

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 11, No. 3, pp. 403– 420, July-September, 2023

p-ISSN: 2663-628X

e-ISSN: 2663-6298

403

INTELLIGENT HOME: EMPOWERING SMART HOME WITH MACHINE LEARNING

FOR USER ACTION PREDICTION

Ayad A. Saleem a,*, Masoud M. Hassan b, Ismael A. Ali b
a Technical College of Petroleum and Mineral Sciences, Duhok Polytechnic University, Zakho, Kurdistan Region, Iraq -

ayad.abdulrahman@dpu.edu.krd
b CCNP Research Lab, Department of Computer Science, Faculty of Science, Zakho, Kurdistan Region, Iraq - (masoud.hassan,

ismael.ali)@uoz.edu.krd

Received: 28 Mar., 2023 / Accepted: 14 May, 2023 / Published: 15 Aug. 2023 https://doi.org/10.25271/sjuoz.2023.11.3.1145

ABSTRACT:

Smart homes is an emerging technology that is transforming the way people live and interact with their homes. These homes

are equipped with various devices and technologies that allow the homeowner to control, monitor, and automate various

aspects of their home. This can include lighting, heating and cooling, security systems, and appliances. However, to enhance

the efficiency of these homes, machine learning algorithms can be utilized to analyze the data generated from the home

environment and adapt to user behaviors. This paper proposes a smart home system empowered by machine learning

algorithms for enhanced user behavior prediction and automation. The proposed system is composed of three modes,

including manual, automatic, and intelligent, with the objectives of maximizing security, minimizing human effort, reducing

power consumption, and facilitating user interaction. The manual mode offers control and monitoring capabilities through

a web-based user interface, accessible from anywhere and at any time. The automatic mode provides security alerts and

appliances control to minimize human intervention. Additionally, the intelligent mode employs machine learning

classification algorithms, such as decision tree, K-nearest neighbors, and multi-layer perceptron, to track and predict user

actions, thereby reducing user intervention and providing additional comfort to homeowners. Experiments conducted

employing the three classifiers resulted in accuracies of 97.4%, 97.22%, and 97.36%, respectively. The proposed smart

home system can potentially enhance the quality of life for homeowners while reducing energy consumption and increasing

security.

KEYWORDS: Smart home, Machine Learning, Raspberry Pi, Decision Tree, K-Nearest Neighbors, Multi-Layer

Perceptron, ANN, User Behavior.

1. INTRODUCTION

The remarkable advancement in technology has facilitated the

ability to establish a connection between any device and the

Internet, thus giving rise to the notion of the Internet of Things

(IoT). The IoT refers to a network of internet-connected devices

and objects that range from simple household appliances to

complex machinery in various settings (Saleem et al., 2022).

These devices collect and share data, which enables them to

function seamlessly and offer insights into different aspects of

human life (Ibrahim et al., 2022; Taiwo et al., 2022). The

integration of IoT has led to enhanced efficiency, convenience,

and optimization in both residential and commercial settings,

resulting in increased revenue and improved customer service for

businesses. The application areas for the IoT encompass various

fields such as healthcare, smart homes, smart cities, industrial

automation, and transportation. Among these, and since the smart

home pertains more closely to individuals' daily lives, the smart

home has garnered significant interest from both the industrial

and academic communities (Jabbar et al., 2018).

The use of smart homes is growing rapidly and is expected to

continue to grow in the future as technology continues to advance

and become more accessible. The development of smart homes

is being driven by the increasing demand for home automation

and the growing need for energy efficiency. However, there are

challenges associated with the implementation of smart homes,

including cost and security concerns (Jabbar et al., 2019).

Nevertheless, the potential benefits of smart homes are

substantial and are likely to result in significant positive impacts

on the quality of life for homeowners. The goal of smart homes

is to increase comfort, convenience, safety, and efficiency while

reducing energy consumption. The provision of a user interface

(UI) for home control and monitoring is crucial, with a preference

for web-based applications accessible at any time and from

anywhere via the internet. Such an interface should be user-

friendly and compatible with all major operating system

platforms, including Android, Windows, and iOS, to facilitate the

way the user interacts with their smart homes. In addition to

enhancing user comfort, home control systems can also promote

energy conservation by enabling automatic control. To ensure

maximum security, the system should also include real-time

notifications and alarms.

The current era of the Fourth Industrial Revolution (Industry 4.0

or 4IR) has resulted in an abundance of digital data, including

IoT data, business data, health data, mobile data, social media

data, and cybersecurity data, among others. The effective

analysis of these data and the creation of related automated and

smart applications require a solid understanding of Artificial

Intelligence (AI), particularly Machine Learning (ML). Within

ML, there are several different algorithms such as supervised,

unsupervised, semi-supervised, and reinforcement learning. Of

particular significance is deep learning, a subset of ML that

possesses the capability to analyze vast amounts of data

intelligently (Sarker, 2021a). In order to increase the intelligence

of the smart home, ML methods can be utilized. ML algorithms

are increasingly being integrated into smart homes to enhance

automation and improve the user experience. These algorithms

allow for real-time analysis of large amounts of data and

personalization based on user behavior and environmental

factors. Smart homes powered by ML are a new and rapidly

evolving field, combining the benefits of smart homes with the

power of AI. ML algorithms can be used to analyze data

generated by smart home systems, such as energy usage patterns,

occupancy information, and sensor readings, and hence make

predictions about future behavior. ML models have proven to be

an effective tool in enabling smart home automation to achieve a

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
https://doi.org/10.25271/sjuoz.2023.11.3.1145

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

404

multitude of objectives. These include detecting and recognizing

objects, human activities, and faces, as well as controlling

household appliances intelligently, optimizing energy

consumption, monitoring homes, and enhancing safety and

security measures (Taiwo et al., 2022). Smart home employs

several ML classification algorithms in its applications, including

but not limited to K-Nearest Neighbors (KNN), Decision Tree

(DT), Support Vector Machine (SVM), Naive Bayes, and

Random Forest. In addition, deep learning (DL) models are also

utilized in smart home applications (Saleem et al., 2022). In this

work, ML classification model is employed to adapt user

behavior and learn from performed actions.

This paper aims to design and implement an intelligent home

system empowered by ML methods for enhanced user behavior

prediction and automation. The proposed system aims to reduce

user effort, power consumption, and human intervention, while

increasing security. It includes a web-based UI accessible from

any operating system platform to control various home

appliances such as lights, TV, air conditioners, window, door,

curtain, with the capability to be controlled manually by the user

through a friendly UI. The proposed system is also capable of

performing automatic tasks without user intervention, such as

turning on/off lights in order to reduce power consumption.

Furthermore, it provides real-time voice and text message alerts

through the UI and email for detecting intruders and fire inside

the home. Additionally, the system incorporates the power of

artificial intelligence, especially ML algorithms, to increase the

system intelligence. This work makes use of various sensors and

user actions to predict user preferences, particularly regarding

controlling the curtain using a classification model. Additionally,

this work applies different classifiers to identify the best model

to be implemented in the proposed system. The system provides

a responsive UI to monitor and control the home environment.

The proposed system offers a smart, secure, and user-friendly

solution for intelligent home automation.

The rest of this paper is structured as follows. Section 2 presents

a review of related work to enable a comparison with the

proposed system. Section 3 provides a background on the

fundamentals of smart home, ML, and the various tools utilized

in this study. Section 4 details the proposed method, including

system architecture and design considerations. Section 5 presents

the results obtained from applying various ML algorithms to the

created dataset, along with a discussion of their performance.

Finally, Section 6 provides the conclusion, highlights the

contributions of this work, and outlines potential directions for

future research.

2. RELATED WORKS

In this section, numerous state-of-the-art smart home systems are

reviewed to provide a comparison to the proposed system.

Various smart home systems were proposed for controlling home

appliances and monitoring the home environment without

making use of the power of ML algorithms. For instance, (Okorie

et al., 2020) proposed a smart, cost-effective system for

controlling home appliances and monitoring the status of diverse

sensors using smart Android phones, in order to help the elderly

and people with disabilities to live their lives in the easiest way.

The system consists of an Arduino connected to sensors (light

and temperature sensors), appliances (TV, fan, light), and a

Bluetooth module to provide communication between the

Arduino and the smartphone. This system can be controlled by

any android-based device using the "arduDroid" application,

which is capable of sending controlling commands to the

Arduino, such as turning on/off the TV, fan, and light. In

addition, it receives information from Arduino related to the

value of temperature and light intensity sensors. The system is

easy to use and implement, and costly effective. However, this

system is controlled only via Android devices.

In another study, home control and monitoring system based on

the web application UI was presented (Iqbal et al., 2018). Their

system comprises three main functionalities: door control, fan

and light control, and water pump control. In the door control

functionality, a motion sensor, a camera, and a Light-Emitting

Diode (LED) are installed in front of the door. As soon as any

motion is detected, the RPi will receive a signal, and then it will

turn the light on automatically in case it is night time. In addition,

the camera will take a picture and then store it in the database for

security purposes. Thus, the user can open the door via a UI.

Furthermore, in the fan and light controlling functionality, the

user can turn on/off lights and the exhaust fan. A humidity and

temperature sensor are installed to read the temperature and

humidity status and show them on the web page for the user to

decide whenever to turn on the exhaust fan. Finally, in the water

pump controlling functionality, two water level sensors are

installed on the top and bottom of the water tank, which are

connected to the Arduino to send the signals through ZigBee to

the RPi to decide when to turn on the water pump automatically.

The data from the sensors' and actuators' status is temporarily

stored on the MySQL database in RPi and then backed up on the

cloud server to be ready for a user history report or even a third-

party service provider. As an advantage of the system, an online

UI is used to make the system capable of being accessed

anywhere and anytime, and the authors took into consideration

sensors' status before controlling the actuators. Although the

system has multiple features, no ML method is used.

Pavithra and Balakrishnan (2015) proposed a smart home system

for the purpose of controlling home appliances and detecting fire.

The system is designed to operate through the use of a central

controller, which is based on the Raspberry Pi (RPi) platform.

Specifically, the system employs relays to switch on and off

lights when an infrared (IR) sensor detects an object, and a

Passive Infrared (PIR) sensor to switch on the fan when motion

is detected. Additionally, the system integrates a fire detection

sensor that, when activated, triggers a camera to capture an image

of the fire in order to send it along with an alarm message to the

user's phone. The phone subsequently makes an automatic call to

the closest fire station. The control and monitoring of the system's

lights and fans can be managed manually through a web page UI,

which is accessible from any operating system platform. It is

worth noting that the system's architecture does not involve the

use of ML algorithms. Consequently, the system does not have

the capability to learn or adapt to changing environmental

conditions. While the system's design is commendable in its

utilization of a central controller for home automation and fire

detection, it does not exhibit intelligent behavior as ML

algorithms would provide.

The authors in (Gota et al., 2020) designed and implemented a

home automation system by controlling lighting, doors, and

windows, as well as monitoring temperature and humidity inside

and outside the home. The process of controlling and monitoring

was done through a web page to make the system usable on

different operating systems. In order to control the windows and

doors inside the house, a servo motor was used, which can rotate

at an angle of 0 to 180 degrees. Another type of motor called a

stepper motor was used to control the opening and closing of the

garage door, as this type has the ability to rotate in two directions

and at multiple angles. The motors stop when they reach a certain

point that is sensed by the magnetic sensor. For manual or

automatic ventilation, the temperature inside and outside the

house was read along with the humidity reading. Thus, when a

certain temperature is reached, the ventilation system is turned on

automatically or manually via the web page.

On the other hand, several smart homes systems have been

proposed that incorporate ML algorithm for controlling home

appliances and enhancing home security. For example, (Abbas &

Abdullah, 2021) proposed an innovative approach towards

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

405

tracking and predicting user behavior using ML algorithms. The

system comprises two essential components, a RPi and a

NodeMCU ESP32, which work in tandem to perform the

intended function. The television is connected to the ESP32 via

a relay, while the pushbutton serves as a switch to activate or

deactivate the TV. The RPi records and archives the device's

status and user behavior, which are then subjected to a

classification process. The decision to turn the television on or

off is derived through the use of DT algorithm. This model is

adaptable, allowing for updates to be made with newly collected

daily data. It is noteworthy that the system does not include a UI

and does not utilize any wireless communication technology.

In another study by Mehmood et al., (2019), the authors devised

a deep learning-based system for the detection of individuals.

Their system utilized Amazon Web Service to facilitate remote

monitoring by the user. The system comprises a camera module,

connected to a RPi, which captures live video and employs the

Single Shot MultiBox Detector (SSD) algorithm trained with the

Microsoft Common Objects in Context (COCO) dataset for video

analysis. Upon detection of a person, notifications are sent to the

user either through Short Message Service (SMS) or email.

Additionally, a control message is transmitted to the actuating

device, a Node MicroController Unit (NodeMCU) ESP8266, to

turn on or off a LED. The system's accuracy is impacted by

decreasing light intensity, increasing distance, and larger frame

size, resulting in a reduction from 95-100 to 80-85 percentage.

(Crisnapati et al., 2016) proposed a smart home monitoring and

control system that utilizes fuzzy logic to decrease energy

consumption. The system features an HD camera that is

integrated with a motion detection system, a motion sensor, and

RFID for security. In this system, the user can manage recorded

videos and captured photos, control functions (turning lights on

and off), and monitor the home through a user-friendly web

interface. Furthermore, the system's artificial intelligence

capabilities allow it to automatically control temperature and

lighting to promote energy efficiency.

(Paredes-Valverde et al., 2020) presented a sophisticated system

designed for power consumption monitoring and management,

called IntelliHome. The system utilizes data obtained from the

usage of IoT devices such as electrical appliances, sensors, and

smart switches, to provide energy-saving recommendations to

the user based on their behavior and preferences. Upon accepting

the recommendation, the system implements control over home

appliances. The analysis and processing of the data are handled

by the Home Energy Consumption Monitor (HECM) module,

which utilizes the Holt-Winters-RNN algorithm. Although the

system provides a UI, it is only compatible with Android devices.

In (Peng et al., 2019), the authors propose an intelligent home-

control system with the utilization of a convolutional neural

network (CNN) to recognize and classify human gestures (human

point attitude). The system makes use of an Arduino as a central

controller for controlling the window, air conditioner, and LED.

The gestures are captured via a Kinect sensor that is connected to

a personal computer, which processes the obtained data and sends

resulting information via Zigbee wireless technology to the

Arduino to execute controlling commands. Finally, the obtained

results were excellent for all gesture classifications. The system

does not have a user interface.

The authors in (Raju et al., 2021) presented a smart home system

that enables monitoring of the home, control of appliances such

as lights and fans, and prediction of power conservation. This

system is built using a Raspberry Pi, various sensors (including

motion, temperature, light, and sound), and actuators. Users can

control their appliances via a mobile application that sends

commands to the Raspberry Pi, which then sends control

commands to the relay module to turn the appliances on or off.

The system can also automatically control appliances, and users

can view the energy consumption of each device via the user

interface. To predict energy consumption, the system employs

several machine learning algorithms, including decision tree

regression, KNN, support vector regression, and random forest

regression. The PIR sensor is used to control both the light and

the fan, and Bluetooth communication is used to connect the

mobile phone with the Raspberry Pi for wireless communication.

While the system has a user interface, it cannot be accessed via

the internet. Notably, the Decision Tree algorithm was found to

provide the highest accuracy among all applied algorithms.

3. BACKGROUND

This section provides a brief overview of smart home systems,

and machine learning methods, along with the various tools and

devices utilized in this work.

3.1 Smart Homes

As defined by Marikyan et al., (2019), a smart home “is a

residence equipped with smart technologies aimed at providing

tailored services for users”. A "smart home" is referred to as a

home automation system that is designed with controlling,

monitoring, and sensing functionalities such as surveillance,

ventilation, lighting, and conditioning systems. These smart

systems consist of various essential components, including

actuators and sensors connected wired or wirelessly to a central

controller (Saleem et al., 2022). This controller receives data

from sensors, and sends controlling commands to the actuators.

Controlling commands are provided either by the user via a UI or

automatically based on some pre-programmed conditions.

Furthermore, householders can monitor their houses via a

graphical UI using a tablet, computer, or smartphone (Saleem et

al., 2022).

Smart home as one of the most common IoT applications (Nikou,

2019), provides access to the components remotely anytime and

anywhere via any smart devices (Choi et al., 2021). Smart homes

offer diverse services to the homeowner, including:

• Remote monitoring: monitor the environment inside and around

the home from anywhere and at any time. For instance,

monitoring the devices' status (on/off), and sensors' status

(readings).

• Remote controlling: controlling the home appliances anytime and

anywhere via the UI.

• Reducing human effort: the user can control home appliances by

their phones without any physical movement. For example,

switching on the air conditioner, TV, and lights, as well as

opening the door.

• Reducing power consumption: for example, turning the lights off

during the daytime. In addition, turning the lights on when

motion is detected somewhere inside the home would lead to

saving energy.

• Security maximizing: integrating a security option in the smart

home is essential to prevent a home from being stolen and to

provide a real-time alert. For example, installing a surveillant

camera in addition to setting up a motion detector to alert the

householder by sending an alarming message via email or phone

calls, as well as activating buzzers.

3.2 Raspberry Pi

Raspberry Pi (RPi) is a small-sized highly performance single

board computer (SBC) that has all standard computer

components including processor, RAM, I/O units, and GPU,

incorporated in a single board (Jolles, 2021; Pajankar, 2021). In

addition, as compared to the available SBCs in the market, the

RPi is one of the most common SBCs and the best-selling

computers in the world (Pajankar, 2021). Unlike traditional

computers, the main disadvantage of the RPi is that the hardware

component cannot be upgraded (Pajankar, 2021). Like the other

SBCs and due to their suitable size and performance, the RPi is

essentially employed in embedded systems, especially for

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

406

robotics and IoT applications. The first model of RPi was

released in February 2012 and was developed by the RPi

foundation in the United Kingdom (Jolles, 2021; Kurniawan,

2019). Among all RPi model, the newest model is the RPi 4

model B which comes with the following specifications: 64-bit

quad-core Cortex- A72 1.5GHz Broadcom BCM2711 processor.

LPDDR4 3200 SDRAM comes with 1GB, 2GB, 4GB, or 8GB of

RAM. Dual-band 2.4GHz and 5GHz wireless networking IEEE

802.11ac, gigabit ethernet, and Bluetooth 5, two USB 3.0 and two

USB 2.0 ports. An array of 40-pin headers (described in Figure

2), 28-pins out of these 40 are General Purpose Input/Output

(GPIO) used to connect sensors and actuators for controlling and

monitoring purposes. Two micro-HDMI ports support up to 4k

video streaming. Serial interface port to connect RPi camera,

microSD card slot, and it operates with 5V 3A DC input power,

(See Figure 1). Although RPi has its official operating system

called Raspberry Pi OS (Raspbian OS, previously) (Jolles, 2021),

it can run with other OS including android, windows 10 IoT, and

ubuntu OS family.

Figure 1: Raspberry Pi 4 model B on board components

(Pajankar, 2021).

Figure 2: Raspberry Pi 40-pins header description (Raspberry

Pi Documentation, n.d.).

As illustrated in Figure 2, the RPi consists of 40 pins defined as

follows:

• Two power pins provide 5V, and two power pins provide 3.3V.

• 8 unconfigurable ground pins provide 0V.

• The other 28 pins called GPIO pins, which can be used either as

output and can be set from 3.3V (high) to 0V (low), or as input

which can read also from 3.3V to 0V.

3.3 Machine Learning

Machine Learning (ML) is a branch of AI that consist of a set of

algorithms and techniques that enable computer systems to learn

and make predictions or decisions to learn from available data

based on previous experiences (Bertolini et al., 2021) without

being explicitly programmed. ML methods are used in diverse

areas including object detection, text and speech interpretation,

classification and pattern recognition (R. Mehmood & Selwal,

2020). Prior to the implementation of the algorithm on a specific

problem, the algorithm is trained on a dataset (available data) to

result in the most accurate model. The dataset contains a number

of columns called attributes or features, in addition to the output

variable (in case of supervised learning). Furthermore, the dataset

should be split into two sets, one used for training the model,

called the training subset. In contrast, the other called the testing

subset utilized for testing the model accuracy (Bertolini et al.,

2021). Moreover, the dataset features can be continuous, binary,

or categorical (R. Mehmood & Selwal, 2020), and the output

variable could be continuous or categorical (Bertolini et al.,

2021). The types of available data help to choose the best-fit

algorithm for the available case.

ML consists of several algorithms, each of which is intended to

solve specific kinds of problems, such as classification (in case

of categorical output), regression (in case of continuous output),

and clustering. There are three main types of ML: supervised

learning, unsupervised learning, and reinforcement learning.

Classification and regression, are methods of supervised

learning, in which the data are labelled (consisting of input and

output) (Bertolini et al., 2021; R. Mehmood & Selwal, 2020).

While the clustering is an unsupervised learning (output variables

are missing) (Bertolini et al., 2021; R. Mehmood & Selwal,

2020). The classification (predictive learning) comprises various

algorithms including Decision Tree (DT), Naive Bayes (NB),

Random Forest (RF), Artificial Neural Network (ANN), K-

Nearest Neighbors (KNN), Logistic Regression (LR), and many

other algorithms that utilized for prediction (Bertolini et al.,

2021; R. Mehmood & Selwal, 2020). While unsupervised

learning, which is also called descriptive learning, analyzes the

given dataset and intends not to predict the missing output, but to

discover the hidden pattern behind the given data (Bertolini et al.,

2021). For example, in clustering, the data are divided into

several groups, each of which contains data that are similar to

each other, but differ from the other groups (Bertolini et al.,

2021). The most common clustering algorithm is K-means.

Semi-supervised learning is the combination of both supervised

and unsupervised learning which can handle labelled and

unlabelled data. It is useful when the dataset contains a small

number of labelled data and a large number of unlabelled ones

(Sarker, 2021b; van Engelen & Hoos, 2020). Further, it is located

between supervised and unsupervised learning. As it aims to

enhance the performance of one of the previous techniques by

making use of data corresponding to the other. For example, in

case of handling classification problems, a large amount of

unlabelled samples is utilized to improve the classification

process. While in clustering, labelled observations can be used to

improve the clustering process as well (van Engelen & Hoos,

2020). A fraud detection and machine translation considered

application of semi-supervised method (Sarker, 2021b).

ML has a wide range of applications in various industries, such

as finance, healthcare, retail, and many others. It is used to solve

a variety of problems, such as predictive analytics, image

recognition, natural language processing, robotics, spam

filtering, face recognition, handwriting and speech recognition,

DNA classification, and computer games (R. Mehmood &

Selwal, 2020). In the proposed work, supervised ML

classification is used in the smart home system to predict the user

action regarding to opening and closing the curtain. In this work,

several classifiers, including DT, KNN, and MLP, are applied to

the Curtain dataset to predict user action. These three classifiers

were selected to perform the comparison among the tree-based

algorithm, the distance-based algorithm, and the optimization-

based algorithm in order to recognize the impact.

3.4 The Decision Tree (DT)

The Direct Tree (DT) is a tree-like graphical representation

classifier used for supervised learning in both regression and

classification tasks (Géron, 2019; Mukherjee et al., 2019). It

consists of nodes, with decision nodes representing attributes and

leaf nodes representing class labels, that are connected via

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

407

arrows, namely directed edges [28]. Iterative Dichotomiser 3

(ID3) and C4.5 are the most commonly used algorithms for

constructing DTs (Mienye et al., 2019). ID3 is used only for

categorical data, while C4.5 can be used for both numerical and

categorical data (Mienye et al., 2019). To construct a DT,

impurity measures (such as Entropy or Gini) and information

gain are utilized for each feature, whereas the most informative

attribute with the maximum information gain is selected as the

root node (Mienye et al., 2019). This process is repeated to

determine the best-fit attribute for each node until all attributes

are included in the tree. The resulting DT is then translated into

rules comprising if-then statements (Mukherjee et al., 2019; Patel

& Prajapati, 2018). Decision trees have several advantages,

including their interpretability, simplicity, and ability to handle

both categorical and numerical features.

3.5 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) algorithm is another supervised

learning algorithm, which is considered the simplest ML

algorithm as it requires only storing the training dataset to build

the model (Gao & Li, 2020) KNN is utilized for solving both

classification problems for categorical label, as well as regression

problems for numerical label (Jung, 2022). The key parameter of

the KNN algorithm is the number of neighbors that will be

considered (Jung, 2022). In this paper, KNN is employed for

classification of user behaviors. In order to predict the class of

the new data example, KNN intends to determine the closest data

examples out of all the examples in the training dataset (Li et al.,

2023). The simplest version is to set K to 1. Thus, it means

considering only one nearest neighbor in order to figure out

which class the new data point belongs to. In general, for a binary

classification, it is preferable to set k greater than two; in this

case, voting is utilized to determine the correct label. This implies

that the correct label is the class that has the most frequent

neighbors to the new data point (Mahmoodzadeh et al., 2020).

KNN makes use of distance metrics to calculate the distance

between the new point and all other training set points (Kubat &

An, 2021). Indeed, the three most commonly utilized distance

metrics are Euclidean, Manhattan (also known as city block

distance), and Minkowski (Gao & Li, 2020). The Minkowski is

a generalization of both Euclidean (when 𝑝 = 2) and Manhattan

distance metric (when 𝑝 = 1) (Gao & Li, 2020).

3.6 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a complex system that

operates similarly to the human brain and nervous system which

can provide self-learning (Desai & Shah, 2021). ANN is one of

the most well-known ML techniques used for the learning

process and provides satisfying results for complex problems that

cannot be easily interpreted [2]. Furthermore, ANN can solve

various problems, including regression, classification, and

clustering (Heidari et al., 2020). The learning process can be

performed via several iterations called epochs (Desai & Shah,

2021), each iteration consists of two major phases, including the

feed-forward and backpropagation processes. ANNs have

various forms to represent, such as single-layer perceptron (SLP),

MLP, and deep learning (Heidari et al., 2020). SLP consists of

only two layers: the input layer and the output layer. It cannot

perform well with patterns that are not linearly separable. For this

reason and in order to alleviate the drawbacks of SLP, MLP was

developed. Unlike SLP, this kind has more than two layers,

including an input layer, hidden layers, and an output layer. The

input layer comprises a number of neurons representing the

number of features in the dataset, while the output layer is

composed of only one neuron (Car et al., 2020). The key benefits

of MLP are that it performs well with the availability of noise,

provides high learning accuracy, and handles non-linear

separable data (Heidari et al., 2020). The performance of MLP is

highly influenced by various factors, such as wights vector and

learning technique.

MLP is one of the most common FeedForward Neural Networks

(FFNNs) algorithms that offers a high degree of reliability based

on the layered structure of the neural network. The layers in

FFNNs consist of nodes called neurons. Each of which is fully

connected by connection links to all neurons of the next layer

(Desai & Shah, 2021; Heidari et al., 2020). These edges are

associated with a real number called weights. Each node can

carry out two kinds of functions (Heidari et al., 2020); summation

function, which is calculated by taking the summation of the

production of input values and weights, with adding bias weight.

Thus, the result of the summation function is passed through an

activation function to determine whether the next node will be

activated or not (Heidari et al., 2020). Several activation

functions can be applied, including the most common ones such

as Identity (the values stay the same), ReLU (only positive values

will be accepted, and the negative ones will be replaced with

zero), Sigmoid (the output value will always be in the range 0 to

1), and Tanh (mapping the value of the summation function into

the range from -1 to 1). The working mechanism of MLP is first

started from the input layer, which is called forward propagation,

represented by setting initial weights for the edges (Heidari et al.,

2020), the output of the neurons in one layer is considered to be

the input of the next layer neurons, after adding weight values to

them (Desai & Shah, 2021). This process represents one iteration.

For repeating iteration, the process is passed through the

backpropagation technique, which operates in reverse from the

output layer, ending in the input layer. This technique provides

weight updating to enhance accuracy and it is repeated until the

desired results are obtained that have the minimum loss (Desai &

Shah, 2021; Heidari et al., 2020). This algorithm is used in this

study to predict the user action behaviors.

3.7 Cross Validation

Cross-validation is a statistical technique used to evaluate the

performance of a ML model by testing it on multiple subsets of

the available data. The basic idea behind cross-validation is to

split the available data into two sets: a training set, which is used

to fit the model, and a testing set, which is used to evaluate its

performance. This technique is used to evaluate the model, and

to avoid overfitting and underfitting problems. In general, cross-

validation can be applied with two common methods, including

hold-out and 𝐾-Fold (Mahmoodzadeh et al., 2020; Tatsat et al.,

2020). The hold-out method divides the original dataset into

training and testing samples, while the 𝐾-Fold method divides

the data into several folds (subsets) based on the value of 𝐾, each

of which has the same size. One fold is considered as the testing

set and the other 𝐾 − 1 folds are the training set (Mahmoodzadeh

et al., 2020). Therefore, the testing set is evaluated using

evaluation metrics (such as accuracy and F1-score) for each fold

independently to gain 𝐾 results. Consequently, the final result is

obtained by calculating the average of the obtained 𝐾 (Tatsat et

al., 2020). Logically, in the hold-out method, the size percentage

of the training set must be large as compared with the testing set

size. Figure 3 demonstrates the idea behind K-Fold cross-

validation (Tatsat et al., 2020).

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

408

Figure 3: K-Fold cross validation when K=5.

The strength of the 𝐾-Fold technique is that each data point in the

original dataset is considered to be testing data once, and as

training data 𝐾-1 times, leading to a decrease in bias. Because of

this, it was implemented in this study in the experiments

conducted with 𝐾-Fold values equal to 3, 5, and 10.

3.8 Evaluation Metrics

In order to evaluate the performance of the classification model,

different evaluation metrics are used. Basically, these metrics

rely on the confusion matrix, which is a table used to evaluate the

performance of a classification algorithm. It is a summary of

prediction results on a binary classification problem. The

confusion matrix comprises four parts including True Positive

(TP), True Negative (TN), False Positive (FP), and False

Negative (FN). Thus, this matrix shows the relationship between

the actual class and the predicted one (Klok & Nazarathy, 2021).

Furthermore, when the classifier predicts the class that matches

the actual one, it means it is a TP and TN case. Moreover, as soon

as the predicted value does not match the actual value, then it is

the case of either FP or FN. Positive classes refer to the class with

the values 1, True, or Yes; while the Negative classes represent

the values 0, False, or No, and so on. The most common measures

obtained from confusion matrix are: Accuracy, Precision, Recall,

and F1-score.

The confusion matrix is demonstrated in Table 1, and the

evaluation metrics are defined as in the following equations:

Accuracy =
|TP| + |TN|

|TP| + |TN| + |FP| + |FN|
 (1)

Precision =
|TP|

|TP| + |FP|
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑁|
 (3)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

Another evaluation metric was employed called the Area Under

the Curve (AUC) which represents the area that falls under

Receiver Operating Characteristics (ROC). AUC is a widely used

performance metric in ML, which measures the ability of a binary

classification model to distinguish between positive and negative

classes by computing the area under the ROC curve. It is a robust

and intuitive metric that provides a single scalar value

summarizing the overall performance of the model, which is

insensitive to the imbalance of class distributions.

Table 1: Confusion matrix for binary classification problem.

Actual Class

Positive (1) Negative (0)

Predicted Class
Positive (1) TP FP

Negative (0) FN TN

4. PROPOSED SMART HOME SYSTEM

This section discusses the structure of the proposed smart home

system, including hardware components (appliances, sensor, and

devices), and system workflow (with and without ML).

In order to build the proposed system, various devices and
sensors were utilized and connected together to collect and
exchange data with each
other. Figure 5 demonstrates
the home architecture of the
proposed system and its
connected sensors, and
appliances. Figure 4
provides a top view of the
proposed system prototype.
The objectives of the
utilized devices and sensors
in the proposed system are
illustrated clearly in

Table 2. In addition, Table 3 shows each sensor and device and

their signal type, provided voltage (VCC: Voltage Common

Collector), pin mode, and allocated RPi pin number.

Figure 4: Top view of the prototype.

Table 2. The objective and the position of utilized devices and sensors.

Device Count Place Objective

RPi 1 Controlling box
To connect all devices, send commands, and receive and store data.

As well as implementing ML model. Considered local server.

PIR 2 Bathroom Sensing human existence to turn on the bathroom light

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

409

Living room

Sensing human existence to notify the householders about intruders

when “nobody home” mode is on. As well as to turn off the tv after a

period of no movement found.

Light Dependent Resistor

(LDR)
1

Outside in front

of the main

door

Installed outside to calculate the real-time light intensity. Useful

especially for ML mode

Digital Temperature and

Humidity (DHT22)
2

Bedroom Sensing the temperature and humidity inside the room

outside Sensing the temperature and humidity outside

Gas sensor (MQ-2) 1 Kitchen To measure the intensity of smoke and gas.

Raindrops 1 Outside Detecting if it is rainy or not.

Flame 1 Kitchen Detecting if there is a flame inside the kitchen

Analog-to-Digital Converter

System (ADS 1115/1015)
1 Controlling box Converts analogue signals received from sensors into digital signals.

Stepper motor 1 Living room
To open and close the living room curtain in both modes: user

commands and intelligent (ML) mode

Servo motor 2
Living room Controlling window

Main door Controlling door

Figure 5: Home architecture and connected sensors, and appliances (red lines indicates wired RPi output, blue lines indicate wired

RPi input, and the green lines refers to wireless communication).

Table 3. Home overall utilized sensors, actuators, and appliances associated with allocated pin number and provided voltage.

Sensers / Appliances Place Allocated pin number Pin mode Signal type VCC

PIR
Bathroom 6 Input Digital 5v

Living room 19 Input Digital 5v

DHT22
Living room 26 Input Analog 3.3v

Outside 23 Input Analog 5v

ADS 1115/1015

Between analog

sensors and RPi

GPIO

I2C protocol (SCL,

SDA)
Input

Analog to Digital

converter (ADC)

A0, A1, A2, A3

3.3v

LDR Outside A0 Input Analog 5v

MQ-2 Kitchen A1 Input Analog 5v

Raindrops HL-83 Outside A2 Input Analog 3.3v

Web-based UI

Kitchen

Living

room

Bedroom

Bathroom

Home Environment

TV

Servo motor

Stepper motor

LDR

Exhausted fan

LED bulb

MQ-2

ADC

RPi

AC

LED bulb

LED bulb

LED bulb

AC

Flame sensor

DHT22

DHT22

PIR

PIR

Wireless router

LED bulb

Raindrop sensor

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

410

Flame Kitchen 24 Input Digital 5v

Stepper Living room curtain 10, 16, 20, 21 Output Digital 5v

Servo
Bedroom window 13 Output Analog 5v

Main-door (outdoor) 12 Output Analog 5v

Exhausted fan Kitchen 25 Output Digital
12v external

adapter

LED bulb

Kitchen 7 Output Digital
12v external

adapter

Bedroom 4 Output Digital
12v external

adapter

Bathroom 17 Output Digital
12v external

adapter

Outside 8 Output Digital
12v external

adapter

Living room 18 Output Digital
12v external

adapter

TV Living room 27 Output Digital
12v external

adapter

Air conditioner (AC)

Living room 22 Output Digital
12v external

adapter

Bedroom 5 Output Digital
12v external

adapter

4.1 Dataset Description and Design

The proposed work intends to create a dataset, referred to as

"Curtain dataset" that captures user behavior regarding the

opening and closing of curtain inside the house. Although the

dataset is intended to store real-time data received from the

proposed smart home system, the first version of the Curtain

dataset was generated using logical simulation data representing

as much as possible real data. The dataset represents a

classification-based problem that records the data based on

specific times and includes six input features and a binary

classification output (user behavior). It comprises 8030 samples

collected over one year, with some features were encoded, such

as in "time", "weekday", and "out_light", while other features

remain in raw data format.

Table 4 provides a detailed description of the Curtain dataset, including the encoding methodology used for each feature. Indeed, before

generating the semi-real simulation data, experiments were conducted on the sensors utilized to identify the range and factors that

influence their values. For example, the “out_light” feature, which represents the value of the LDR sensor, is influenced by the date

(month) and time, particularly sunrise and sunset times (noted in (Sunrise and Sunset Zakho Dahuk Iraq, n.d.)) for each month.

Figure 7 demonstrates the correlation between the dataset features and the output label, while
Figure 6 displays the frequency distribution of the available classes. Some features in the dataset
were generated randomly, whereas this randomness was controlled based on the established range
and experiments performed. The Curtain dataset is updated daily every 30 minutes with actual
real-time sensors data to provide accurate prediction for the model.

Table 5 provides a sample of the Curtain dataset, consisting of a

few observations.

Table 4: Curtain dataset description.

Input/output
Column

name

Data

type
Description and range

Input feature

date Integer Represent the month from 1 to 12

time Integer

Represents the time of 24 hours, encrypted as follows:

20-4:29=0, 4:30-4:59=1, 5:00-5:29=2, 5:30-5:59=3, 6:00-6:29=4, 6:30-6:59=5, 7:00-

7:29=6, 7:30-7:59=7, 8:00-8:29=8, 8:30-8:59=9, 9:00-9:29=10, 9:30-9:59=11, 10:00-

10:29=12, 10:30-10:59=13, 11:00-16:29=14, 16:30-16:59=15, 17:00-17:29=16, 17:30-

17:59=17, 18:00-18:29=18, 18:30-18:59=19, 19:00-19:29=20, 19:30-19:59=21.

weekday Binary
Represents either 0 (weekend: Friday and Saturday) or 1 (working days: Sunday to

Thursday)

motion Binary
Generated randomly. Represents the current value of the motion (PIR) sensor

0 = no motion, 1 = motion detected.

out_light Integer

Generated randomly taking into account the time and date feature. Represents the

outside light intensity which is calculated based on the value that passes from the

resistance (LDR sensor) to the RPi GPIO pin. The lower the value received from RPi,

the higher the light intensity. The values are converted to percentages to make them

easy to understand.

smoke Integer

Generated randomly based on the tests conducted. Represents the data of the gas/smoke

sensor. The normal rang when no gas or smoke detected is from 350 to 390. The cases

of greater than 400 means smoke or gas is detected.

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

411

Classification

output

user

action
Binary

Represents the user behavior.

0 = closing the curtain, 1= opening the curtain.

Table 5: Curtain Dataset Sample.

date time
wee

kday

motio

n

out_

light

smok

e

user

actio

n

7 6 0 0 82 362 0

7 7 0 0 83 382 0

7 8 0 0 84 352 0

7 9 0 1 84 359 0

7 10 0 0 85 373 0

7 11 0 0 86 355 1

7 12 0 0 87 354 1

7 13 0 1 88 367 1

7 14 0 0 89 386 1

7 15 0 1 88 361 1

7 16 0 0 84 364 1

7 17 0 1 79 366 1

7 18 0 1 65 358 1

7 19 0 0 60 387 1

7 20 0 0 40 387 0

7 21 0 1 0 380 0

8 0 1 1 0 373 0

8 1 1 0 0 374 0

8 2 1 0 38 389 0

8 3 1 1 70 355 0

8 4 1 1 78 351 0

8 5 1 1 82 364 0

8 6 1 1 82 385 1

8 7 1 0 83 387 1

8 8 1 0 84 372 1

Figure 6: Curtain dataset class distribution.

Figure 7: Curtain dataset column correlations.

4.2 System Workflow

The proposed system is designed to provide various

functionalities that enable the creation of a fully automated home

system with enhanced security and comfort, while also reducing

power consumption and human effort. For this, the system

consists of three modes, namely manual, automatic, and

intelligent (ML) modes. In the manual mode, the user has full

control over the appliances and can operate them through user

intervention. In constant, the automatic mode allows the system

to control the appliances based on predefined conditions using

sensor values. Finally, in the intelligent mode, the system

employs ML algorithms to perform actions based on the output

of the trained model.

By integrating these three modes, the system provides a robust

and flexible solution that can adapt to the user's preferences and

environment conditions. This approach allows for the creation of

a more efficient and effective home system that reduces energy

consumption and increases comfort and security. In the

following subsections, each mode is described in detail to provide

a better understanding of the proposed system's capabilities and

functionalities.

4.3 Manual Mode:

In this mode, the user sends control commands to the actuators

using a web-based UI to control the following appliances:

• Opening and closing the living room curtain using a stepper

motor.

• Turning on/off lights in the bedroom, living room, and kitchen

via the relay module.

• Switching on/off the living room and bedroom air conditioners

(represented as a fan in the prototype) via relay module.

• Switching on/off the TV using relay module.

• Turning on/off the kitchen exhaust fan using relay module.

• Controlling the main door and bedroom window by utilizing

servo motors.

4.4 Automatic Mode:

This mode provides automatic control based on predefined

conditions that rely on sensors’ values. The following actions

demonstrate the mode:

• Based on the outside darkness obtained from LDR, turning on or

off outside light.

• Based on human existence, turning on and off the bathroom light.

Thus, the light will turn on as soon as motion is detected via the

PIR sensor, and it will turn off after 2 minutes, starting from the

time when no motion is detected.

• Turning on the exhaust fan when abnormal smoke/gas is

detected. In addition to sending an email, and viewing text and

voice messages on the UI.

• For security reasons, the system contains an option called

"Nobody at home". The home residents can turn on this option

when they leave home to tell the system to send an alert via email

and also show a text and voice notification on the GUI when the

PIR (installed in front of the main door) senses any motion. Thus,

detecting the intruder.

• Automatically close windows when rain is detected via raindrop

sensor.

• Turning off the TV automatically after 10 minutes starting from

the moment when no motion is detected.

• Sending email and viewing text and voice alerts as soon as a fire

is detected.

• The system automatically stores the values of the mentioned

sensors in the Curtain dataset every 30 minutes based on the

specific pattern.

• Show text and voice alert if the outside temperature is very hot

or very cold.

• Show text and voice alerts if the main-door stays open for a while.

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

412

4.5 Intelligent Mode:

The proposed system is incorporated with an intelligent mode

which relies on using ML technique.

This mode can be activated by the user via the UI, allowing the

system to predict user preferences for automatically opening or

shutting the curtain. In this mode, the prediction is performed

using a DT classifier. The reason behind using this predictor is

discussed in the next section. The process of storing data into

Curtain dataset was presented in section 1.1. Incorporating this

part into the proposed work resulted in a reduced user effort and

energy consumption, as the user will no longer need to turn on

the light when the outside sunlight enters the home after opening

the curtain. This also demonstrates the potential of ML to make

home environments smarter, more comfortable, and more

feasible.

Figure 8 depicts the workflow of the proposed system,

highlighting the use of ML in predicting user preferences and

automating the opening and closing of the curtain. The decision

tree classifier was chosen for its ability to handle both numerical

and categorical data, making it suitable for the data collected in

the "Curtain" dataset.

Figure 8 illustrates the functioning of the intelligent mode in

detail. This mode is designed to leverage the RPi to collect and

store data from sensors it in the Curtain dataset, along with the

corresponding date (month, and weekday) and time after

encoding some data and converting some others into a more

comprehensible format. Prior to fitting classification models, the

essential process of feature selection and the classification label

determination is carried out. Moreover, feature scaling

techniques such as MinMax Scaler (for the KNN classifier) and

Standard Scaler (for the MLP classifier) are applied, with the

exception of the DT classifier, since its performance not affected

by feature scaling. The dataset is subsequently split into training

and testing sets utilizing the K-Fold cross-validation method. The

training sets are used for the fitting process to obtain the trained

model, which is then used to predict the output of the testing set

comprising previously unseen samples. Several models are

trained to determine the optimal model and classifier for the

intelligent mode. The selected model is then utilized by the RPi

to periodically check the sensors' data, along with the date and

time, every 10 minutes to predict the final decision of opening or

closing the curtain.

5. RESULTS AND DISCUSSION

This section represents the results of various experiments carried

out the “Curtain” dataset using K-Fold cross-validation (with a

specified random state parameter of 42) to predict user behavior

regarding the opening and closing the curtain. The experiments

involved applying three different classification algorithms:

decision tree (DT), K-Nearest Neighbor (KNN), and Multilayer

Perceptron (MLP) artificial neural network (ANN). The

objective was to evaluate the performance of each algorithm and

determine the best model to be implemented in the proposed

system.

Initially, the experiments were conducted independently for each

algorithm, with diverse results obtained to assess the accuracy of

the classifiers. The results of each experiment were compared to

determine the optimal parameter values that would enhance the

accuracy of the classifier. Thereafter, the highest accuracies for

each algorithm were compared against each other to select the

best overall model for the proposed system.

All experiments were carried out using the same computer, which
was equipped with Windows 10 64-bit operating system, x64-
based processor, Intel(R) Core (TM) i7-4700MQ CPU
@2.40GHz, and 8.00 GB of RAM. To facilitate the
implementation of the experiments, popular Python
programming language packages such as Scikit-Learn, Pandas,
and NumPy were used.
Furthermore,

Table 6 outlines the parameters and their respective values

employed for the DT, KNN, and ANN classifiers in each

conducted experiment.

Table 6: Classification algorithms and their utilized parameters.

Classifier Parameter
Utilized

values
Description

DT

criterion
‘gini’, and

‘entropy’
Measurement function to calculate the quality of the feature.

splitter
‘best’, and

‘random’
A strategy used to split the tree in each node.

max_depth

Integer

number from

3 to 12

The depth of the tree. Represents the number of levels in the tree.

KNN

n_neibors

Integer

number from

1 to 10

The number of nearest neighbors helps in deciding which class the new data

point belongs to.

p 1, 2, and 4

Representing distance metric. It is the power value for the Minkowski distance

metric that determines the utilized metrics among Manhattan, Euclidean, or

Minkowski.

MLP

hidden_layer_sizes

Integer

number from

6 to 10

Number of hidden layers (Only one hidden layer utilized in this study) with

the number of neurons in each layer.

activation

‘identity’,

‘logistic’,

‘tanh’, and

‘relu’

It is the activation function which calculate the importance of the neurons to

decide if the neuron is active or not.

solver
‘sgd,’ and

’adam’
Optimizer to use for weights update.

learning_rate ‘Constant’
This parameter is uset to determine if the initial learning rate will be changed

or be constant. in this study, ‘constant’ is used. used only when solver=’sgd’.

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

413

learning_rate_init
0.1, 0.01,

0.001

This is the actual learning rate to use as the initial value of the learning rate for

weight updates. It controls the step-size in updating the weights. Only used

when solver=’adam’ or ‘sgd’.

max_iter 700
Representing epoch, the max number of times that weights will be updated for

each data instance.

Figure 8: Workflow of the proposed system incorporating with ML.

5.1 Experiment #1: DT Classifier Performance

In the context of the experiments conducted in this study, the DT

classifier was utilized to determine the optimal model with the

best parameter values. Several tests were performed on different

models, and the accuracy scores obtained from the DT models

were demonstrated using K-Fold cross-validation with 3, 5, and

10 folds. The results were summarized in Figure 9. The best

results of the three K-Fold values were compared and presented

in Table 7 and Figure 10. The findings indicate that the highest

accuracy was achieved when the best splitter was performed on

the tree. Moreover, the other parameters, including criterion and

max_depth, were set to entropy and 7, respectively. The results

demonstrated that the model with 10 folds provided the best

accuracy score of 97.4% and an F1-score of 97.16%,

outperforming the other values of 3 and 5 folds. Therefore, the

accuracy was found to increase with the increase in the number

of folds used in the experiment. It should be noted that no

normalization techniques were applied to the dataset during the

pre-processing phase. This decision was made since DT is not a

distance-based algorithm, and therefore, normalization does not

significantly impact its performance.

The experiments performed in this study involved testing the DT

classifier with different values for several parameters, as

illustrated in Figure 9. The findings indicate that when the splitter

parameter was set to "best", the criterion "gini" produced higher

accuracy scores than the criterion "entropy" when the maximum

depth of the tree was less than or equal to six. However, when the

maximum depth was greater than six, the criterion "entropy"

performed better. On the other hand, when the random splitter

was employed, the results of both criteria ("entropy" and "gini")

exhibited an irregular pattern and did not follow a clear trend.

These findings highlight the importance of selecting appropriate

parameter values to achieve the best performance of the DT

classifier.

Table 7: DT results for the best models selected based on

different K-Fold value (3, 5, and 10).

K-

Fol

d

Criterio

n

Max_dept

h

Splitte

r

Accurac

y

F1-

score

3 Entropy 7 Best 97.17
96.9

3

5 Entropy 7 Best 97.30
97.0

5

10 Entropy 7 Best 97.40
97.1

6

To validate the performance of the best models obtained from

each K-Fold value (3, 5, and 10), the ROC curves were plotted

and AUCs were calculated, as shown in Figure 11. The AUC

values presented in each figure correspond to the AUC result for

each independent test split (fold). For example, the graph

 ensors data Collecting and storing data

Features and label determining

DT

Classification models

 tandard caler in ax caler

Feature caling

 L

Trained model odel fitting

Training phase

Curtain dataset

Dataset partitioning

Training set

Testing set

Close

 pen

K

 ser action prediction based

on pre trained model

Converting raw data into
more clear data

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

414

illustrating the results of the selected best model for K-Fold when

assigned to 3 displays three AUC values. Similarly, the graph

with five AUC values represents the model for K-Fold = 5, and

so on. Furthermore, to ensure the reliability of obtained results,

the training accuracy against the testing accuracy for each fold

were compared, as shown in Figure 12. These analyses provide

insights into the generalization performance of the models and

demonstrate how well they can perform on new, unseen data. The

results suggest that the models trained with the best parameters

achieve high accuracy scores and can effectively predict user

behavior regarding the opening and closing of curtains.

(a) (b) (c)

Figure 9: Results of DT classifier when: (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

(a) (b)

Figure 10: DT performance with different K-Folds. (a) Accuracy score. (b) F1-score.

(a) (b) (c)

Figure 11: ROC curve with AUC results for DT classifier. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

415

(a) (b) (c)

Figure 12: Model performance for DT classifier (Train vs Test accuracy). (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

The trained models exhibit high reliability, as evidenced by their

ability to achieve a high true positive rate of over 98%, as shown

in Figure 11. Furthermore, Figure 12 indicates that the train and

test accuracies were consistently high and that their values were

very similar for each split, implying that there was no evidence

of overfitting or underfitting in the trained models. This indicates

that the models can accurately generalize to new, unseen data,

which is essential for their practical implementation in real-world

scenarios. Overall, these findings demonstrate the efficacy of the

selected classifiers and parameter values in predicting user

behavior regarding the opening and closing of curtains.

5.2 Experiment #2: KNN Classifier Performance

This experiment investigates the performance of the KNN

algorithm as a classifier to predict the user's action. Given that

KNN is a distance-based algorithm, feature scaling techniques,

particularly Normalization, can have a significant influence on its

performance. To address this issue, the “ in ax caler”

normalization method was employed, which has shown to yield

better results compared to the “ tandard caler” standardization

method. To ensure a fair comparison among the utilized

classifiers, the K-Fold cross-validation was used with the same

values of 3, 5, and 10 folds, as previously done in Experiment #1.

For each of these three K-Fold values, this experiment conducted

tests with the KNN classifier and reported the parameter values

and results obtained for each model with and without

normalization. The results, as shown in Figure 13, indicate that

the performance of the KNN classifier significantly improves

with the use of normalization. This improvement is particularly

evident in cases where the number of folds is higher (i.e., 5 and

10 folds). Therefore, the use of the "MinMax Scaler"

normalization technique was recommended when applying KNN

for user action prediction.

(a) (b) (c)

Figure 13: KNN performance results when: (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

Figure 13 provides a visual representation of the parameters used

in these experiments and their impact on the results. these

findings suggest that a value of "p" equal to one, which

corresponds to the Manhattan distance metric, yields the highest

accuracies in most cases, irrespective of the number of neighbors

used. Additionally, the obtained results indicate that the accuracy

of the KNN classifier improves significantly when using

normalized data compared to raw data. Moreover, the Euclidean

distance metric outperforms the Minkowski metric in the

conducted experiments. These findings highlight the importance

of carefully selecting the appropriate distance metric for

achieving optimal performance when using KNN as a classifier.

The experimental results presented in the three subfigures of

Figure 13 are summarized in Table 8 and visualized in Figure 14,

where the best model that achieved the highest accuracy among

all tests is selected. According to Table 8, the highest accuracy is

achieved using a 10-fold test with four neighbors and the

Manhattan distance metric, where the value of "p" is set to one.

On the other hand, the best model in terms of the F1-score

evaluation metric is obtained using five neighbors, the Manhattan

distance metric, and a five-fold test. To further validate the

selected best models, this experiment presents the ROC curves in

Figure 15 and plot the training accuracy against the testing

accuracy in Figure 16, using the same procedures as in

Experiment #1. These analyses demonstrate that the selected

models provide high accuracy and robustness, thus confirming

their suitability for user action prediction using the KNN

classifier.

Table 8: KNN results for the best models selected based on

different K-Fold values (3, 5, and 10).

K-

Fold

n_neighbors P

(Distance

metric)

Accurac

y

F1-

score

3 4 1 97.02 96.76

5 5 1 97.20 96.97

10 4 1 97.22 96.96

(a) (b)

Figure 14: KNN performance with different K-Folds. (a)

Accuracy score (b) F1-score.

A.A. Saleem et al. / Science Journal of University of Zakho x(x), xx-xx, Month-Year

416

(a) (b) (c)

Figure 15: ROC curve with AUC results for KNN classifier. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

(a) (b) (c)

Figure 16: Model performance for KNN classifier (Train vs Test accuracy). (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

The ROC curves displayed in Figure 15 indicate that all models

achieved a high percentage of the true positive rate, which

suggests that they are highly reliable for user action prediction.

The high AUC rates observed in the ROC curves further confirm

the robustness and accuracy of the selected models. Furthermore,

Figure 16 presents the plot of training accuracy against testing

accuracy for each split, which provides insights into the

performance of the selected models in terms of overfitting and

underfitting. It can be observed that the models were well-

trained, as they do not exhibit significant overfitting or

underfitting, and the train and test accuracies in each split are

very close to each other. This suggests that the selected models

generalize well to unseen data, which is an essential property for

any machine learning model to be effective in real-world

applications.

5.3 Experiment #3: MLP Classifier Performance

Another experiment employing MLP classification algorithm

was conducted over “Curtain” dataset, which yielded obtaining

high accuracies. Similar to the previous experiments, K-Fold

cross-validation was used to ensure a fair comparison among the

different models. Therefore, different results were obtained from

several models represented in Figure 17. Unlike the KNN which

employed MinMax Scaler as the feature scaler, the MLP

classifier makes use of Standard Scaler standardization. Thus,

this scaler led to better results and helped the model to converge

faster. Indeed, it can be observed that the MLP provided very low

results when the feature scaling technique was not applied.

The results indicate that the best-performing MLP model

achieved an accuracy score of 97.36% and an F1-score of 97.13%

when K-Fold was set to 10, and the following parameters were

assigned: "logistic" activation function, one hidden layer with six

nodes, a learning rate of 0.1, and "sgd" solver (optimizer).

Additionally, the max_iter parameter, which determines the

number of epochs necessary to train the model, was set to 700.

The model was observed to converge entirely at this value after

testing various max_iter values, ranging from 100 to 700 in

increments of 100. The loss function used was "cross_entropy,"

which is the only option available in the MLP classifier in the

Sklearn package.

These findings are
summarized in

Table 9, which highlights the optimal model for each K-Fold

value. Additionally, Figure 18 illustrates the performance of the

best model configurations across all K-Fold values.

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

417

(a) (b) (c)

Figure 17: MLP performance with different K-Folds. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

Figure 17 (a) demonstrates that when the solver=”adam” the best

results obtained are when the value of the learning rate equals to

0.01, and “tanh” as an activation function. While for the solver

“sgd”, the highest results obtained with the learning rate 0.1 and

the activation function is assigned to “logistic”. From this figure,

it can be observed that the solver “adam” provides higher results

than the “sgd”.

It can be seen in Figure 17 (b) that the best results obtained were

with activation function “logistic” as well as when the value of

the learning rate assigned to 0.1. Furthermore, the learning rate

with the value 0.001 performs the lowest results in the most cases

as compared with the other learning rate values (0.1, and 0.01).

As visualized in Figure 17 (c), the activation function “logistic”

performs the highest results among all other activation function.

Moreover, the learning rate 0.01 outperform the other learning

rate when the “adam” optimizer is used. While the learning rate

of 0.1 outperforms the other learning rate utilized in this

experiment when associated with “sgd” solver. It can be observed

that from the recently three mentioned figures, the lowest results

gained when the “identity” activation function is utilized.

Table 9: MLP results for the best models selected based on different K-Fold values (3, 5, and 10)

K-Fold Activation function Hidden layer sizes Learning rate Solver Accur-acy F1-score

3 tanh 6 0.01 adam 97.35 97.11

5 tanh 9 0.1 sgd 97.33 97.10

10 logistic 6 0.1 sgd 97.36 97.13

(a) (b)

Figure 18: Performance with different K-Folds. (a) Accuracy score. (b) F1-score.

Figure 18, illustrates that the highest results obtained when the

number of folds assigned to 10. In the next figures, the

validations of the best MLP models are demonstrated, including

those with 3, 5, and 10 as K-Fold values. In Figure 19, the ROC

curves associated with AUC rates were presented, while Figure

20 displays the testing against training accuracy results.

(a) (b) (c)

Figure 19: ROC curve with AUC results for MLP classifier. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

(a) (b) (c)

Figure 20: Model performance for MLP classifier (Train vs Test accuracy). (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10.

A.A. Saleem et al. / Science Journal of University of Zakho x(x), xx-xx, Month-Year

418

The performance of the models was assessed by analyzing true

positive rates across different test splits, as shown in Figure 19.

The results indicate that the models were highly reliable,

achieving true positive rates of more than 99% for each test split.

Furthermore, Figure 20 illustrates that the models were

appropriately trained, with neither overfitting nor underfitting

observed. The train and test accuracies were found to be

extremely close to one another across all splits, providing further

evidence of the models' robustness and generalizability. These

findings suggest that the models developed in this study can be

considered highly reliable and adequately trained for use in real-

world scenarios.

Table 10: A comparison among the best results for each

classifier with their training time.

K-

Fold

Classifier Accuracy F1-

score

Average

training time

in

milliseconds

10 DT 97.40 97.16 5.45

10 KNN 97.22 96.96 11.25

10 MLP 97.36 97.13 3157.6 (4.51

per epoch)

Upon analyzing the results of the three experiments conducted on

the "Curtain" dataset, it can be concluded that the DT classifier

demonstrated superior performance compared to the other

classifiers in terms of accuracy and training time (as illustrated in

Table 10). This can be attributed to the fact that the "Curtain"

dataset is composed solely of numerical values, which are well-

suited for decision tree-based algorithms.

To obtain the training times for the classifiers' best models, the

average time in milliseconds was calculated by averaging the

results of four different executions of the same model. As a result,

the average training times for the DT, KNN, and MLP classifiers

were found to be 5.45, 11.25, and 3157.6 milliseconds (4.51 per

epoch), respectively. Based on these findings, it is recommended

that the DT model be implemented in the system due to its

superior performance in terms of accuracy and training time.

5.4 Comparison of the proposed system with the state-of-

the-art systems

 Table 11 presents a comparative analysis of the proposed system

against several reviewed systems in the literature.

Table 11: Summary of proposed system versus reviewed works, where MLu: Machine Learning is utilized, RPi: Raspberry Pi used,

oRPi: only the RPi utilized as a central controller, DPS: Dataset Provided by the system, Adp: the system is adaptive to the user

behavior, SP: security purpose in the system, AM: does any appliances controlled automatically, MM: does any appliances controlled

manually, MF: Muli-Featured, WUI: Web-based User Interface.

Ref. MLu RPi oRPi DPS Adp SP AM MM MF WUI

(Okorie et al., 2020) ✓ ✓

(Iqbal et al., 2018) ✓ ✓ ✓ ✓ ✓ ✓

(Pavithra & Balakrishnan,

2015)
 ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Gota et al., 2020) ✓ ✓ ✓ ✓

(Abbas & Abdullah, 2021) ✓ ✓ ✓ ✓ ✓ ✓

(F. Mehmood et al., 2019) ✓ ✓ ✓ ✓ ✓

(Crisnapati et al., 2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Paredes-Valverde et al.,

2020)
✓ ✓ ✓ ✓

(Peng et al., 2019) ✓ ✓

(Raju et al., 2021) ✓ ✓ ✓ ✓ ✓ ✓

Proposed system ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The proposed system outperforms the reviewed systems in

various aspects. Firstly, the proposed system excels having a

web-based user interface (UI) that enables local and internet-

based system access surpassing the systems reviewed in (Abbas

& Abdullah, 2021; Okorie et al., 2020; Paredes-Valverde et al.,

2020; Peng et al., 2019; Raju et al., 2021). Secondly, the

proposed system stands out for its ability to use only a RPi as a

central controller, outperforming all reviewed systems except for

the ones in (Pavithra & Balakrishnan, 2015; Peng et al., 2019).

Thirdly, this system has a unique ability to adapt to user behavior

by leveraging the dataset it creates, a feature missing in all

reviewed systems except for the one in (Abbas & Abdullah,

2021) which does not take into consideration the environmental

conditions. Additionally, the proposed system outperforms the

reviewed system in terms of using ML techniques to enhance

home intelligence, surpassing the systems reviewed in (Gota et

al., 2020; Iqbal et al., 2018; Okorie et al., 2020; Pavithra &

Balakrishnan, 2015). Moreover, this system provides a variety of

ways for users to interact with the system, including features

related to security, energy-saving, and more, outperforming all

reviewed works. Furthermore, this system provides real-time

voice and text alerts to users via the UI and email to improve

home security and safety. Finally, the proposed system provides

a fully automated home, utilizing several sensors and appliances,

and enhances home intelligence by applying automatic decision-

making on behalf of the user.

6. CONCLUSION AND FUTURE WORKS

Smart homes using Machine Learning (ML) offer significant

benefits over traditional smart homes by incorporating the power

of artificial intelligence. By leveraging ML algorithms, smart

homes can automatically adjust settings and operations based on

learned patterns and preferences, providing a more personalized

and efficient experience for residents. One of the key applications

of ML in smart homes is in the area of home automation. For

example, ML algorithms can be used to control lighting, heating,

cooling, and security systems based on the presence and behavior

of residents.

This study proposes a smart home system that aims to enhance

security, comfort, energy efficiency, and intelligence. The system

comprises three primary modes, including the manual mode,

automatic mode, and intelligent mode. The manual mode allows

the user to control different appliances and monitor the home

environment through a web-based application. The automatic

mode, on the other hand, reduces human intervention and

maximizes security. This mode provides real-time alerts through

the UI in both text and voice form and also sends text alerts via

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

419

email in the event of an intruder or fire detection. Additionally,

this mode controls appliances automatically based on sensor

readings to minimize energy consumption. The intelligent mode

employs ML algorithms to predict and track user behavior

patterns related to opening and closing curtains. Several

experiments were conducted to compare the performance of

various classifiers (DT, KNN, and MLP) applied to the "Curtain"

dataset. The results revealed that DT provided the highest

accuracy (97.4%) with the shortest average training time (5.45

milliseconds) among all the implemented classifiers, making it

the best choice for implementation in the proposed smart home

system.

For the future goal it has been aimed to enable the user to interact

with the system using voice commands. Additionally, it has been

planned to incorporate image processing capabilities into the

system to automatically control the main door based on the image

of the authorized person. Furthermore, for the intelligent mode,

it has been aimed to create another dataset for user action for

predicting user preferences using regression-based models. In

addition, applying various feature selection techniques on the

"Curtain" dataset in order to evaluate their impact on the

performance of the utilized models.

REFERENCES

Abbas, A. F., & Abdullah, M. Z. (2021). Design and

Implementation of Tracking a user’s Behavior in a mart

Home. IOP Conference Series: Materials Science and

Engineering, 1094(1), 012008.

https://doi.org/10.1088/1757-899x/1094/1/012008

Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021).

Machine Learning for industrial applications: A

comprehensive literature review. Expert Systems with

Applications, 175(February), 114820.

https://doi.org/10.1016/j.eswa.2021.114820

Car, Z., Baressi Šegota, ., Anđelić, ., Lorencin, I., & rzljak,

V. (2020). Modeling the Spread of COVID-19 Infection

Using a Multilayer Perceptron. Computational and

Mathematical Methods in Medicine, 2020.

https://doi.org/10.1155/2020/5714714

Choi, W., Kim, J., Lee, S. E., & Park, E. (2021). Smart home and

internet of things: A bibliometic study. Journal of

Cleaner Production, 301, 126908.

https://doi.org/10.1016/j.jclepro.2021.126908

Crisnapati, P. N., Wardana, I. N. K., & Aryanto, I. K. A. A.

(2016). Rudas: Energy and sensor devices management

system in home automation. Proceedings - 2016 IEEE

Region 10 Symposium, TENSYMP 2016, 184–187.

https://doi.org/10.1109/TENCONSpring.2016.7519401

Desai, M., & Shah, M. (2021). An anatomization on breast cancer

detection and diagnosis employing multi-layer

perceptron neural network (MLP) and Convolutional

neural network (CNN). Clinical EHealth, 4, 1–11.

https://doi.org/10.1016/j.ceh.2020.11.002

Gao, X., & Li, G. (2020). A KNN Model Based on Manhattan

Distance to Identify the SNARE Proteins. IEEE Access,

8, 112922–112931.

https://doi.org/10.1109/ACCESS.2020.3003086

Géron, A. (2019). Hands-on Machine Learning with Scikit-

Learn, Keras, and TensorFlow. In O’Reilly Media, Inc

(econd Edi). ’Reilly edia, Inc.

Gota, D. I., Puscasiu, A., Fanca, A., Miclea, L., & Valean, H.

(2020). Smart home automation system using Arduino

microcontrollers. 2020 22nd IEEE International

Conference on Automation, Quality and Testing,

Robotics - THETA, AQTR 2020 - Proceedings.

https://doi.org/10.1109/AQTR49680.2020.9129989

Heidari, A. A., Faris, H., Mirjalili, S., Aljarah, I., & Mafarja, M.

(2020). Ant lion optimizer: Theory, literature review, and

application in multi-layer perceptron neural networks.

Studies in Computational Intelligence, 811, 23–46.

https://doi.org/10.1007/978-3-030-12127-3_3

Ibrahim, A. K., Hassan, M. M., & Ali, I. A. (2022). Smart Homes

for Disabled People: A Review Study. Science Journal of

University of Zakho, 10(4), 213–221.

https://doi.org/10.25271/sjuoz.2022.10.4.1038

Iqbal, A., Ullah, F., Anwar, H., Kwak, K. S., Imran, M., Jamal,

W., & Rahman, A. ur. (2018). Interoperable Internet-of-

Things platform for smart home system using Web-of-

Objects and cloud. Sustainable Cities and Society, 38,

636–646. https://doi.org/10.1016/j.scs.2018.01.044

Jabbar, W. A., Alsibai, M. H., Amran, N. S. S., & Mahayadin, S.

K. (2018). Design and Implementation of IoT-Based

Automation System for Smart Home. 2018 International

Symposium on Networks, Computers and

Communications, ISNCC 2018, November 2018, 1–6.

https://doi.org/10.1109/ISNCC.2018.8531006

Jabbar, W. A., Kian, T. K., Ramli, R. M., Zubir, S. N.,

Zamrizaman, N. S. M., Balfaqih, M., Shepelev, V., &

Alharbi, S. (2019). Design and Fabrication of Smart

Home with Internet of Things Enabled Automation

System. IEEE Access, 7, 144059–144074.

https://doi.org/10.1109/ACCESS.2019.2942846

Jolles, J. W. (2021). Broad-scale applications of the Raspberry

Pi: A review and guide for biologists. Methods in

Ecology and Evolution, 12(9), 1562–1579.

https://doi.org/10.1111/2041-210X.13652

Jung, A. (2022). Machine Learning: Foundations,

Methodologies, and Applications. Springer Nature.

Klok, H., & Nazarathy, Y. (2021). Statistics with Julia:

Fundamentals for Data Science, Machine Learning and

Artificial Intelligence. Springer Nature.

https://statisticswithjulia.org

Kubat, M., & An. (2021). An Introduction to Machine Learning.

In Springer Nature (Third Edit). Springer Nature.

https://doi.org/10.1002/9781119720492.ch7

Kurniawan, A. (2019). Introduction to Raspberry Pi. In Raspbian

OS Programming with the Raspberry Pi (pp. 1–25).

Apress, Berkeley, CA.

https://doi.org/https://doi.org/10.1007/978-1-4842-

4212-4_1

Li, J., Gao, F., Lin, S., Guo, M., Li, Y., Liu, H., Qin, S., & Wen,

Q. (2023). Quantum K-fold cross-validation for nearest

neighbor classification algorithm. Physica A: Statistical

Mechanics and Its Applications, 611, 128435.

https://doi.org/10.1016/j.physa.2022.128435

Mahmoodzadeh, A., Mohammadi, M., Daraei, A., Farid Hama

Ali, H., Kameran Al-Salihi, N., & Mohammed Dler

Omer, R. (2020). Forecasting maximum surface

settlement caused by urban tunneling. Automation in

Construction, 120(July), 103375.

https://doi.org/10.1016/j.autcon.2020.103375

Marikyan, D., Papagiannidis, S., & Alamanos, E. (2019). A

systematic review of the smart home literature: A user

perspective. Technological Forecasting and Social

Change, 138(November 2017), 139–154.

https://doi.org/10.1016/j.techfore.2018.08.015

Mehmood, F., Ullah, I., Ahmad, S., & Kim, D. H. (2019). Object

detection mechanism based on deep learning algorithm

using embedded IoT devices for smart home appliances

control in CoT. Journal of Ambient Intelligence and

Humanized Computing, 0123456789.

https://doi.org/10.1007/s12652-019-01272-8

Mehmood, R., & Selwal, A. (2020). Fingerprint biometric

template security schemes: Attacks and

Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023

420

countermeasures. In Lecture Notes in Electrical

Engineering (Vol. 597). https://doi.org/10.1007/978-3-

030-29407-6_33

Mienye, I. D., Sun, Y., & Wang, Z. (2019). Prediction

performance of improved decision tree-based algorithms:

A review. Procedia Manufacturing, 35, 698–703.

https://doi.org/10.1016/j.promfg.2019.06.011

Mukherjee, A., Mondal, S., Chaki, N., & Khatua, S. (2019).

Naive bayes and decision tree classifier for streaming

data using hbase. In Advances in Intelligent Systems and

Computing (Vol. 897). Springer Singapore.

https://doi.org/10.1007/978-981-13-3250-0_8

Nikou, S. (2019). Factors driving the adoption of smart home

technology: An empirical assessment. Telematics and

Informatics, 45(September), 101283.

https://doi.org/10.1016/j.tele.2019.101283

Okorie, P. U., Ibraim, A. A., & Auwal, D. (2020). Design and

Implementation of an Arduino Based Smart Home.

HORA 2020 - 2nd International Congress on Human-

Computer Interaction, Optimization and Robotic

Applications, Proceedings, October 2012.

https://doi.org/10.1109/HORA49412.2020.9152922

Pajankar, A. (2021). Introduction to Raspberry Pi. In Practical

Linux with Raspberry Pi OS. Apress, Berkeley, CA.

https://doi.org/https://doi.org/10.1007/978-1-4842-

6510-9_1

Paredes-Valverde, M. A., Alor-Hernández, G., García-Alcaráz,

J. L., Salas-Zárate, M. del P., Colombo-Mendoza, L. O.,

& Sánchez-Cervantes, J. L. (2020). IntelliHome: An

internet of things-based system for electrical energy

saving in smart home environment. Computational

Intelligence, 36(1), 203–224.

https://doi.org/10.1111/coin.12252

Patel, H. H., & Prajapati, P. (2018). Study and Analysis of

Decision Tree Based Classification Algorithms.

International Journal of Computer Sciences and

Engineering.

Pavithra, D., & Balakrishnan, R. (2015). IoT based monitoring

and control system for home automation. 2015 Global

Conference on Communication Technologies (GCCT).

https://doi.org/10.1109/GCCT.2015.7342646

Peng, Y., Peng, J., Li, J., & Yu, L. (2019). Smart Home System

Based on Deep Learning Algorithm. Journal of Physics:

Conference Series, 1187(3).

https://doi.org/10.1088/1742-6596/1187/3/032086

Raju, L., Sowmya, G., Srividhya, S., Surabhi, S., Retika, M. K.,

& Reshmika Janani, M. (2021). Advanced home

automation using raspberry pi and machine learning.

Proceedings of the 7th International Conference on

Electrical Energy Systems, ICEES 2021, 600–605.

https://doi.org/10.1109/ICEES51510.2021.9383738

Raspberry Pi Documentation. (n.d.). Retrieved December 14,

2022, from

https://www.raspberrypi.com/documentation/computers/

raspberry-pi.html#gpio-and-the-40-pin-header

Saleem, A. A., Hassan, M. M., & Ali, I. A. (2022). Smart Homes

Powered by Machine Learning: A Review. Proceedings

of the 2nd 2022 International Conference on Computer

Science and Software Engineering, CSASE 2022, 355–

361.

https://doi.org/10.1109/CSASE51777.2022.9759682

Sarker, I. H. (2021a). Machine Learning: Algorithms, Real-

World Applications and Research Directions. SN

Computer Science, 2(3). https://doi.org/10.1007/s42979-

021-00592-x

Sarker, I. H. (2021b). Machine Learning: Algorithms, Real-

World Applications and Research Directions. SN

Computer Science, 2(3), 1–21.

https://doi.org/10.1007/s42979-021-00592-x

Sunrise and sunset Zakho Dahuk Iraq. (n.d.). Retrieved January

7, 2022, from

https://www.weatheravenue.com/en/asia/iq/dahuk/zakho

-sunrise.html

Taiwo, O., Ezugwu, A. E., Oyelade, O. N., & Almutairi, M. S.

(2022). Enhanced Intelligent Smart Home Control and

Security System Based on Deep Learning Model.

Wireless Communications and Mobile Computing, 2022.

https://doi.org/10.1155/2022/9307961

Tatsat, H., Puri, S., & Lookabaugh, B. (2020). Machine Learning

and Data Science Blueprints for Finance. In O’Reilly

Media (First Edit). ’Reilly edia, Inc.

van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-

supervised learning. Machine Learning, 109(2), 373–

440. https://doi.org/10.1007/s10994-019-05855-6

