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ABSTRACT: 

Efforts on flood mapping from active and passive satellite Earth Observation sensors increased in the last decade especially due to 

the availability of free datasets from European Space Agency’s Sentinel-1 and Sentinel-2 platforms. Regular data acquisition scheme 

also allows observing areas prone to natural hazards with a small temporal interval (within a week). Thus, before and after datasets 

are often available for detecting surface changes caused by flooding. This study investigates the contribution of textural variables to 

the predictive performance of a data-driven machine learning algorithm for detecting the effects of a flooding caused by Sardoba 

Dam break in Uzbekistan. In addition to the spectral channels of Sentinel-2 and polarization bands of Sentinel-1, two spectral 

indices (normalized difference vegetation index and modified normalized difference water index), and textural features of gray-level 

co-occurrence matrix (GLCM) were used with the Random Forest. Due to high dimensionality of input variables, principal 

component (PC) analysis was applied to the GLCM features and only the most significant PCs were used for modeling. The feature 

stacks used for learning were derived from both pre- and post-event Sentinel-1 and Sentinel-2 images. The models were validated 

through model test measures and external reference data obtained from PlanetScope imagery. The results show that the GLCM 

features improve the classification of flooded areas (from 82% to 93%) and flooded vegetation (from 17% to 78%) expressed in 

user’s accuracy. As an outcome of the study, the use of textural features is recommended for accurate mapping of flooded areas and 

flooded vegetation. 

* Corresponding author

1. INTRODUCTION

Flood events, the frequency and severity of which are increasing 

because of urbanization and population growth, cause 

devastating effects on society, economy and ecosystems 

worldwide (EMDAT, 2022). It is essential to produce reliable 

spatial and temporal information on the extent of the flood in 

order to mitigate their impacts and to plan the disaster 

management, emergency response and insurance processes 

effectively. In this context, the potential of widely used Earth 

Observation (EO) datasets and various mapping approaches in 

identifying smooth open water bodies and flooded areas has 

been proven in many studies (e.g., see Tavus et al., 2018, 2019 

2020, 2022; Bentivoglio et al., 2022; Cerbelaud et al., 2021). 

In most flooding hazard events in rural areas, inundated 

vegetation accounts for more than three-quarters of the total 

flooded area. In this context, many approaches that rely on 

backscattering intensity have been used in the literature for the 

determination of inundated vegetation. Betbeder et al. (2014) 

evaluated multitemporal TerraSAR-X horizontal-horizontal 

(HH) and vertical-vertical (VV) polarizations and polarimetric 

parameter, the Shannon entropy (SE), by using support vector 

machine (SVM), K-nearest neighbors and decision tree (DT) 

algorithms to identify vegetation types under the flood event. In 

the study, the classification results reached the highest kappa 

index of 0.85 and the contribution of polarimetric parameters to 

the results was compared with the HH, VV or combined (HH 

and VV) backscatter parameters. Accordingly, it was 

emphasized that the use of polarimetric parameters contributed 

to the determination of inundated vegetation. Cazals et al. 

(2016) evaluated the potential of Sentinel-1 VV and HV 

polarizations by using a backscatter thresholding algorithm to 

detect open water, flooded vegetation and non-flooded 

grassland. In the study, open water was successfully detected, 

but flooded grasslands were detected with a poor accuracy level 

because of the fine-grained grass/crops patterns. 

In approaches based on backscatter analysis, polarimetric 

synthetic aperture radar (PolSAR) and interferometric SAR 

(InSAR) coherence are preferred to minimize the confusion of 

inundated vegetation with urban areas and shadow areas with 

open water (Brisco et al. 2013; Gallant et al., 2014; Dabboor  et 

al., 2015; Plank et al., 2017; Tavus et al., 2022). Plank et al. 

(2017) presented a procedure specifically focusing on the 

identification of inundated vegetation based on C-band 

Sentinel-1 and L-band ALOS-2/PALSAR-2 data. As a result of 

the proposed procedure involving polarimetric decomposition, 

it was emphasized that the C band data (Sentinel-1) is suitable 

for smooth water detection, while L band (ALOS-2/PALSAR-2) 

data provides detailed information about flooded vegetation. 

Brisco et al. (2019), analyzed the RADARSAT HH and HV 

polarizations to map flooded vegetation, noting that the 

polarizations were less effective for this purpose due to increase 

of backscatter intensity and phase shift from double bounce 

scattering. The polarization ratio (HH/HV), Shannon entropy 

and m-chi decomposition provided a good discrimination 

between flooded vegetation and the other class.  

In summary, while decomposition methods such as Sinclair, 

Freeman–Durden, Yamaguchi, H-α Alpha, etc. provide higher 
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discrimination ability on backscattering characteristics of 

objects, coherency data evaluated based on seasonality allows 

determination of flooded vegetation. However, there are 

limitations to the application of these methods in terms of the 

availability of full polarimetric data, area coverage, temporal 

and geometric resolution (Tsyganskaya et al., 2019). 

 

In recent years, the studies in the literature aiming to determine 

the flooded vegetation have focused on the use of the 

complementary potential of SAR and optical data together. In 

this context, Sentinel-1 SAR and Sentinel-2 optical datasets are 

preferred due to their temporal and spatial resolutions. Studies 

using only Sentinel-2 (Bhatnagar et al., 2018) and jointly using 

Sentinel-1&2 (Chatziantoniou et al., 2017; Nhangumbe et al., 

2023) have demonstrated benefits of both datasets for flood 

mapping. In addition, there are many studies investigating the 

potential of multi-temporal Sentinel-1 (Huang et al., 2017; 

Mleczko and Mróz, 2018; Tsyganskaya et al., 2018) and 

Sentinel-2 (Ludwig et al., 2019) datasets. 

 

A recent study by Tavus et al. (2022) evaluated accurate flood 

mapping potential of Sentinel-1 and Sentinel-2 datasets 

comprehensively by comparing the different data availability 

scenarios, such as only pre- event Sentinel-2 together with pre- 

and post-event Sentinel-1, or the use of only Sentinel-1, etc. 

The study area was in Sirdaryo region of Uzbekistan, in which a 

dam break occurred on May 1st 2020 and caused flooding over a 

large region known for its high agricultural activity. The results 

obtained from the random forest (RF) classification revealed 

that the highest accuracy could be obtained by using both the 

pre- and post-event Sentinel 1&2 data and a set of hand-crafted 

feature set, such as spectral indices and textural variables. 

 

This study aimed at providing an in-depth analysis on the 

contribution of textural features for classification accuracy 

explicitly. For this purpose, we produced gray-level co-

occurrence matrix (GLCM) textural features and assessed their 

capability for learning inundated vegetation from Sentinel-1 and 

Sentinel-2 imagery. In this context, a multi-temporal feature 

space was created by generating pre- and post-event GLCM 

textures and various spectral indices. The feature spaces with 

and without GLCM variables were than used for modeling with 

the RF classifier. The results were validated using information 

obtained from the PlanetScope orthoimage with 3 m spatial 

resolution. The data, methods and results are presented and 

discussed here. 

 

2. MATERIALS AND METHODS 

Under the following sub-headings, the study area, the data and 

the methodology are described in detail. 

 

2.1 Study Area and Datasets 

The Sardoba Dam was built between 2010-2017 on the Syr 

Darya River in Uzbekistan. Completed in 2017, the dam 

reservoir was designed to hold more than ~922 million m3 of 

water to irrigate the fertile farmland around the region, where 

crops such as cotton and wheat are usually produced (Simonow, 

2020). On May 1, 2020, the region was flooded due to a break 

on the wall of the dam. The flood waters advanced into the 

borders of Kazakhstan and caused destruction in a wide area 

consisting of settlements and fertile crop lands.  

 

The location of the study area and the corresponding land use 

land cover (LULC) map are illustrated in Figure 1. The study 

area spans around 2009 km2 and, as per the ESA WorldCover 

product, comprises 69.8% cropland, 16.6% bare/sparse 

vegetation, 6.2% urban area, 4.9% grassland, and 2.1% 

permanent water bodies (ESA-WorldCover, 2020). 

 

 
 

Figure 1. The study site location (above) and the LULC map 

obtained from the ESA WorldCover (below). 

 

 

In this study, we utilized Sentinel-1 and Sentinel-2 datasets 

provided by the ESA Copernicus Programme (Copernicus, 

2020). Table 1 summarizes the data properties and the ground 

conditions at the time of the data acquisition, such as pre- or 

post-event. The selected Sentinel-1 and Sentinel-2 data 

accurately represented the pre-and post-flood conditions. Figure 

2 displays the pre-and post-flood Sentinel-2 RGB images 

acquired on April 24 and May 04, 2020, respectively, together 

with Sentinel-1 VV polarization images. Additionally, 

validation datasets were generated using PlanetScope 

orthoimages with 3 m spatial resolution. For this purpose, we 

manually delineated reference polygons of each class from 

PlanetScope data acquired on May 10, 2020, through the Planet 

Explorer platform (www.planet.com).  

 

 

 

Acquisiton 

Date 
Condition Usage 

Sentinel-1 
2020/04/29 

2020/05/25 

Pre-event 

Post-event 

Feature generation 

& 

Classification 

Sentinel-2 
2020/04/24 

 2020/05/04 

Pre-event 

Post-event 

Feature generation 

& 

Classification 

PlanetScope 

orthoimage 
10/05/2020 Post-event 

External reference 

for Validation 

 

Table 1. Basic specifications of the datasets used in the study. 
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Figure 2. Satellite images of the study site obtained from 

Sentinel-2 and the VV polarization data of Sentinel-1. 

 

2.2 Methodology 

The methodology of this study consists of three basic stages as 

(i) data pre-processing and feature extraction, (ii) feature 

selection, and (iii) modeling, mapping and validation, as 

depicted in Figure 3.  In the first stage of data pre-processing 

and feature extraction, several methods such as noise filter and 

removal of systematic errors caused by terrain were applied to 

the Sentinel-1 data. The lower resolution band of Sentinel-2 

(B11) was upsampled as well. The normalized difference 

vegetation index (NDVI) and modified normalized difference 

water index (MNDWI) spectral indices were produced from the 

pre- and post-event Sentinel-2 data. In addition, a total of 10 

GLCM texture variables introduced by Haralick et al. (1973) 

were applied to each of the pre-event and post-event Sentinel-1 

and Sentinel-2 band data. 

 

In the second stage, Principle Component Analysis (PCA) was 

applied to the GLCM variables produced for the pre- and post-

event Sentinel-1 and Sentinel-2 data in order to reduce the 

dimensionality as there were a total of 140 of them. A total of 

12 GLCM principle components (GLCM PCs) obtained from 

the analysis were used as additional information to the original 

Sentinel-1 (S1) and Sentinel-2 (S2) bands. This dataset (Stack-

1) involving the GLCM PCs produced in the study by Tavus et 

al. (2022) was used for the modelling with the RF classifier, and 

the results were validated with a test dataset (546.052 reference 

samples) produced from an external reference (PlanetScope 

orthoimages).  The bands included in Stack-1 are pre- and post-

event S1 VV, S1 VH, S1 GLCM PCs, 5 bands of S2 (B2, B3, 

B4, B8, B11), S2 GLCM PCs, NDVI and MNDWI.  

 

In order to assess the contribution of the GLCM feature 

components (GLCM PCs) to the prediction of flooded areas and 

flooded vegetation, these features were removed from the Stack-

1 dataset to obtain Stack-2, which consists of pre- and post-

event S1 VV, S1 VH, 5 bands of S2 (B2, B3, B4, B8, B11), 

NDVI and MNDWI. The training data was manually delineated 

on the S2 RGB imagery for the Stack-1, and was also used for 

the learning process with Stack-2.  

 

 

 
 

Figure 3. Overall methodology of the study. 

 

In the third stage, the RF method proposed by Breiman (2001), 

which is based on decision trees, was used for learning from 

data formed in the previous stage. A total of seven LULC 

classes, namely flooded vegetation (FV), flooded area (FL), 

bare land (BL), permanent water (PW), urban area (Ur), 

vegetation 1 (V1) and vegetation 2 (V2), were identified from 

the post-event Sentinel-2 images. For this, a total of 13.539 

training samples manually delineated from post-event Sentinel-

2 were used with a tree size of 300 and 3-fold cross-validation. 

Previous studies carried out by Tavus et al. (2018, 2020, 2022) 

have shown that instead of applying a binary classification 

approach for flooded areas, applying a holistic LULC 

classification increases the accuracy and reliability of flood 

extent maps. Thus, the seven classes mentioned above were 

defined in the modeling with Stack-1 and Stack-2. The results 

were tested using pixels inside the test polygons identified on 

the external reference imagery of PlanetScope for both feature 

stacks.  

 

3. RESULTS AND DISCUSSIONS 

Figure 4 (a and b) shows the classification results for the seven 

classes as explained in the previous section. The distribution of 

the training polygons can also be seen in the figure. The flood 

maps obtained from the Stack-1 and Stack-2 exhibit differences 

especially in the FL, Ur and V1 classes, and even more in the 

FV class based on the visual inspection. No significant change 

was observed in the PW and V2 classes. Detailed views from 

the maps focusing rather on the FL and FV classes are given in 
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Figure 5 together with the test polygons delineated on the 

PlanetScope orthoimages. The extent of the maps shown in 

Figure 5 is illustrated with dashed black rectangle in Figure 4. 

Tables 2 and 3 represent the validation results as confusion 

matrices between the different classes for Stack-1 and Stack-2 

predictions, respectively. In the tables, the rows and the 

columns represent the numbers of actual (PlanetScope) and the 

predicted class samples, respectively. As can be seen in the 

tables, 86% overall accuracy (OA) and 83% Kappa (K) values 

were obtained as a result of Stack-1 classification, while 68% 

OA and 60% K values were obtained as a result of Stack-2 

classification. In addition, Table 4 provides further accuracy 

measures comparatively for both stacks, such as the producer’s 

accuracy (PA) or omission error, and user’s accuracy (UA) or 

commission error. 

 

 
Figure 4. The RF classification results obtained from (a) Stack-1 (pre- and post-event S1 VV & VH & GLCM PCs & pre- and post-

event S2 GLCM PCs & NDVI & MNDWI) and (b) Stack-2 (pre- and post-event S1 VV & VH & pre- and post-event S2 & NDVI & 

NMDWI). Polygons FL, FV, PW, Ur, V1, V2 and BL, shown in black-white tones, represent the training dataset.  

 

 

 BL FL FV PW Ur V1 V2 

BL 11131 2916 1478 0 6497 623 2662 

FL 502 88754 2325 58 846 2300 333 

FV 386 10053 107663 19808 2 0 129 

PW 0 0 0 75841 0 0 37 

Ur 802 8045 27 91 53554 4722 1507 

V1 239 1902 0 0 4617 111129 2 

V2 29 0 0 0 4217 0 20825 

Overall accuracy (OA): 86%  Kappa(K): 83% 

 

Table 2. Confusion matrix obtained from the RF classification of Stack-1 and the accuracy measures. 

 

 BL FL FV PW Ur V1 V2 

BL 10048 2965 0 0 12157 123 14 

FL 157 78404 1 2 8525 7378 651 

FV 2 101018 23238 13591 152 0 40 

PW 0 92 0 75611 175 0 0 

Ur 403 2701 0 73 61186 1429 2956 

V1 63 395 0 0 15934 101467 30 

V2 13 0 0 0 4196 0 20862 

Overall accuracy (OA): 68%  Kappa(K): 60% 

 

Table 3. Confusion matrix obtained from the RF classification of Stack-2 and the accuracy measures. 
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 BL FL FV PW Ur V1 V2 

PA (%) 

Stack1 / Stack2 
85/94 79/42 96/99 79/85 77/60 94/92 82/85 

UA (%) 

Stack1 / Stack2 
44/40 93/82 78/17 100/99 78/89 94/86 83/83 

 

Table 4. PA and UA accuracy metrics obtained from the RF classifications with Stack-1 and Stack-2. 

 

 
 

Figure 5. Detailed views from the FV and FL polygons as a part of reference data in (a) Sentinel-2 post-event RGB image, (b) flood 

map with GLCM features (Stack-1), (c) flood map without GLCM features (Stack-2). 

 

 

As can be seen from the Tables 2 and 3, with the use of GLCM, 

the OA value increased from 68% to 86%, and the K value 

increased from 60% to 83%. According to Table 4, with the use 

of GLCM, the PA of the FL class increased from 42% to 79%, 

while the UA increased from 82% to 93%. Based on the bold 

marked values in Table 4, it can be concluded that the 

utilization of GLCM has a great impact on the learning of the 

FL, FV, Ur, and V1 classes in this study. 

 

As seen in both the classification results and the error matrices, 

the use of GLCM data significantly contributes to increasing the 

classification accuracy by preventing the mixture between the 

FV and FL classes. When GLCM is not used, more than 3/4 of 

the FV class was mislabelled as FL, whereas no mixing occurs 

between the FV and the other classes. In other words, the 

missing textural variables resulted in the misclassification of 

flood areas as urban and vegetation. It is evident that the 

inundated vegetation shows a different scattering mechanism in 

radar data compared to other classes. This particularly finding 

highlights the difference in texture properties of the inundated 

vegetation compared to the floods, water, or the other 

agricultural areas in the region. 

 

Although the use of GLCM PCs has increased the PA of the 

urban areas from 60% to 77%, the UA has decreased from 89% 

to 78% since Ur class pixels were labeled as FL. Therefore, it 

can be said that the texture information causes complexity 

during the learning of Ur and FL classes. Also, comparison of 

both sets of results showed that the PA of the PW class which 

classified with GLCM has increased from 79% to 85%. The PA 

values of the PW class were 79% and 85% in Stack-1 and 

Stack-2, respectively. Accordingly, the texture information 

caused more mixing between PW and FL classes. This situation 

is likely to be due to the mixing of the texture features that may 

occur on smooth water surfaces due to wave and/or wind effects 

with the PW class. 

 

4. CONCLUSIONS AND FUTURE WORK 

In the present study, the contribution of GLCM textural features 

for flood extent mapping including flooded vegetation were 

evaluated with the RF classifier applied to the learning set 

obtained from various Sentinel-1 polarization and Sentinel-2 

spectral bands. The study area was located in the Uzbekistan-

Syrdarya region, has been affected by dam flooding, and 

comprises 70% cropland. Besides several other factors, the site 

was selected as cloud-free Sentinel-2 images were available 

representing the post-event status and the topography is rather 

flat, thus the radar geometric distortions such as shadow can be 

neglected. Two sets of learning variables, one containing 

GLCM textural information in the form of principal components 

and the other one without GLCM textures were produced. A 

LULC classification for a total of seven classes were followed 

here. The results were assessed using external reference 

obtained from PlanetScope orthoimages with 3 m spatial 

resolution. 
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The results showed the use of GLCM PCs greatly contributed to 

increase the overall classification accuracy (OA= 86% with 

GLCM and OA=68% without GLCM) based on external 

reference. The UA of flooded vegetation class exhibited the 

highest improvement, from 17% to 78% without and with 

GLCM, respectively. The classification accuracy of the flooded 

areas also increased yielding an increase from 42% to 79% in 

terms of PA. Thus, the use of textural features is highly 

recommended for detecting both the flooded areas and the 

flooded vegetation. 

 

On the other hand, the use of texture data has led to the 

misclassification of surfaces without texture, such as open water 

surfaces. Further strategies can be integrated to reduce this 

effect as future work. 
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