it is possible to consider the general 
case of partial and/or total faults by using a robust 
OFC. Concerning partial fault, the approach of [5] can 
be exploited to design an FTC. In this work, a ߙ -
stabilization technique is used to compute a passive 
fault-tolerant control law that guarantees the 
asymptotic stability of the system in the presence  
of faults. 

On the other hand, the pole placement of the 
closed-loop system in a region ߙ  of the complex 
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plane, allows the process to react efficiently to the 
fault. Whatever the technique, it must lead to a control 
law as robust as possible, the capacity of the system to 
tolerate the fault depending on this robustness. In fact, 
most of the work relating to this issue tends to reduce 
the conservatism induced by the sufficient conditions, 
related to a LMI problem, and leading to the gain of 
the controller. Some LMI-based conditions consider 
non-quadratic Lyapunov functions [6], other works 
rather exploit homogeneous polynomial Lyapunov 
functions [7] while promising results are obtained with 
fuzzy Lyapunov functions [8]. Then, significant 
advances have been made in this area, but these new 
conditions, less conservative, consist in LMI systems 
that are increasingly complex to solve from a 
numerical point of view. However, it is interesting to 
note that the robustness of these control laws may 
depend on the numerical computation software used to 
solve the problem, and more globally, on the 
associated LMI solver. Solving an LMI amounts to a 
semidefinite programming problem (SDP). There are 
many algorithms for solving SDP and many of them 
use the interior-point method [9]. Interior point 
algorithms are often combined with second-order 
optimization methods using Newton's method. They 
are particularly efficient for small SDP. For more 
complex problems, first-order optimization methods 
using the gradient descent method are more suitable. 
In [10], an efficient randomized first-order algorithm 
for solving SDP is proposed and compared to the 
CVXOPT solver of PYTHON [11] and the Splitting Conic 
Solver algorithm [12]. This work considers rather 
small-dimensional SDP and we will solve our LMI 
problems using PYTHON's CVXOPT solver [11], 
SCILAB's LMISOLVER solver [13] and MATLAB's 
MINCX solver [14]. The robustness of a control law 
associated with a DC-DC boost converter is then 
analyzed according to the solver used. 

The paper is organized as follows: Section 2 is 
dedicated to some preliminaries which present the 
uncertainty models considered in this work as well as 
the concept of robust ߙ − ݊݋݅ݐܽݖ݈ܾ݅݅ܽݐݏ . Section 3 
deals with the modeling of the DC-DC boost converter 
considering sensor faults and the control objectives. 
Section 4 compares the efficiency of the three LMI 
solvers. Initially, the ߙ − ݊݋݅ݐܽݖ݈ܾ݅݅ܽݐݏ  of a 
numerical model is considered, then the problem of 
the voltage regulation of a PV module is dealt with. 
Section 5 presents an experimental validation of the 
FTC control approach on photovoltaic energy 
conversion chain while section 6 gives conclusions 
and perspectives. 

 
 

2. Preliminaries 
 

We denote by ܶܯ , the transpose of ܯ . ॴ݊  is the 
identity matrix of order ݊ . ॹ  is a null matrix of 

suitable dimension. ሼ∎ሽܶ  standing block (i,j) in a 
matrix corresponds to the transposed term of block 
(j,i). (ܣ)߁ is the spectrum of the matrix A, that is to 

say, the set of its eigenvalues. ࣝ  is the complex plane 
and  ࣝ− stands for ܴ݁(ࣝ) < 0. 
 
 
2.1. Polytopic and Norm-Bounded 

Representation 
 

The Polytopic and Norm-Bounded (PNB) 
representation is used to robust analysis and control 
dedicated to systems affected by both polytopic and 
structured uncertainties, represented in the state space 
by the following model: 
 ቊ̇(ݐ)ݔ = .(ߠ)ܣ (ݐ)ݔ + .(ߠ)ܤ (ݐ)ݑ + ܶ. (ݐ)ݕ(1)					.(ݐ)߮ = .(∆)ܥ  (2)																																																	,(ݐ)ݔ
 
where (ݐ)ݔ ∈ ℝ௡ (ݐ)ݑ , ∈ ℝ௠ (ݐ)ݕ , ∈ ℝ௣ , and ߮(ݐ) ∈ ℝ௩ are respectively the state, input, output and 
measurable disturbance vectors. (ߠ)ܣ ∈ ℝ௡×௡  and (ߠ)ܤ ∈ ℝ௡×௠ represent the state and control matrices, 
belonging to a polytopic of matrices with N vertices: 
 ሾ(ߠ)ܤ(ߠ)ܣሿ = ∑ ௜ே௜ୀଵߠ ሾܣ௜ܤ௜ሿ																																		(3)⬚  
 
with  ∑ ௜ே௜ୀଵߠ = 1.																																																							(4) 
 is the output matrix affected by a norm-bounded (∆)ܥ 
uncertainty, denoted ࣤℒ -structured uncertainty, 
whose representation is recalled here: 
(∆)ܥ  = ଴ܥ + ॱ = ଴ܥ + .ܬ ∆.  (5)               , ܮ
 
where 0ܥ is a nominal matrix, ܬ ∈ ℝ௡௫௤ and ܮ ∈ ℝ௥௫௡ 
are known structured matrices whereas ∆∈ ℝ௤௫௥  is 
the uncertain matrix belonging to the ball ℬ(ߩ) such 
that ‖∆‖2 < ߩ . ॱ  is a norm-bounded uncertainty 
whose structure is defined par ܬ and ܮ.   
 
 
 stabilization-ࢻ .2.2
 

This part addresses the design of robust feedback 
control for a system with PNB uncertainties and 
particular attention is paid to the system dynamic 
performance, such as the time response. Also, the 
placement of all spectrum of the state-matrix ܣ)߁஼ (ߠ)ܣ= + .(ߠ)ܤ in a half plane ࣝఈ (ܭ  of ࣝ− is treated, 

defined by ݔ < ∋ (஼ܣ) Then, when .ߙ ࣝఈ, ܥܣ is said 
α-stable.  

A sufficient condition of robust α-stabilization by 
static state feedback deduced from that proposed by 
[5] is recalled here. Therefore, it does not constitute an 
original contribution in the context of this work but 
rather a robust control law technique which will be 
processed by different solvers and analyzed. 

Theorem 1. There is a matrix ܭ associated with 
the robust state control law (ݐ)ݑ = .ܭ (ݐ)ݔ ߙ  -
stabilizing system (1)-(2), if there is a solution to the 
following convex optimization problem 
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݉݅݊ ߛ = ⬚ଶିߩ ܺ, ܴ, ߞ ⬚ ⬚  ,                    (6) 

 

where ߞ  is a positive scalar fixed a priori,  ܺ = ்ܺ ൐ 0, ܺ ∈ ܴ௡×௡,  ܴ ∈ ܴ௠×௡  and ߛ  are 
variables verifying the LMI constraints: 

,݅ܣ)݅ܪ  ,݅ܤ ,݅ܬ ,݅ܮ ܶ) < 0 ,   ∀݅ ∈ ሼ1, . . , ܰሽ     (7) 
 

with 
 

௜ܪ = ۏ
ܳ௜ ሼ∎ሽ் ሼ∎ሽ் ሼ∎ሽ் ሼ∎ሽ்ܮ௜ܺ −ॴ௥ ॹ ॹ ॹܺ ॹ −ॴ௡ ॹ ॹܬ௜் ॹ ॹ ॴ௤ߛ− ॹ்ܶ ॹ ॹ ॹ ےॴ௩ߞ−

 

 

with  ܳ݅ = ሼ−ܺߙ + ܺ݅ܣ + ሽܴ݅ܤ + ሼ∎ሽܶ 
 

A static state feedback is then associated with: 
ܭ  = ܴ.ܺିଵ     (8) 

and the uncertainty domain for which the ߙ-stability 

is guaranteed is given by ‖∆‖2 ൑ ∗ߩ = 12−ߛ , the 
optimal value of ߩ. 
 
 
3. FTC for DC-DC Boost Converter 
 

The DC-DC boost converter system, associated 
with a photovoltaic module, connected to a load is 
shown in Fig. 1. It fits into our problem and will be 
used to support a comparison of the fault resilience 
resulting from the resolutions of control optimization 
problems. 

The converter consists of: a) a power transistor Q 
and a rectifier diode D (threshold voltage ܦݒ ) 
constituting the switching-mode power device, b) a 
smoothing inductance ܮ  with internal resistance ܮݎ ,  

and c) a filtering voltage capacity ܥଵ  and a bus 

capacity 2ܥ.  

 
 

 
 

Fig. 1. DC-DC boost converter for a PV module 
 
 

3.1. PNB Representation of a Boost Converter 
 

The averaged model of this system considers two 
sub-models: one is associated with an “off state” of the 
thyristor (u(t)=0), the other with an “on state” (u(t)=1). 
It can be written in the form (1) with (ݐ)ݔ =ሾ݅௅(ݐ)ݒ଴(ݐ) ሿ்(ݐ)௉௏ݒ (ݐ)߮ , = ሾݒ஽ ݅௉௏(ݐ)ሿ்  where ݅(ݐ)ܮ  is the inductor current, (ݐ)0ݒ is the output 

voltage, and (ݐ)ܸܲݒ  the PV voltage generated by the 
module. Basically, the dynamic equations of the boost 
converter can be expressed by the Linear Parameter-
Varying (LPV) state-space equation (1) with: 
 

ܣ =
ۏ

ܮ௅ݎ− ଴ݑ) − ܮ(1 1)ܮ1 − ଶܥ(଴ݑ ଶܥ1ܴ− ଵܥ0−1 0 ے0
																					(9) 

((ݐ)ߠ)ܤ = ൦(௩బ(௧)ା௩ವ)௅ି௜ಽ(௧)஼మ0 ൪                           (10) 

 

ܶ = ൦(௨బିଵ)௅ 00 00 ଵ஼భ
൪                       (11) 

 
Note that the control matrix ((ݐ)ߠ)ܤ depends on 

time-varying states ݅(ݐ)ܮ and (ݐ)0ݒ , leading to a 
nonlinear the model. Nevertheless, the range of signal 
variation is bounded, as shown in Fig. 1, so ܤ(݅௅(ݐ),  can be considered as a polytope of((ݐ)଴ݒ

matrices as in (3) with N=4, 1ܤ = ,ܮ݅)ܤ (0ݒ 2ܤ , ,ܮ݅)ܤ= ¯0ݒ 3ܤ ,( = ,ܮ̄݅)ܤ 4ܤ and (0ݒ = ,ܮ̄݅)ܤ ¯0ݒ ). 
On the other hand, under normal operating 

conditions, the states are measured by current and 
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voltage sensors, respectively noted ܵܮܫ 0ݒܵ ,  and ܸܵܲݒ . 
Then, it is assumed that these sensors can be affected 
by a fault. Depending on the value of ܥ(∆) in (5), 
three cases are considered associated with 0ܥ = ॴ3 
and the corresponding values for J and L, as shown 
Table 1. 

 
 

Table 1. Three fault cases for the DC-DC boost converter. 
 

Case ܮ ܬ ூܵಽ ܵ௩బ ܵ௩ುೇ  

 ሾ1,0,0ሿ partial none none (ߠ)ܤ 1

 ሾ0,1,0ሿ none partial none (ߠ)ܤ 2

 ሾ0,0,1ሿ none none partial (ߠ)ܤ 3

 

3.2. Control Objective  
 

Our control objective is to exploit the  ߙ -stabilization condition to develop a proportional-
integral regulator, whose architecture is shown  
in Fig. 2. (ݐ)ݖ ∈ ℝ௭ is the controlled output vector and the 
problem consists in regulating (ݐ)ݖ  to a reference 
value (ݐ)݂݁ݎݖ. The control law results in n proportional 
actions (one for each state variable) and one integral 
action (on the error). The corresponding nPI controller 
is then defined by: 
(ݐ)ݑ  = ଴ݑ + .௣ܭ (ݐ)ݕ + .௜ܭ (ݐ)݁ = ଴ݑ +    (12)		.(ݐ)ݑߜ
 

with ݁(ݐ) = ׬ (߬)௥௘௙ݖ) − .((߬)ݖ ݀߬௧଴ 																							(13) 
 

 

 
 

Fig. 2. nPI controller architecture. 
 
 

The input command is saturated, (ݐ)ݑ ∈ ቂݑ; ቃݑ̄ , 
with  ࢛ = ଴ݑ − ࢛̄ and (ݐ)௨ߜ = 0ݑ +  0ݑ where ,(ݐ)ݑߜ
is the nominal value of u(t). In order to take into 
account the integral action inherent in this control 
architecture, the state-space representation (1)-(2) is 
extended to an augmented model with a state vector 
resulting from the concatenation of (ݐ)ݔ and ݁(ݐ), the 
integral of the error between the reference signal (ݐ)݂݁ݎݖ and (ݐ)ݖ,the signals to be regulated. Without 
difficulty, we obtain the corresponding representation. 

 ൝ܺ(ݐ)˙ = ८. (ݐ)ܺ + ९. (ݐ)ݑ + ॻ. (ݐ)߮ + ॲ. (ݐ)ݕ(14)(ݐ)௥௘௙ݖ = ԧ(∆).  (15)																																																								(ݐ)ܺ
 
with 
 

۔ۖەۖ
(ݐ)ܺۓ = ൤(ݐ)݁(ݐ)ݔ൨ , ८ = ቂ(ߠ)ܣ ॹ−ܼ ॹቃ ,९ = ቂ(ߠ)ܤॹ ቃ
ॻ = ቂॹܶቃ , ॲ = ൤ॹ ॹॹ ॴ௭൨ , ԧ(∆) = ൤ܥ(∆) ॹॹ ॴ௭൨     (16) 

 
 
3.3. FTC Controller of a Boost Converter 
 

According to part 3.2, it is clear that  ݖ௥௘௙(ݐ) = ௉௏௥௘௙ݒ (t) and (ݐ)ݖ = ௉௏ݒ (t). It leads to  

ܧ = ሾ0 0 1ሿ  and then, the augmented DC-DC 
boost converter model is easily deduced from (14), 
(15), (16) with (9), (10) and (11). A fault-tolerant 
control law can then be computed if there is a solution 
to the convex optimization problem (6) verifying LMI 
conditions: 

,௜(८௜ܪ  ९௜, ॵ௜, ॷ௜, ॻ) < 0 ,  ∀݅ ∈ ሼ1, . . ,4ሽ      (17) 
 ൤ߤଵॴ௡ ்ܴܴ ॴ௠൨ ൐ 0                      (18) 

 ൤ߤଶॴ௡ ॴ௡ॴ௡ ܺ ൨ ൐ 0                      (19) 

 
where ॵ݅ = ሾ݅ܬ ॹሿܶ  and ॷ݅ = ሾ݅ܮ ॹሿ  and LMIs 

(18) and (19) respectively limit the 2-norm of ܴ and ܺ−1, and consequently the controller gain values. 
 
 
4. Simulation Results 
 

This section is dedicated to simulation results. 
First, the robust ߙ -stabilization is applied on a 
numerical model and generated by the three LMI 
solvers. Subsequently, this same stabilization 
technique is tested on the photovoltaic energy 
conversion system presented in Section 3, as in [9]. 



Sensors & Transducers, Vol. 261, Issue 2, June 2023, pp. 46-54 

 50 

4.1. Numerical Model Simulations 
 

We consider the polytopic and norm-bounded 
representation of a numerical model described below: 

1ܣ  = ቈ−2 −1 00 10 10 0 −1቉ 2ܣ݀݊ܽ = ቈ−2 −1 02 10 10 0 −1቉ 1ܤ = 2ܤ = ቈ 2−11 ቉ 1ܬ݀݊ܽ = 2ܬ = 1ܤ =  2ܤ

 

Then three fault sensor cases are considered: 
 

Case 1: 1ݐݏ sensor fault with ܮଵ = ଶܮ = ሾ1 0 0ሿ;  
Case 2: 2݊݀ sensor fault with ܮଵ = ଶܮ = ሾ0 1 0ሿ; 
Case 3: 3݀ݎ sensor fault with ܮଵ = ଶܮ = ሾ0 0 1ሿ. 

 

Then, the optimization problem (6) considering 
LMI conditions (7) with ܶ = ॹ (no disturbance) has 
been solved using the MATLAB’s mincx function, the 
SCILAB’s lmisolver function and the PYTHON’s cvxopt 
function for the three fault sensor cases and for ߙ =−1,−2,−3	ܽ݊݀ − 5. Table 2 shows the robustness 
bound values obtained for each case. When no value 
is provided, it means that the LMI system could not be 
solved by the corresponding solver. Colored cells 
correspond to the highest bound. 

These results show that SCILAB's lmisolver leads 
each time to the best robustness bound, that is to say 
to the best sensor fault tolerance. However, note that 
the results obtained with this solver are very close to 
those obtained with mincx from MATLAB. PYTHON's 
cvxopt function seems, in this case, to offer less 
robustness. 
 
 

4.2. DC-DC Boost Converter Simulations 
 

It is about computing the nPI controller presented 
in part 3.2 to regulate the photovoltaic voltage of a PV 
module. The control objective is to generate the duty 

cycle of signal (ݐ)ݑfor the gate of ܳ to regulate the 

voltage (ݐ)ܸܲݒ to the reference photovoltaic voltage ݂݁ݎܸܲݒ (t). An MPPT algorithm (not detailed in this 
work) generates the reference PV voltage from data 
(weather, current, voltage) acquired on an 
experimental set-up. The architecture of this 
implementation is shown in Fig. 3. 
 

Table 2. Robustness bounds ߩ∗. 
 

Case ࢻ LANGUAGE 

MATLAB SCILAB PYTHON

  1 

-1 5.0641 5.0777 4.9808 

-2 5.0439 5.0547 4.6120 

-3 4.8956 4.9068 2.5509 

-5 --- --- --- 

  2 

-1 5.0631 5.0776 4.9766 

-2 5.0424 5.0562 4.6451 

-3 4.9288 4.9328 3.0610 

-5 2.9135 2.9217 --- 

 3 

-1 5.0635 5.0774 4.9583 

-2 5.0420 5.0560 4.6212 

-3 4.9240 4.9299 2.8493 

-5 2.6839 2.6896 --- 

 
 
For this simulation, it is supposed that the 

corresponding ݒ௉௏௥௘௙(t) is computed over a 12 hours 
period starting at 7:00 am, as showed Fig. 4, with the 
PV current ݅௉௏(ݐ)  generated by the panel shown at 
Fig. 5. 

 
 

 
 

Fig. 3. Controller implementation. 
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Fig. 4. Reference Photovoltaic voltage ݂݁ݎܸܲݒ(t). 
 
 

The Fault-Tolerant Control technique presented in 
the Section 3.3 has been tested on the DC-DC boost 
converter of Section 3.1. Once again, three fault sensor 
cases are considered: 

 
Case 1: ݅௅ sensor fault with 1ܮ = 2ܮ = ሾ1 0 0ሿ;    
Case 2: ݒ଴ sensor fault with 1ܮ = 2ܮ = ሾ0 1 0ሿ; 
Case 3:ݒ௣௩ sensor fault with 1ܮ = 2ܮ = ሾ0 0 1ሿ. 

 
 

 
 

Fig. 5. Photovoltaic current ܸ݅ܲ(ݐ). 
 
 
Then, the optimization problem (6) considering 

LMI conditions (17), (18) and (19) has been solved 
using the MATLAB’s mincx function, the SCILAB’s 
lmisolver function and the PYTHON’s cvxopt function 
for the three fault sensor cases and for  ߙ = −1,−10ܽ݊݀ − 100  (transient performance), ߞ = 1  (disturbance rejection) and 1ߤ = 2ߤ = 1000 
(limitation of gain values). Table 3 show the 
robustness bound values obtained for each case, 
respectively for ߙ. In order to facilitate the reading of 
these results, the values of the robustness bounds 
appearing in the table are multiplied by 100. Each 
robustness bound represents the fault tolerance of the 
remaining sensor affected, ܵܮܫ 0ݒܵ ,  or ܸܵܲݒ . Colored 
cells correspond to the highest bound. 

Generally, MATLAB seems to give significantly 
better results for ߙ = −1  and ߙ = −10  except for 
case 3 where the best fault tolerance is obtained with 
PYTHON. It is logical to obtain less robust control laws 
for ߙ = −100 , however it should be noted that 

SCILAB is the most efficient in this case. In order to 
compare the quality of these FTC control laws, we 
carried out a simulation with Simulink for case 3 (fault 
on ܸܵܲݒ  sensor) and ߙ = −10. The magnitude of the 
considered fault is the one corresponding to the largest 
robustness bound, ݕܲ∗ߩ = 0.00686 , obtained with 
PYTHON. For information, we give the gains of the 
controllers obtained by the three solvers and 
associated with the control law given in Table 4. 
 ൜ (ݐ)ݑ = 0.5 + (ݐ)ݑߜ(20)																																																(ݐ)ݑߜ = ݇௜݁(ݐ) + ݇௣ଵ݅௅(ݐ) + ݇௣ଶݒ௢(ݐ) + ݇௣ଷݒ௉௏(ݐ) 
 

 
Table 3. Robustness bounds ߩ∗. 10ଶ. 

 
 
Case

 
 

LANGUAGE 

MATLAB SCILAB PYTHON

  1 

-1 1.0836 0.9971 0.9474 

-10 0.4582 0.3824 0.4113 

-100 0.720 0.1346 0.0995 

  2 

-1 0.8935 0.8396 0.75783

-10 0.7364 0.6713 0.7003 

-100 -- -- -- 

  3 

-1 0.4578 0.4198 0.3901 

-10 0.6348 0.5768 0.6860 

-100 0.0848 0.0490 0.0320 

 
 

Table 4. Gains obtained with the three solvers. 
 

 Gain 

SOLVER  3࢖࢑ 2࢖࢑  1࢖࢑ ࢏࢑

MATLAB -28.3943 -0.1921 0.0136 0.1831

SCILAB -60.5522 -3.2052 0.1301 3.0070

PYTHON -1644.892 -5.1347 0.4208 4.3108

 
 

For simulation purposes, the fault is associated 
with an additive uncertainty on the output matrix,  
such as: 

(∆)ܥ  = ॴଷ + ൥001൩ . .௉௬∗ߩ .2)݊݅ݏ .ߨ .(ݐ ሾ0 0 1ሿ							(21) 
 

Photovoltaic voltage ܸܲݒ∗ (t) respectively obtained 
with MATLAB, PYTHON and SCILAB are compared 
with ݂݁ݎܸܲݒ (t) in Fig. 6. The three control laws are 
rather fault resilient but it is clear that the voltage 
regulation is better with the state feedback matrix K 
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generated by PYTHON. This is highlighted by the  
Fig. 7 which presents a zoom of Fig. 6. Finally, Fig. 8 
shows the shape of the control inputs associated with 
the three previous control laws. Note that the signal 
generated by the controller respects 0 ൑ (ݐ)ݑ ൑ 1. 

 
 

 
 

Fig. 6. Regulated photovoltaic voltages ݒ௉௏∗ (t). 
 
 

 
 

Fig. 7. Zoom of regulated photovoltaic voltages ݒ௉௏∗ (t). 
 
 

 
 

Fig. 8. Control signal (ݐ)ݑ. 
 
 

5. Experimental Tests 
 

The effectiveness of the proposed FTC control 
approach is approved by experimental tests on an 
experimental platform. This stand-alone test bench, 
illustrated in Fig. 9, consists of a photovoltaic chalet 
equipped, on its roof, with 30 photovoltaic panels with 
a power of 233Wc and monocrystalline technology. 

 
 

Fig. 9. SMART-EnR platform: photovoltaic chalet. 
 
 

The experimental setup, located inside the chalet 
and shown in Fig. 10 had been implemented with the 
following equipment: 

① PV panel 

② Li-ion batteries 

③ Acquisition of solar irradiance and temperature 
measurements 

④ MicroLabBox-dSPACE card 

⑤ DC-DC boost converter 

⑥ Two bidirectional converters built using 
SEMIKRON power modules 

⑦ Voltage and current sensors 

⑧ The graphical user interface on ControlDesk 
software. 
 
 

 
 

Fig. 9. Experimental test bench of PV/battery system. 
 
 

This test was performed on April 11, 2023 at 11:17 
a.m. over a period of 650 seconds. Weather conditions 
during this period are relatively stable with an ambient 
temperature of around 15 °C and solar irradiance 
shown in Fig. 10. 

Only one of the 30 photovoltaic panels is 
connected to the Li-ion batteries. The DC-DC boost 
converter is the same as the one described section 3 
and the control law implemented is the one given in 
(20) with the coefficients of the PYTHON solver 
appearing in Table 4. We simulated a fault sensor fault 
of the photovoltaic voltage by multiplying the value of ݒ௣௩(ݐ)  by (1 − (௉௬∗ߩ  between 11:21:46 a.m. and 
11:22:26 a.m. The sensor fault period is illustrated by 
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the blue area in Fig. 10. This fault has the consequence 
of disturbing the MPPT algorithm which exploits the 
measurement of ݒ௣௩(ݐ)  to generate ݒ௣௩௥௘௙(ݐ). 
 
 

 
 

Fig. 10. Solar irradiance and sensor fault period. 
 
 

Despite this sensor defect, Fig. 11 shows that the 
regulation of the photovoltaic voltage is excellent. 
This observation is definitively validated by Fig. 12 
which is a zoom of Fig. 11 during the sensor fault 
period. It is important to remember that the 
performance of this reference voltage tracking is 
closely linked to the choice of the half-plane ࣝఈ. The 
more the half-plane is offset from the imaginary axis 
of the complex plane, the better the performance of the 
controller in terms of response time. For this 
experimental validation, ߙ = −10. 

 
 

 
 

Fig. 11. Tracking of ݒ௣௩௥௘௙(ݐ). 
 
 

 
 

Fig. 12. Zoom of Fig. 11 during sensor fault period. 

Finally, the duty cycle generated by the controller 
and the photovoltaic power produced by the PV panel 
are respectively illustrated in Fig. 13 and Fig. 14. The 
switching frequency of the MOSFET thyristor is  
20 kHz. We can see that the value of the duty cycle is 
almost constant during this test despite a more 
significant variation around 11:22:00 when we 
simulated the sensor fault. 
 
 

 
 

Fig. 13. Duty cycle (D). 
 
 

Fig. 14 shows a slight decrease in the photovoltaic 
power produced by the panel during the sensor fault. 
This decrease is not due to a lack of performance of 
the controller which allows a very good tracking of ݒ௣௩௥௘௙(ݐ)  but at a bad value of this reference, 
computed by the MPPT algorithm and falsified  
by the fault. 

 
 

 
 

Fig. 14. Photovoltaic power (Ppv). 

 
 
6. Conclusions 
 

This paper deals with fault resilience of DC-DC 
boost converter sensors associated with a robustness 
bound generated by a state feedback control technique. 
The resulting problem was solved using three LMI 
solvers provided by different programming languages. 
The contribution of this study is not to the 
development of a new fault-tolerant control technique 
but rather to the robustness analysis (and therefore the 
fault resilience) associated with a control law, 
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depending on solver. The results presented in sections 
4 and 5 show that the robustness of the control laws 
can be influenced by the solver used. However, it is 
not possible to conclude as to the most efficient solver 
because it depends on the case study. The simulation 
results but also the experimental tests validate the 
fault-tolerant control technique considered in this 
work. This state feedback control technique can only 
be effective when the fault is partial. If the fault is 
complete, the output feedback case should be 
considered and this constitutes an interesting 
perspective for this work. 
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