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ABSTRACT: 

Smart homes is an emerging technology that is transforming the way people live and interact with their homes. These homes 

are equipped with various devices and technologies that allow the homeowner to control, monitor, and automate various 

aspects of their home. This can include lighting, heating and cooling, security systems, and appliances. However, to enhance 

the efficiency of these homes, machine learning algorithms can be utilized to analyze the data generated from the home 

environment and adapt to user behaviors. This paper proposes a smart home system empowered by machine learning 

algorithms for enhanced user behavior prediction and automation. The proposed system is composed of three modes, 

including manual, automatic, and intelligent, with the objectives of maximizing security, minimizing human effort, reducing 

power consumption, and facilitating user interaction. The manual mode offers control and monitoring capabilities through 

a web-based user interface, accessible from anywhere and at any time. The automatic mode provides security alerts and 

appliances control to minimize human intervention. Additionally, the intelligent mode employs machine learning 

classification algorithms, such as decision tree, K-nearest neighbors, and multi-layer perceptron, to track and predict user 

actions, thereby reducing user intervention and providing additional comfort to homeowners. Experiments conducted 

employing the three classifiers resulted in accuracies of 97.4%, 97.22%, and 97.36%, respectively. The proposed smart 

home system can potentially enhance the quality of life for homeowners while reducing energy consumption and increasing 

security. 

KEYWORDS: Smart home, Machine Learning, Raspberry Pi, Decision Tree, K-Nearest Neighbors, Multi-Layer 

Perceptron, ANN, User Behavior.

1. INTRODUCTION 

The remarkable advancement in technology has facilitated the 

ability to establish a connection between any device and the 

Internet, thus giving rise to the notion of the Internet of Things 

(IoT). The IoT refers to a network of internet-connected devices 

and objects that range from simple household appliances to 

complex machinery in various settings (Saleem et al., 2022). 

These devices collect and share data, which enables them to 

function seamlessly and offer insights into different aspects of 

human life (Ibrahim et al., 2022; Taiwo et al., 2022). The 

integration of IoT has led to enhanced efficiency, convenience, 

and optimization in both residential and commercial settings, 

resulting in increased revenue and improved customer service for 

businesses. The application areas for the IoT encompass various 

fields such as healthcare, smart homes, smart cities, industrial 

automation, and transportation. Among these, and since the smart 

home pertains more closely to individuals' daily lives, the smart 

home has garnered significant interest from both the industrial 

and academic communities (Jabbar et al., 2018). 

The use of smart homes is growing rapidly and is expected to 

continue to grow in the future as technology continues to advance 

and become more accessible. The development of smart homes 

is being driven by the increasing demand for home automation 

and the growing need for energy efficiency. However, there are 

challenges associated with the implementation of smart homes, 

including cost and security concerns (Jabbar et al., 2019). 

Nevertheless, the potential benefits of smart homes are 

substantial and are likely to result in significant positive impacts 

on the quality of life for homeowners. The goal of smart homes 

is to increase comfort, convenience, safety, and efficiency while 

reducing energy consumption. The provision of a user interface 

(UI) for home control and monitoring is crucial, with a preference 

for web-based applications accessible at any time and from 

anywhere via the internet. Such an interface should be user-

friendly and compatible with all major operating system 

platforms, including Android, Windows, and iOS, to facilitate the 

way the user interacts with their smart homes. In addition to 

enhancing user comfort, home control systems can also promote 

energy conservation by enabling automatic control. To ensure 

maximum security, the system should also include real-time 

notifications and alarms. 

The current era of the Fourth Industrial Revolution (Industry 4.0 

or 4IR) has resulted in an abundance of digital data, including 

IoT data, business data, health data, mobile data, social media 

data, and cybersecurity data, among others. The effective 

analysis of these data and the creation of related automated and 

smart applications require a solid understanding of Artificial 

Intelligence (AI), particularly Machine Learning (ML). Within 

ML, there are several different algorithms such as supervised, 

unsupervised, semi-supervised, and reinforcement learning. Of 

particular significance is deep learning, a subset of ML that 

possesses the capability to analyze vast amounts of data 

intelligently (Sarker, 2021a). In order to increase the intelligence 

of the smart home, ML methods can be utilized. ML algorithms 

are increasingly being integrated into smart homes to enhance 

automation and improve the user experience. These algorithms 

allow for real-time analysis of large amounts of data and 

personalization based on user behavior and environmental 

factors. Smart homes powered by ML are a new and rapidly 

evolving field, combining the benefits of smart homes with the 

power of AI. ML algorithms can be used to analyze data 

generated by smart home systems, such as energy usage patterns, 

occupancy information, and sensor readings, and hence make 

predictions about future behavior. ML models have proven to be 

an effective tool in enabling smart home automation to achieve a 
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multitude of objectives. These include detecting and recognizing 

objects, human activities, and faces, as well as controlling 

household appliances intelligently, optimizing energy 

consumption, monitoring homes, and enhancing safety and 

security measures (Taiwo et al., 2022). Smart home employs 

several ML classification algorithms in its applications, including 

but not limited to K-Nearest Neighbors (KNN), Decision Tree 

(DT), Support Vector Machine (SVM), Naive Bayes, and 

Random Forest. In addition, deep learning (DL) models are also 

utilized in smart home applications (Saleem et al., 2022). In this 

work, ML classification model is employed to adapt user 

behavior and learn from performed actions. 

This paper aims to design and implement an intelligent home 

system empowered by ML methods for enhanced user behavior 

prediction and automation. The proposed system aims to reduce 

user effort, power consumption, and human intervention, while 

increasing security. It includes a web-based UI accessible from 

any operating system platform to control various home 

appliances such as lights, TV, air conditioners, window, door, 

curtain, with the capability to be controlled manually by the user 

through a friendly UI. The proposed system is also capable of 

performing automatic tasks without user intervention, such as 

turning on/off lights in order to reduce power consumption. 

Furthermore, it provides real-time voice and text message alerts 

through the UI and email for detecting intruders and fire inside 

the home. Additionally, the system incorporates the power of 

artificial intelligence, especially ML algorithms, to increase the 

system intelligence. This work makes use of various sensors and 

user actions to predict user preferences, particularly regarding 

controlling the curtain using a classification model. Additionally, 

this work applies different classifiers to identify the best model 

to be implemented in the proposed system. The system provides 

a responsive UI to monitor and control the home environment. 

The proposed system offers a smart, secure, and user-friendly 

solution for intelligent home automation. 

The rest of this paper is structured as follows. Section 2 presents 

a review of related work to enable a comparison with the 

proposed system. Section 3 provides a background on the 

fundamentals of smart home, ML, and the various tools utilized 

in this study. Section 4 details the proposed method, including 

system architecture and design considerations. Section 5 presents 

the results obtained from applying various ML algorithms to the 

created dataset, along with a discussion of their performance. 

Finally, Section 6 provides the conclusion, highlights the 

contributions of this work, and outlines potential directions for 

future research. 

2. RELATED WORKS 

In this section, numerous state-of-the-art smart home systems are 

reviewed to provide a comparison to the proposed system. 

Various smart home systems were proposed for controlling home 

appliances and monitoring the home environment without 

making use of the power of ML algorithms. For instance, (Okorie 

et al., 2020) proposed a smart, cost-effective system for 

controlling home appliances and monitoring the status of diverse 

sensors using smart Android phones, in order to help the elderly 

and people with disabilities to live their lives in the easiest way. 

The system consists of an Arduino connected to sensors (light 

and temperature sensors), appliances (TV, fan, light), and a 

Bluetooth module to provide communication between the 

Arduino and the smartphone. This system can be controlled by 

any android-based device using the "arduDroid" application, 

which is capable of sending controlling commands to the 

Arduino, such as turning on/off the TV, fan, and light. In 

addition, it receives information from Arduino related to the 

value of temperature and light intensity sensors. The system is 

easy to use and implement, and costly effective. However, this 

system is controlled only via Android devices.  

In another study, home control and monitoring system based on 

the web application UI was presented (Iqbal et al., 2018). Their 

system comprises three main functionalities: door control, fan 

and light control, and water pump control. In the door control 

functionality, a motion sensor, a camera, and a Light-Emitting 

Diode (LED) are installed in front of the door. As soon as any 

motion is detected, the RPi will receive a signal, and then it will 

turn the light on automatically in case it is night time. In addition, 

the camera will take a picture and then store it in the database for 

security purposes. Thus, the user can open the door via a UI. 

Furthermore, in the fan and light controlling functionality, the 

user can turn on/off lights and the exhaust fan. A humidity and 

temperature sensor are installed to read the temperature and 

humidity status and show them on the web page for the user to 

decide whenever to turn on the exhaust fan. Finally, in the water 

pump controlling functionality, two water level sensors are 

installed on the top and bottom of the water tank, which are 

connected to the Arduino to send the signals through ZigBee to 

the RPi to decide when to turn on the water pump automatically. 

The data from the sensors' and actuators' status is temporarily 

stored on the MySQL database in RPi and then backed up on the 

cloud server to be ready for a user history report or even a third-

party service provider. As an advantage of the system, an online 

UI is used to make the system capable of being accessed 

anywhere and anytime, and the authors took into consideration 

sensors' status before controlling the actuators. Although the 

system has multiple features, no ML method is used.  

Pavithra and Balakrishnan (2015) proposed a smart home system 

for the purpose of controlling home appliances and detecting fire. 

The system is designed to operate through the use of a central 

controller, which is based on the Raspberry Pi (RPi) platform. 

Specifically, the system employs relays to switch on and off 

lights when an infrared (IR) sensor detects an object, and a 

Passive Infrared (PIR) sensor to switch on the fan when motion 

is detected. Additionally, the system integrates a fire detection 

sensor that, when activated, triggers a camera to capture an image 

of the fire in order to send it along with an alarm message to the 

user's phone. The phone subsequently makes an automatic call to 

the closest fire station. The control and monitoring of the system's 

lights and fans can be managed manually through a web page UI, 

which is accessible from any operating system platform. It is 

worth noting that the system's architecture does not involve the 

use of ML algorithms. Consequently, the system does not have 

the capability to learn or adapt to changing environmental 

conditions. While the system's design is commendable in its 

utilization of a central controller for home automation and fire 

detection, it does not exhibit intelligent behavior as ML 

algorithms would provide.  

The authors in (Gota et al., 2020) designed and implemented a 

home automation system by controlling lighting, doors, and 

windows, as well as monitoring temperature and humidity inside 

and outside the home. The process of controlling and monitoring 

was done through a web page to make the system usable on 

different operating systems. In order to control the windows and 

doors inside the house, a servo motor was used, which can rotate 

at an angle of 0 to 180 degrees. Another type of motor called a 

stepper motor was used to control the opening and closing of the 

garage door, as this type has the ability to rotate in two directions 

and at multiple angles. The motors stop when they reach a certain 

point that is sensed by the magnetic sensor. For manual or 

automatic ventilation, the temperature inside and outside the 

house was read along with the humidity reading. Thus, when a 

certain temperature is reached, the ventilation system is turned on 

automatically or manually via the web page. 

On the other hand, several smart homes systems have been 

proposed that incorporate ML algorithm for controlling home 

appliances and enhancing home security. For example, (Abbas & 

Abdullah, 2021) proposed an innovative approach towards 
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tracking and predicting user behavior using ML algorithms. The 

system comprises two essential components, a RPi and a 

NodeMCU ESP32, which work in tandem to perform the 

intended function. The television is connected to the ESP32 via 

a relay, while the pushbutton serves as a switch to activate or 

deactivate the TV. The RPi records and archives the device's 

status and user behavior, which are then subjected to a 

classification process. The decision to turn the television on or 

off is derived through the use of DT algorithm. This model is 

adaptable, allowing for updates to be made with newly collected 

daily data. It is noteworthy that the system does not include a UI 

and does not utilize any wireless communication technology. 

In another study by  Mehmood et al., (2019), the authors devised 

a deep learning-based system for the detection of individuals. 

Their system utilized Amazon Web Service to facilitate remote 

monitoring by the user. The system comprises a camera module, 

connected to a RPi, which captures live video and employs the 

Single Shot MultiBox Detector (SSD) algorithm trained with the 

Microsoft Common Objects in Context (COCO) dataset for video 

analysis. Upon detection of a person, notifications are sent to the 

user either through Short Message Service (SMS) or email. 

Additionally, a control message is transmitted to the actuating 

device, a Node MicroController Unit (NodeMCU) ESP8266, to 

turn on or off a LED. The system's accuracy is impacted by 

decreasing light intensity, increasing distance, and larger frame 

size, resulting in a reduction from 95-100 to 80-85 percentage. 

(Crisnapati et al., 2016) proposed a smart home monitoring and 

control system that utilizes fuzzy logic to decrease energy 

consumption. The system features an HD camera that is 

integrated with a motion detection system, a motion sensor, and 

RFID for security. In this system, the user can manage recorded 

videos and captured photos, control functions (turning lights on 

and off), and monitor the home through a user-friendly web 

interface. Furthermore, the system's artificial intelligence 

capabilities allow it to automatically control temperature and 

lighting to promote energy efficiency.  

(Paredes-Valverde et al., 2020) presented a sophisticated system 

designed for power consumption monitoring and management, 

called IntelliHome. The system utilizes data obtained from the 

usage of IoT devices such as electrical appliances, sensors, and 

smart switches, to provide energy-saving recommendations to 

the user based on their behavior and preferences. Upon accepting 

the recommendation, the system implements control over home 

appliances. The analysis and processing of the data are handled 

by the Home Energy Consumption Monitor (HECM) module, 

which utilizes the Holt-Winters-RNN algorithm. Although the 

system provides a UI, it is only compatible with Android devices. 

In (Peng et al., 2019), the authors propose an intelligent home-

control system with the utilization of a convolutional neural 

network (CNN) to recognize and classify human gestures (human 

point attitude). The system makes use of an Arduino as a central 

controller for controlling the window, air conditioner, and LED. 

The gestures are captured via a Kinect sensor that is connected to 

a personal computer, which processes the obtained data and sends 

resulting information via Zigbee wireless technology to the 

Arduino to execute controlling commands. Finally, the obtained 

results were excellent for all gesture classifications. The system 

does not have a user interface. 

The authors in (Raju et al., 2021) presented a smart home system 

that enables monitoring of the home, control of appliances such 

as lights and fans, and prediction of power conservation. This 

system is built using a Raspberry Pi, various sensors (including 

motion, temperature, light, and sound), and actuators. Users can 

control their appliances via a mobile application that sends 

commands to the Raspberry Pi, which then sends control 

commands to the relay module to turn the appliances on or off. 

The system can also automatically control appliances, and users 

can view the energy consumption of each device via the user 

interface. To predict energy consumption, the system employs 

several machine learning algorithms, including decision tree 

regression, KNN, support vector regression, and random forest 

regression. The PIR sensor is used to control both the light and 

the fan, and Bluetooth communication is used to connect the 

mobile phone with the Raspberry Pi for wireless communication. 

While the system has a user interface, it cannot be accessed via 

the internet. Notably, the Decision Tree algorithm was found to 

provide the highest accuracy among all applied algorithms. 

3. BACKGROUND 

This section provides a brief overview of smart home systems, 

and machine learning methods, along with the various tools and 

devices utilized in this work. 

3.1 Smart Homes 

As defined by Marikyan et al., (2019), a smart home “is a 

residence equipped with smart technologies aimed at providing 

tailored services for users”. A "smart home" is referred to as a 

home automation system that is designed with controlling, 

monitoring, and sensing functionalities such as surveillance, 

ventilation, lighting, and conditioning systems. These smart 

systems consist of various essential components, including 

actuators and sensors connected wired or wirelessly to a central 

controller (Saleem et al., 2022). This controller receives data 

from sensors, and sends controlling commands to the actuators. 

Controlling commands are provided either by the user via a UI or 

automatically based on some pre-programmed conditions. 

Furthermore, householders can monitor their houses via a 

graphical UI using a tablet, computer, or smartphone (Saleem et 

al., 2022). 

Smart home as one of the most common IoT applications (Nikou, 

2019), provides access to the components remotely anytime and 

anywhere via any smart devices (Choi et al., 2021). Smart homes 

offer diverse services to the homeowner, including: 

• Remote monitoring: monitor the environment inside and around 

the home from anywhere and at any time. For instance, 

monitoring the devices' status (on/off), and sensors' status 

(readings). 

• Remote controlling: controlling the home appliances anytime and 

anywhere via the UI. 

• Reducing human effort: the user can control home appliances by 

their phones without any physical movement. For example, 

switching on the air conditioner, TV, and lights, as well as 

opening the door. 

• Reducing power consumption: for example, turning the lights off 

during the daytime. In addition, turning the lights on when 

motion is detected somewhere inside the home would lead to 

saving energy. 

• Security maximizing: integrating a security option in the smart 

home is essential to prevent a home from being stolen and to 

provide a real-time alert. For example, installing a surveillant 

camera in addition to setting up a motion detector to alert the 

householder by sending an alarming message via email or phone 

calls, as well as activating buzzers. 

3.2 Raspberry Pi 

Raspberry Pi (RPi) is a small-sized highly performance single 

board computer (SBC) that has all standard computer 

components including processor, RAM, I/O units, and GPU, 

incorporated in a single board (Jolles, 2021; Pajankar, 2021). In 

addition, as compared to the available SBCs in the market, the 

RPi is one of the most common SBCs and the best-selling 

computers in the world (Pajankar, 2021). Unlike traditional 

computers, the main disadvantage of the RPi is that the hardware 

component cannot be upgraded (Pajankar, 2021). Like the other 

SBCs and due to their suitable size and performance, the RPi is 

essentially employed in embedded systems, especially for 
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robotics and IoT applications. The first model of RPi was 

released in February 2012 and was developed by the RPi 

foundation in the United Kingdom (Jolles, 2021; Kurniawan, 

2019). Among all RPi model, the newest model is the RPi 4 

model B which comes with the following specifications: 64-bit 

quad-core Cortex- A72 1.5GHz Broadcom BCM2711 processor. 

LPDDR4 3200 SDRAM comes with 1GB, 2GB, 4GB, or 8GB of 

RAM. Dual-band 2.4GHz and 5GHz wireless networking IEEE 

802.11ac, gigabit ethernet, and Bluetooth 5, two USB 3.0 and two 

USB 2.0 ports. An array of 40-pin headers (described in Figure 

2), 28-pins out of these 40 are General Purpose Input/Output 

(GPIO) used to connect sensors and actuators for controlling and 

monitoring purposes. Two micro-HDMI ports support up to 4k 

video streaming. Serial interface port to connect RPi camera, 

microSD card slot, and it operates with 5V 3A DC input power, 

(See Figure 1). Although RPi has its official operating system 

called Raspberry Pi OS (Raspbian OS, previously) (Jolles, 2021), 

it can run with other OS including android, windows 10 IoT, and 

ubuntu OS family. 

 
Figure 1: Raspberry Pi 4 model B on board components 

(Pajankar, 2021). 

 
Figure 2: Raspberry Pi 40-pins header description (Raspberry 

Pi Documentation, n.d.). 

As illustrated in Figure 2, the RPi consists of 40 pins defined as 

follows: 

• Two power pins provide 5V, and two power pins provide 3.3V. 

• 8 unconfigurable ground pins provide 0V. 

• The other 28 pins called GPIO pins, which can be used either as 

output and can be set from 3.3V (high) to 0V (low), or as input 

which can read also from 3.3V to 0V. 

3.3 Machine Learning 

Machine Learning (ML) is a branch of AI that consist of a set of 

algorithms and techniques that enable computer systems to learn 

and make predictions or decisions to learn from available data 

based on previous experiences (Bertolini et al., 2021) without 

being explicitly programmed. ML methods are used  in diverse 

areas including object detection, text and speech interpretation, 

classification and pattern recognition (R. Mehmood & Selwal, 

2020). Prior to the implementation of the algorithm on a specific 

problem, the algorithm is trained on a dataset (available data) to 

result in the most accurate model. The dataset contains a number 

of columns called attributes or features, in addition to the output 

variable (in case of supervised learning). Furthermore, the dataset 

should be split into two sets, one used for training the model, 

called the training subset. In contrast, the other called the testing 

subset utilized for testing the model accuracy (Bertolini et al., 

2021). Moreover, the dataset features can be continuous, binary, 

or categorical (R. Mehmood & Selwal, 2020), and the output 

variable could be continuous or categorical (Bertolini et al., 

2021). The types of available data help to choose the best-fit 

algorithm for the available case. 

ML consists of several algorithms, each of which is intended to 

solve specific kinds of problems, such as classification (in case 

of categorical output), regression (in case of continuous output), 

and clustering. There are three main types of ML: supervised 

learning, unsupervised learning, and reinforcement learning. 

Classification and regression, are methods of supervised 

learning, in which the data are labelled (consisting of input and 

output) (Bertolini et al., 2021; R. Mehmood & Selwal, 2020). 

While the clustering is an unsupervised learning (output variables 

are missing) (Bertolini et al., 2021; R. Mehmood & Selwal, 

2020). The classification (predictive learning) comprises various 

algorithms including Decision Tree (DT), Naive Bayes (NB), 

Random Forest (RF), Artificial Neural Network (ANN), K-

Nearest Neighbors (KNN), Logistic Regression (LR), and many 

other algorithms that utilized for prediction (Bertolini et al., 

2021; R. Mehmood & Selwal, 2020). While unsupervised 

learning, which is also called descriptive learning, analyzes the 

given dataset and intends not to predict the missing output, but to 

discover the hidden pattern behind the given data (Bertolini et al., 

2021). For example, in clustering, the data are divided into 

several groups, each of which contains data that are similar to 

each other, but differ from the other groups (Bertolini et al., 

2021). The most common clustering algorithm is K-means. 

Semi-supervised learning is the combination of both supervised 

and unsupervised learning which can handle labelled and 

unlabelled data. It is useful when the dataset contains a small 

number of labelled data and a large number of unlabelled ones 

(Sarker, 2021b; van Engelen & Hoos, 2020). Further, it is located 

between supervised and unsupervised learning. As it aims to 

enhance the performance of one of the previous techniques by 

making use of data corresponding to the other. For example, in 

case of handling classification problems, a large amount of 

unlabelled samples is utilized to improve the classification 

process. While in clustering, labelled observations can be used to 

improve the clustering process as well (van Engelen & Hoos, 

2020). A fraud detection and machine translation considered 

application of semi-supervised method (Sarker, 2021b). 

ML has a wide range of applications in various industries, such 

as finance, healthcare, retail, and many others. It is used to solve 

a variety of problems, such as predictive analytics, image 

recognition, natural language processing, robotics, spam 

filtering, face recognition, handwriting and speech recognition, 

DNA classification, and computer games (R. Mehmood & 

Selwal, 2020). In the proposed work, supervised ML 

classification is used in the smart home system to predict the user 

action regarding to opening and closing the curtain. In this work, 

several classifiers, including DT, KNN, and MLP, are applied to 

the Curtain dataset to predict user action. These three classifiers 

were selected to perform the comparison among the tree-based 

algorithm, the distance-based algorithm, and the optimization-

based algorithm in order to recognize the impact. 

3.4 The Decision Tree (DT) 

The Direct Tree (DT) is a tree-like graphical representation 

classifier used for supervised learning in both regression and 

classification tasks (Géron, 2019; Mukherjee et al., 2019). It 

consists of nodes, with decision nodes representing attributes and 

leaf nodes representing class labels, that are connected via 
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arrows, namely directed edges [28]. Iterative Dichotomiser 3 

(ID3) and C4.5 are the most commonly used algorithms for 

constructing DTs (Mienye et al., 2019). ID3 is used only for 

categorical data, while C4.5 can be used for both numerical and 

categorical data (Mienye et al., 2019). To construct a DT, 

impurity measures (such as Entropy or Gini) and information 

gain are utilized for each feature, whereas the most informative 

attribute with the maximum information gain is selected as the 

root node (Mienye et al., 2019). This process is repeated to 

determine the best-fit attribute for each node until all attributes 

are included in the tree. The resulting DT is then translated into 

rules comprising if-then statements (Mukherjee et al., 2019; Patel 

& Prajapati, 2018). Decision trees have several advantages, 

including their interpretability, simplicity, and ability to handle 

both categorical and numerical features. 

3.5 K-Nearest Neighbors (KNN)  

K-Nearest Neighbors (KNN) algorithm is another supervised 

learning algorithm, which is considered the simplest ML 

algorithm as it requires only storing the training dataset to build 

the model (Gao & Li, 2020) KNN is utilized for solving both 

classification problems for categorical label, as well as regression 

problems for numerical label (Jung, 2022). The key parameter of 

the KNN algorithm is the number of neighbors that will be 

considered (Jung, 2022). In this paper, KNN is employed for 

classification of user behaviors. In order to predict the class of 

the new data example, KNN intends to determine the closest data 

examples out of all the examples in the training dataset (Li et al., 

2023). The simplest version is to set K to 1. Thus, it means 

considering only one nearest neighbor in order to figure out 

which class the new data point belongs to. In general, for a binary 

classification, it is preferable to set k greater than two; in this 

case, voting is utilized to determine the correct label. This implies 

that the correct label is the class that has the most frequent 

neighbors to the new data point (Mahmoodzadeh et al., 2020). 

KNN makes use of distance metrics to calculate the distance 

between the new point and all other training set points (Kubat & 

An, 2021). Indeed, the three most commonly utilized distance 

metrics are Euclidean, Manhattan (also known as city block 

distance), and Minkowski (Gao & Li, 2020). The Minkowski is 

a generalization of both Euclidean (when 𝑝 = 2) and Manhattan 

distance metric (when 𝑝 = 1) (Gao & Li, 2020). 

3.6 Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is a complex system that 

operates similarly to the human brain and nervous system which 

can provide self-learning (Desai & Shah, 2021). ANN is one of 

the most well-known ML techniques used for the learning 

process and provides satisfying results for complex problems that 

cannot be easily interpreted [2]. Furthermore, ANN can solve 

various problems, including regression, classification, and 

clustering (Heidari et al., 2020). The learning process can be 

performed via several iterations called epochs (Desai & Shah, 

2021), each iteration consists of two major phases, including the 

feed-forward and backpropagation processes. ANNs have 

various forms to represent, such as single-layer perceptron (SLP), 

MLP, and deep learning (Heidari et al., 2020). SLP consists of 

only two layers: the input layer and the output layer. It cannot 

perform well with patterns that are not linearly separable. For this 

reason and in order to alleviate the drawbacks of SLP, MLP was 

developed. Unlike SLP, this kind has more than two layers, 

including an input layer, hidden layers, and an output layer. The 

input layer comprises a number of neurons representing the 

number of features in the dataset, while the output layer is 

composed of only one neuron (Car et al., 2020). The key benefits 

of MLP are that it performs well with the availability of noise, 

provides high learning accuracy, and handles non-linear 

separable data (Heidari et al., 2020). The performance of MLP is 

highly influenced by various factors, such as wights vector and 

learning technique.  

MLP is one of the most common FeedForward Neural Networks 

(FFNNs) algorithms that offers a high degree of reliability based 

on the layered structure of the neural network. The layers in 

FFNNs consist of nodes called neurons. Each of which is fully 

connected by connection links to all neurons of the next layer 

(Desai & Shah, 2021; Heidari et al., 2020). These edges are 

associated with a real number called weights. Each node can 

carry out two kinds of functions (Heidari et al., 2020); summation 

function, which is calculated by taking the summation of the 

production of input values and weights, with adding bias weight. 

Thus, the result of the summation function is passed through an 

activation function to determine whether the next node will be 

activated or not (Heidari et al., 2020). Several activation 

functions can be applied, including the most common ones such 

as Identity (the values stay the same), ReLU (only positive values 

will be accepted, and the negative ones will be replaced with 

zero), Sigmoid (the output value will always be in the range 0 to 

1), and Tanh (mapping the value of the summation function into 

the range from -1 to 1). The working mechanism of MLP is first 

started from the input layer, which is called forward propagation, 

represented by setting initial weights for the edges (Heidari et al., 

2020), the output of the neurons in one layer is considered to be 

the input of the next layer neurons, after adding weight values to 

them (Desai & Shah, 2021). This process represents one iteration. 

For repeating iteration, the process is passed through the 

backpropagation technique, which operates in reverse from the 

output layer, ending in the input layer. This technique provides 

weight updating to enhance accuracy and it is repeated until the 

desired results are obtained that have the minimum loss (Desai & 

Shah, 2021; Heidari et al., 2020). This algorithm is used in this 

study to predict the user action behaviors.  

3.7 Cross Validation 

Cross-validation is a statistical technique used to evaluate the 

performance of a ML model by testing it on multiple subsets of 

the available data. The basic idea behind cross-validation is to 

split the available data into two sets: a training set, which is used 

to fit the model, and a testing set, which is used to evaluate its 

performance. This technique is used to evaluate the model, and 

to avoid overfitting and underfitting problems. In general, cross-

validation can be applied with two common methods, including 

hold-out and 𝐾-Fold (Mahmoodzadeh et al., 2020; Tatsat et al., 

2020). The hold-out method divides the original dataset into 

training and testing samples, while the 𝐾-Fold method divides 

the data into several folds (subsets) based on the value of 𝐾, each 

of which has the same size. One fold is considered as the testing 

set and the other 𝐾 − 1 folds are the training set (Mahmoodzadeh 

et al., 2020). Therefore, the testing set is evaluated using 

evaluation metrics (such as accuracy and F1-score) for each fold 

independently to gain 𝐾 results. Consequently, the final result is 

obtained by calculating the average of the obtained 𝐾 (Tatsat et 

al., 2020). Logically, in the hold-out method, the size percentage 

of the training set must be large as compared with the testing set 

size. Figure 3 demonstrates the idea behind K-Fold cross-

validation (Tatsat et al., 2020). 
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Figure 3: K-Fold cross validation when K=5. 

The strength of the 𝐾-Fold technique is that each data point in the 

original dataset is considered to be testing data once, and as 

training data 𝐾-1 times, leading to a decrease in bias. Because of 

this, it was implemented in this study in the experiments 

conducted with 𝐾-Fold values equal to 3, 5, and 10. 

3.8 Evaluation Metrics 

In order to evaluate the performance of the classification model, 

different evaluation metrics are used. Basically, these metrics 

rely on the confusion matrix, which is a table used to evaluate the 

performance of a classification algorithm. It is a summary of 

prediction results on a binary classification problem. The 

confusion matrix comprises four parts including True Positive 

(TP), True Negative (TN), False Positive (FP), and False 

Negative (FN). Thus, this matrix shows the relationship between 

the actual class and the predicted one (Klok & Nazarathy, 2021). 

Furthermore, when the classifier predicts the class that matches 

the actual one, it means it is a TP and TN case. Moreover, as soon 

as the predicted value does not match the actual value, then it is 

the case of either FP or FN. Positive classes refer to the class with 

the values 1, True, or Yes; while the Negative classes represent 

the values 0, False, or No, and so on. The most common measures 

obtained from confusion matrix are: Accuracy, Precision, Recall, 

and F1-score.  

The confusion matrix is demonstrated in Table 1, and the 

evaluation metrics are defined as in the following equations: 

Accuracy =  
|TP| + |TN|

|TP| + |TN| + |FP| + |FN|
 (1) 

Precision =  
|TP|

|TP| + |FP|
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
|𝑇𝑃|

|𝑇𝑃| + |𝐹𝑁|
 (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

Another evaluation metric was employed called the Area Under 

the Curve (AUC) which represents the area that falls under 

Receiver Operating Characteristics (ROC). AUC is a widely used 

performance metric in ML, which measures the ability of a binary 

classification model to distinguish between positive and negative 

classes by computing the area under the ROC curve. It is a robust 

and intuitive metric that provides a single scalar value 

summarizing the overall performance of the model, which is 

insensitive to the imbalance of class distributions. 

Table 1: Confusion matrix for binary classification problem. 

 
Actual Class 

Positive (1) Negative (0) 

Predicted Class 
Positive (1) TP FP 

Negative (0) FN TN 

4. PROPOSED SMART HOME SYSTEM 

This section discusses the structure of the proposed smart home 

system, including hardware components (appliances, sensor, and 

devices), and system workflow (with and without ML). 

In order to build the proposed system, various devices and 
sensors were utilized and connected together to collect and 
exchange data with each 
other. Figure 5 demonstrates 
the home architecture of the 
proposed system and its 
connected sensors, and 
appliances. Figure 4 
provides a top view of the 
proposed system prototype. 
The objectives of the 
utilized devices and sensors 
in the proposed system are 
illustrated clearly in 

Table 2. In addition, Table 3 shows each sensor and device and 

their signal type, provided voltage (VCC: Voltage Common 

Collector), pin mode, and allocated RPi pin number. 

 
Figure 4: Top view of the prototype. 

Table 2. The objective and the position of utilized devices and sensors. 

Device Count Place Objective 

RPi 1 Controlling box 
To connect all devices, send commands, and receive and store data. 

As well as implementing ML model. Considered local server. 

PIR 2 Bathroom Sensing human existence to turn on the bathroom light 
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Living room 

Sensing human existence to notify the householders about intruders 

when “nobody home” mode is on. As well as to turn off the tv after a 

period of no movement found. 

Light Dependent Resistor 

(LDR) 
1 

Outside in front 

of the main 

door 

Installed outside to calculate the real-time light intensity. Useful 

especially for ML mode 

Digital Temperature and 

Humidity (DHT22) 
2 

Bedroom Sensing the temperature and humidity inside the room 

outside Sensing the temperature and humidity outside 

Gas sensor (MQ-2) 1 Kitchen To measure the intensity of smoke and gas. 

Raindrops 1 Outside Detecting if it is rainy or not. 

Flame 1 Kitchen Detecting if there is a flame inside the kitchen 

Analog-to-Digital Converter 

System (ADS 1115/1015) 
1 Controlling box Converts analogue signals received from sensors into digital signals. 

Stepper motor 1 Living room 
To open and close the living room curtain in both modes: user 

commands and intelligent (ML) mode 

Servo motor 2 
Living room Controlling window 

Main door Controlling door 

 
Figure 5: Home architecture and connected sensors, and appliances (red lines indicates wired RPi output, blue lines indicate wired 

RPi input, and the green lines refers to wireless communication). 

Table 3. Home overall utilized sensors, actuators, and appliances associated with allocated pin number and provided voltage. 

Sensers / Appliances Place Allocated pin number Pin mode Signal type VCC 

PIR 
Bathroom 6 Input Digital 5v 

Living room 19 Input  Digital  5v 

DHT22 
Living room 26 Input Analog 3.3v 

Outside 23 Input  Analog 5v 

ADS 1115/1015 

Between analog 

sensors and RPi 

GPIO 

I2C protocol (SCL, 

SDA) 
Input 

Analog to Digital 

converter (ADC) 

A0, A1, A2, A3 

3.3v 

LDR Outside A0 Input Analog 5v 

MQ-2 Kitchen A1 Input Analog 5v 

Raindrops HL-83 Outside A2 Input  Analog 3.3v 

Web-based UI  

Kitchen 

Living 

room 

Bedroom 

Bathroom 

Home Environment 

TV 

Servo motor 

Stepper motor 

LDR 

Exhausted fan 

LED bulb 

MQ-2 

ADC 

RPi 

AC 

LED bulb 

LED bulb 

LED bulb 

AC 

Flame sensor 

DHT22 

DHT22 

PIR 

PIR 

Wireless router 

LED bulb 

Raindrop sensor 
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Flame  Kitchen 24 Input Digital 5v 

Stepper  Living room curtain 10, 16, 20, 21 Output  Digital 5v 

Servo  
Bedroom window 13 Output Analog 5v 

Main-door (outdoor) 12 Output Analog 5v 

Exhausted fan Kitchen 25 Output Digital  
12v external 

adapter 

LED bulb 

Kitchen 7 Output Digital 
12v external 

adapter 

Bedroom 4 Output Digital 
12v external 

adapter 

Bathroom 17 Output Digital 
12v external 

adapter 

Outside 8 Output Digital 
12v external 

adapter 

Living room 18 Output Digital 
12v external 

adapter 

TV Living room 27 Output Digital 
12v external 

adapter 

Air conditioner (AC) 

Living room 22 Output Digital 
12v external 

adapter 

Bedroom 5 Output Digital 
12v external 

adapter 

4.1 Dataset Description and Design 

The proposed work intends to create a dataset, referred to as 

"Curtain dataset" that captures user behavior regarding the 

opening and closing of curtain inside the house. Although the 

dataset is intended to store real-time data received from the 

proposed smart home system, the first version of the Curtain 

dataset was generated using logical simulation data representing 

as much as possible real data. The dataset represents a 

classification-based problem that records the data based on 

specific times and includes six input features and a binary 

classification output (user behavior). It comprises 8030 samples 

collected over one year, with some features were encoded, such 

as in "time", "weekday", and "out_light", while other features 

remain in raw data format.  

Table 4 provides a detailed description of the Curtain dataset, including the encoding methodology used for each feature. Indeed, before 

generating the semi-real simulation data, experiments were conducted on the sensors utilized to identify the range and factors that 

influence their values. For example, the “out_light” feature, which represents the value of the LDR sensor, is influenced by the date 

(month) and time, particularly sunrise and sunset times (noted in (Sunrise and Sunset Zakho Dahuk Iraq, n.d.)) for each month. 

Figure 7 demonstrates the correlation between the dataset features and the output label, while 
Figure 6 displays the frequency distribution of the available classes. Some features in the dataset 
were generated randomly, whereas this randomness was controlled based on the established range 
and experiments performed. The Curtain dataset is updated daily every 30 minutes with actual 
real-time sensors data to provide accurate prediction for the model. 

Table 5 provides a sample of the Curtain dataset, consisting of a 

few observations. 

Table 4: Curtain dataset description. 

Input/output 
Column 

name 

Data 

type 
Description and range 

Input feature 

date Integer Represent the month from 1 to 12 

time Integer 

Represents the time of 24 hours, encrypted as follows: 

20-4:29=0, 4:30-4:59=1, 5:00-5:29=2, 5:30-5:59=3, 6:00-6:29=4, 6:30-6:59=5, 7:00-

7:29=6, 7:30-7:59=7, 8:00-8:29=8, 8:30-8:59=9, 9:00-9:29=10, 9:30-9:59=11, 10:00-

10:29=12, 10:30-10:59=13, 11:00-16:29=14, 16:30-16:59=15, 17:00-17:29=16, 17:30-

17:59=17, 18:00-18:29=18, 18:30-18:59=19, 19:00-19:29=20, 19:30-19:59=21. 

weekday Binary 
Represents either 0 (weekend: Friday and Saturday) or 1 (working days: Sunday to 

Thursday) 

motion Binary 
Generated randomly. Represents the current value of the motion (PIR) sensor 

0 = no motion, 1 = motion detected. 

out_light Integer 

Generated randomly taking into account the time and date feature. Represents the 

outside light intensity which is calculated based on the value that passes from the 

resistance (LDR sensor) to the RPi GPIO pin. The lower the value received from RPi, 

the higher the light intensity. The values are converted to percentages to make them 

easy to understand. 

smoke Integer 

Generated randomly based on the tests conducted. Represents the data of the gas/smoke 

sensor. The normal rang when no gas or smoke detected is from 350 to 390. The cases 

of greater than 400 means smoke or gas is detected. 
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Classification 

output 

user 

action 
Binary 

Represents the user behavior. 

0 = closing the curtain, 1= opening the curtain. 

Table 5: Curtain Dataset Sample. 

date time 
wee

kday 

motio

n 

out_ 

light 

smok

e 

user 

actio

n 

7 6 0 0 82 362 0 

7 7 0 0 83 382 0 

7 8 0 0 84 352 0 

7 9 0 1 84 359 0 

7 10 0 0 85 373 0 

7 11 0 0 86 355 1 

7 12 0 0 87 354 1 

7 13 0 1 88 367 1 

7 14 0 0 89 386 1 

7 15 0 1 88 361 1 

7 16 0 0 84 364 1 

7 17 0 1 79 366 1 

7 18 0 1 65 358 1 

7 19 0 0 60 387 1 

7 20 0 0 40 387 0 

7 21 0 1 0 380 0 

8 0 1 1 0 373 0 

8 1 1 0 0 374 0 

8 2 1 0 38 389 0 

8 3 1 1 70 355 0 

8 4 1 1 78 351 0 

8 5 1 1 82 364 0 

8 6 1 1 82 385 1 

8 7 1 0 83 387 1 

8 8 1 0 84 372 1 

 
Figure 6: Curtain dataset class distribution. 

 
Figure 7: Curtain dataset column correlations. 

4.2 System Workflow 

The proposed system is designed to provide various 

functionalities that enable the creation of a fully automated home 

system with enhanced security and comfort, while also reducing 

power consumption and human effort. For this, the system 

consists of three modes, namely manual, automatic, and 

intelligent (ML) modes. In the manual mode, the user has full 

control over the appliances and can operate them through user 

intervention. In constant, the automatic mode allows the system 

to control the appliances based on predefined conditions using 

sensor values. Finally, in the intelligent mode, the system 

employs ML algorithms to perform actions based on the output 

of the trained model.  

By integrating these three modes, the system provides a robust 

and flexible solution that can adapt to the user's preferences and 

environment conditions. This approach allows for the creation of 

a more efficient and effective home system that reduces energy 

consumption and increases comfort and security.  In the 

following subsections, each mode is described in detail to provide 

a better understanding of the proposed system's capabilities and 

functionalities. 

4.3 Manual Mode:  

In this mode, the user sends control commands to the actuators 

using a web-based UI to control the following appliances: 

• Opening and closing the living room curtain using a stepper 

motor. 

• Turning on/off lights in the bedroom, living room, and kitchen 

via the relay module. 

• Switching on/off the living room and bedroom air conditioners 

(represented as a fan in the prototype) via relay module. 

• Switching on/off the TV using relay module. 

• Turning on/off the kitchen exhaust fan using relay module. 

• Controlling the main door and bedroom window by utilizing 

servo motors. 

4.4 Automatic Mode:  

This mode provides automatic control based on predefined 

conditions that rely on sensors’ values. The following actions 

demonstrate the mode: 

• Based on the outside darkness obtained from LDR, turning on or 

off outside light. 

• Based on human existence, turning on and off the bathroom light. 

Thus, the light will turn on as soon as motion is detected via the 

PIR sensor, and it will turn off after 2 minutes, starting from the 

time when no motion is detected. 

• Turning on the exhaust fan when abnormal smoke/gas is 

detected. In addition to sending an email, and viewing text and 

voice messages on the UI. 

• For security reasons, the system contains an option called 

"Nobody at home". The home residents can turn on this option 

when they leave home to tell the system to send an alert via email 

and also show a text and voice notification on the GUI when the 

PIR (installed in front of the main door) senses any motion. Thus, 

detecting the intruder. 

• Automatically close windows when rain is detected via raindrop 

sensor. 

• Turning off the TV automatically after 10 minutes starting from 

the moment when no motion is detected. 

• Sending email and viewing text and voice alerts as soon as a fire 

is detected. 

• The system automatically stores the values of the mentioned 

sensors in the Curtain dataset every 30 minutes based on the 

specific pattern. 

• Show text and voice alert if the outside temperature is very hot 

or very cold. 

• Show text and voice alerts if the main-door stays open for a while. 
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4.5  Intelligent Mode:  

The proposed system is incorporated with an intelligent mode 

which relies on using ML technique. 

This mode can be activated by the user via the UI, allowing the 

system to predict user preferences for automatically opening or 

shutting the curtain. In this mode, the prediction is performed 

using a DT classifier. The reason behind using this predictor is 

discussed in the next section. The process of storing data into 

Curtain dataset was presented in section 1.1. Incorporating this 

part into the proposed work resulted in a reduced user effort and 

energy consumption, as the user will no longer need to turn on 

the light when the outside sunlight enters the home after opening 

the curtain. This also demonstrates the potential of ML to make 

home environments smarter, more comfortable, and more 

feasible.  

Figure 8 depicts the workflow of the proposed system, 

highlighting the use of ML in predicting user preferences and 

automating the opening and closing of the curtain. The decision 

tree classifier was chosen for its ability to handle both numerical 

and categorical data, making it suitable for the data collected in 

the "Curtain" dataset. 

Figure 8 illustrates the functioning of the intelligent mode in 

detail. This mode is designed to leverage the RPi to collect and 

store data from sensors it in the Curtain dataset, along with the 

corresponding date (month, and weekday) and time after 

encoding some data and converting some others into a more 

comprehensible format. Prior to fitting classification models, the 

essential process of feature selection and the classification label 

determination is carried out. Moreover, feature scaling 

techniques such as MinMax Scaler (for the KNN classifier) and 

Standard Scaler (for the MLP classifier) are applied, with the 

exception of the DT classifier, since its performance not affected 

by feature scaling. The dataset is subsequently split into training 

and testing sets utilizing the K-Fold cross-validation method. The 

training sets are used for the fitting process to obtain the trained 

model, which is then used to predict the output of the testing set 

comprising previously unseen samples. Several models are 

trained to determine the optimal model and classifier for the 

intelligent mode. The selected model is then utilized by the RPi 

to periodically check the sensors' data, along with the date and 

time, every 10 minutes to predict the final decision of opening or 

closing the curtain. 

5. RESULTS AND DISCUSSION 

This section represents the results of various experiments carried 

out the “Curtain” dataset using K-Fold cross-validation (with a 

specified random state parameter of 42) to predict user behavior 

regarding the opening and closing the curtain. The experiments 

involved applying three different classification algorithms: 

decision tree (DT), K-Nearest Neighbor (KNN), and Multilayer 

Perceptron (MLP) artificial neural network (ANN). The 

objective was to evaluate the performance of each algorithm and 

determine the best model to be implemented in the proposed 

system. 

Initially, the experiments were conducted independently for each 

algorithm, with diverse results obtained to assess the accuracy of 

the classifiers. The results of each experiment were compared to 

determine the optimal parameter values that would enhance the 

accuracy of the classifier. Thereafter, the highest accuracies for 

each algorithm were compared against each other to select the 

best overall model for the proposed system. 

All experiments were carried out using the same computer, which 
was equipped with Windows 10 64-bit operating system, x64-
based processor, Intel(R) Core (TM) i7-4700MQ CPU 
@2.40GHz, and 8.00 GB of RAM. To facilitate the 
implementation of the experiments, popular Python 
programming language packages such as Scikit-Learn, Pandas, 
and NumPy were used. 
Furthermore, 

Table 6 outlines the parameters and their respective values 

employed for the DT, KNN, and ANN classifiers in each 

conducted experiment. 

Table 6: Classification algorithms and their utilized parameters. 

Classifier Parameter 
Utilized 

values 
Description 

DT 

criterion 
‘gini’, and 

‘entropy’ 
Measurement function to calculate the quality of the feature. 

splitter 
‘best’, and 

‘random’ 
A strategy used to split the tree in each node. 

max_depth 

Integer 

number from 

3 to 12 

The depth of the tree. Represents the number of levels in the tree. 

KNN 

n_neibors 

Integer 

number from 

1 to 10 

The number of nearest neighbors helps in deciding which class the new data 

point belongs to. 

p 1, 2, and 4 

Representing distance metric. It is the power value for the Minkowski distance 

metric that determines the utilized metrics among Manhattan, Euclidean, or 

Minkowski. 

MLP 

hidden_layer_sizes 

Integer 

number from 

6 to 10 

Number of hidden layers (Only one hidden layer utilized in this study) with 

the number of neurons in each layer. 

activation 

‘identity’, 

‘logistic’, 

‘tanh’, and 

‘relu’ 

It is the activation function which calculate the importance of the neurons to 

decide if the neuron is active or not. 

solver 
‘sgd,’ and 

’adam’ 
Optimizer to use for weights update. 

learning_rate ‘Constant’ 
This parameter is uset to determine if the initial learning rate will be changed 

or be constant. in this study, ‘constant’ is used. used only when solver=’sgd’. 
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learning_rate_init 
0.1, 0.01, 

0.001 

This is the actual learning rate to use as the initial value of the learning rate for 

weight updates. It controls the step-size in updating the weights. Only used 

when solver=’adam’ or ‘sgd’. 

max_iter 700 
Representing epoch, the max number of times that weights will be updated for 

each data instance. 

 
Figure 8: Workflow of the proposed system incorporating with ML. 

5.1 Experiment #1: DT Classifier Performance 

In the context of the experiments conducted in this study, the DT 

classifier was utilized to determine the optimal model with the 

best parameter values. Several tests were performed on different 

models, and the accuracy scores obtained from the DT models 

were demonstrated using K-Fold cross-validation with 3, 5, and 

10 folds. The results were summarized in Figure 9. The best 

results of the three K-Fold values were compared and presented 

in Table 7 and Figure 10. The findings indicate that the highest 

accuracy was achieved when the best splitter was performed on 

the tree. Moreover, the other parameters, including criterion and 

max_depth, were set to entropy and 7, respectively. The results 

demonstrated that the model with 10 folds provided the best 

accuracy score of 97.4% and an F1-score of 97.16%, 

outperforming the other values of 3 and 5 folds. Therefore, the 

accuracy was found to increase with the increase in the number 

of folds used in the experiment. It should be noted that no 

normalization techniques were applied to the dataset during the 

pre-processing phase. This decision was made since DT is not a 

distance-based algorithm, and therefore, normalization does not 

significantly impact its performance. 

The experiments performed in this study involved testing the DT 

classifier with different values for several parameters, as 

illustrated in Figure 9. The findings indicate that when the splitter 

parameter was set to "best", the criterion "gini" produced higher 

accuracy scores than the criterion "entropy" when the maximum 

depth of the tree was less than or equal to six. However, when the 

maximum depth was greater than six, the criterion "entropy" 

performed better. On the other hand, when the random splitter 

was employed, the results of both criteria ("entropy" and "gini") 

exhibited an irregular pattern and did not follow a clear trend. 

These findings highlight the importance of selecting appropriate 

parameter values to achieve the best performance of the DT 

classifier. 

Table 7: DT results for the best models selected based on 

different K-Fold value (3, 5, and 10). 

K-

Fol

d 

Criterio

n 

Max_dept

h 

Splitte

r 

Accurac

y 

F1-

score 

3 Entropy 7 Best 97.17 
96.9

3 

5 Entropy 7 Best 97.30 
97.0

5 

10 Entropy 7 Best 97.40 
97.1

6 

 

To validate the performance of the best models obtained from 

each K-Fold value (3, 5, and 10), the ROC curves were plotted 

and AUCs were calculated, as shown in Figure 11. The AUC 

values presented in each figure correspond to the AUC result for 

each independent test split (fold). For example, the graph 
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illustrating the results of the selected best model for K-Fold when 

assigned to 3 displays three AUC values. Similarly, the graph 

with five AUC values represents the model for K-Fold = 5, and 

so on. Furthermore, to ensure the reliability of obtained results, 

the training accuracy against the testing accuracy for each fold 

were compared, as shown in Figure 12. These analyses provide 

insights into the generalization performance of the models and 

demonstrate how well they can perform on new, unseen data. The 

results suggest that the models trained with the best parameters 

achieve high accuracy scores and can effectively predict user 

behavior regarding the opening and closing of curtains. 

 

 

 

   

   

(a) (b) (c) 

Figure 9: Results of DT classifier when: (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 

 

 

  
(a) (b) 

Figure 10: DT performance with different K-Folds. (a) Accuracy score. (b) F1-score. 

   
(a) (b) (c) 

Figure 11: ROC curve with AUC results for DT classifier. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 
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(a) (b) (c) 

Figure 12: Model performance for DT classifier (Train vs Test accuracy). (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 

The trained models exhibit high reliability, as evidenced by their 

ability to achieve a high true positive rate of over 98%, as shown 

in Figure 11. Furthermore, Figure 12 indicates that the train and 

test accuracies were consistently high and that their values were 

very similar for each split, implying that there was no evidence 

of overfitting or underfitting in the trained models. This indicates 

that the models can accurately generalize to new, unseen data, 

which is essential for their practical implementation in real-world 

scenarios. Overall, these findings demonstrate the efficacy of the 

selected classifiers and parameter values in predicting user 

behavior regarding the opening and closing of curtains. 

5.2 Experiment #2: KNN Classifier Performance 

This experiment investigates the performance of the KNN 

algorithm as a classifier to predict the user's action. Given that 

KNN is a distance-based algorithm, feature scaling techniques, 

particularly Normalization, can have a significant influence on its 

performance. To address this issue, the “ in ax  caler” 

normalization method was employed, which has shown to yield 

better results compared to the “ tandard  caler” standardization 

method. To ensure a fair comparison among the utilized 

classifiers, the K-Fold cross-validation was used with the same 

values of 3, 5, and 10 folds, as previously done in Experiment #1. 

For each of these three K-Fold values, this experiment conducted 

tests with the KNN classifier and reported the parameter values 

and results obtained for each model with and without 

normalization. The results, as shown in Figure 13, indicate that 

the performance of the KNN classifier significantly improves 

with the use of normalization. This improvement is particularly 

evident in cases where the number of folds is higher (i.e., 5 and 

10 folds). Therefore, the use of the "MinMax Scaler" 

normalization technique was recommended when applying KNN 

for user action prediction. 

   

   
(a) (b) (c) 

Figure 13: KNN performance results when: (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 

Figure 13 provides a visual representation of the parameters used 

in these experiments and their impact on the results. these 

findings suggest that a value of "p" equal to one, which 

corresponds to the Manhattan distance metric, yields the highest 

accuracies in most cases, irrespective of the number of neighbors 

used. Additionally, the obtained results indicate that the accuracy 

of the KNN classifier improves significantly when using 

normalized data compared to raw data. Moreover, the Euclidean 

distance metric outperforms the Minkowski metric in the 

conducted experiments. These findings highlight the importance 

of carefully selecting the appropriate distance metric for 

achieving optimal performance when using KNN as a classifier. 

The experimental results presented in the three subfigures of 

Figure 13 are summarized in Table 8 and visualized in Figure 14, 

where the best model that achieved the highest accuracy among 

all tests is selected. According to Table 8, the highest accuracy is 

achieved using a 10-fold test with four neighbors and the 

Manhattan distance metric, where the value of "p" is set to one. 

On the other hand, the best model in terms of the F1-score 

evaluation metric is obtained using five neighbors, the Manhattan 

distance metric, and a five-fold test. To further validate the 

selected best models, this experiment presents the ROC curves in 

Figure 15 and plot the training accuracy against the testing 

accuracy in Figure 16, using the same procedures as in 

Experiment #1. These analyses demonstrate that the selected 

models provide high accuracy and robustness, thus confirming 

their suitability for user action prediction using the KNN 

classifier. 

Table 8: KNN results for the best models selected based on 

different K-Fold values (3, 5, and 10). 

K-

Fold 

n_neighbors P 

(Distance 

metric) 

Accurac

y 

F1-

score 

3 4 1 97.02 96.76 

5 5 1 97.20 96.97 

10 4 1 97.22 96.96 

 

  
(a) (b) 

Figure 14: KNN performance with different K-Folds. (a) 

Accuracy score (b) F1-score. 
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(a) (b) (c) 

Figure 15: ROC curve with AUC results for KNN classifier. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 

   
(a) (b) (c) 

Figure 16: Model performance for KNN classifier (Train vs Test accuracy). (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 

The ROC curves displayed in Figure 15 indicate that all models 

achieved a high percentage of the true positive rate, which 

suggests that they are highly reliable for user action prediction. 

The high AUC rates observed in the ROC curves further confirm 

the robustness and accuracy of the selected models. Furthermore, 

Figure 16 presents the plot of training accuracy against testing 

accuracy for each split, which provides insights into the 

performance of the selected models in terms of overfitting and 

underfitting. It can be observed that the models were well-

trained, as they do not exhibit significant overfitting or 

underfitting, and the train and test accuracies in each split are 

very close to each other. This suggests that the selected models 

generalize well to unseen data, which is an essential property for 

any machine learning model to be effective in real-world 

applications. 

5.3 Experiment #3: MLP Classifier Performance 

Another experiment employing MLP classification algorithm 

was conducted over “Curtain” dataset, which yielded obtaining 

high accuracies. Similar to the previous experiments, K-Fold 

cross-validation was used to ensure a fair comparison among the 

different models. Therefore, different results were obtained from 

several models represented in Figure 17. Unlike the KNN which 

employed MinMax Scaler as the feature scaler, the MLP 

classifier makes use of Standard Scaler standardization. Thus, 

this scaler led to better results and helped the model to converge 

faster. Indeed, it can be observed that the MLP provided very low 

results when the feature scaling technique was not applied. 

The results indicate that the best-performing MLP model 

achieved an accuracy score of 97.36% and an F1-score of 97.13% 

when K-Fold was set to 10, and the following parameters were 

assigned: "logistic" activation function, one hidden layer with six 

nodes, a learning rate of 0.1, and "sgd" solver (optimizer). 

Additionally, the max_iter parameter, which determines the 

number of epochs necessary to train the model, was set to 700. 

The model was observed to converge entirely at this value after 

testing various max_iter values, ranging from 100 to 700 in 

increments of 100. The loss function used was "cross_entropy," 

which is the only option available in the MLP classifier in the 

Sklearn package. 

These findings are 
summarized in 

Table 9, which highlights the optimal model for each K-Fold 

value. Additionally, Figure 18 illustrates the performance of the 

best model configurations across all K-Fold values. 

   



Saleem et al., / Science Journal of the University of Zakho, 11(3), 403– 420, July-September, 2023 

 

417 

 

  
 

(a) (b) (c) 

Figure 17: MLP performance with different K-Folds. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 

Figure 17 (a) demonstrates that when the solver=”adam” the best 

results obtained are when the value of the learning rate equals to 

0.01, and “tanh” as an activation function. While for the solver 

“sgd”, the highest results obtained with the learning rate 0.1 and 

the activation function is assigned to “logistic”. From this figure, 

it can be observed that the solver “adam” provides higher results 

than the “sgd”. 

It can be seen in Figure 17 (b) that the best results obtained were 

with activation function “logistic” as well as when the value of 

the learning rate assigned to 0.1. Furthermore, the learning rate 

with the value 0.001 performs the lowest results in the most cases 

as compared with the other learning rate values (0.1, and 0.01). 

As visualized in Figure 17 (c), the activation function “logistic” 

performs the highest results among all other activation function. 

Moreover, the learning rate 0.01 outperform the other learning 

rate when the “adam” optimizer is used. While the learning rate 

of 0.1 outperforms the other learning rate utilized in this 

experiment when associated with “sgd” solver. It can be observed 

that from the recently three mentioned figures, the lowest results 

gained when the “identity” activation function is utilized. 

Table 9: MLP results for the best models selected based on different K-Fold values (3, 5, and 10) 

K-Fold Activation function Hidden layer sizes Learning rate Solver Accur-acy F1-score 

3 tanh 6 0.01 adam 97.35 97.11 

5 tanh 9 0.1 sgd 97.33 97.10 

10 logistic 6 0.1 sgd 97.36 97.13 

 

  
(a) (b) 

Figure 18: Performance with different K-Folds. (a) Accuracy score. (b) F1-score. 

Figure 18, illustrates that the highest results obtained when the 

number of folds assigned to 10. In the next figures, the 

validations of the best MLP models are demonstrated, including 

those with 3, 5, and 10 as K-Fold values. In Figure 19, the ROC 

curves associated with AUC rates were presented, while Figure 

20 displays the testing against training accuracy results. 

   
(a) (b) (c) 

Figure 19: ROC curve with AUC results for MLP classifier. (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 

   
(a) (b) (c) 

Figure 20: Model performance for MLP classifier (Train vs Test accuracy). (a) K-Fold=3. (b) K-Fold=5. (c) K-Fold=10. 
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The performance of the models was assessed by analyzing true 

positive rates across different test splits, as shown in Figure 19. 

The results indicate that the models were highly reliable, 

achieving true positive rates of more than 99% for each test split. 

Furthermore, Figure 20 illustrates that the models were 

appropriately trained, with neither overfitting nor underfitting 

observed. The train and test accuracies were found to be 

extremely close to one another across all splits, providing further 

evidence of the models' robustness and generalizability. These 

findings suggest that the models developed in this study can be 

considered highly reliable and adequately trained for use in real-

world scenarios. 

Table 10: A comparison among the best results for each 

classifier with their training time. 

K-

Fold 

Classifier Accuracy F1-

score 

Average 

training time 

in 

milliseconds 

10 DT 97.40 97.16 5.45 

10 KNN 97.22 96.96 11.25 

10 MLP 97.36 97.13 3157.6 (4.51 

per epoch) 

 

Upon analyzing the results of the three experiments conducted on 

the "Curtain" dataset, it can be concluded that the DT classifier 

demonstrated superior performance compared to the other 

classifiers in terms of accuracy and training time (as illustrated in 

Table 10). This can be attributed to the fact that the "Curtain" 

dataset is composed solely of numerical values, which are well-

suited for decision tree-based algorithms. 

To obtain the training times for the classifiers' best models, the 

average time in milliseconds was calculated by averaging the 

results of four different executions of the same model. As a result, 

the average training times for the DT, KNN, and MLP classifiers 

were found to be 5.45, 11.25, and 3157.6 milliseconds (4.51 per 

epoch), respectively. Based on these findings, it is recommended 

that the DT model be implemented in the system due to its 

superior performance in terms of accuracy and training time. 

5.4 Comparison of the proposed system with the state-of-

the-art systems 

 Table 11 presents a comparative analysis of the proposed system 

against several reviewed systems in the literature. 

 

Table 11: Summary of proposed system versus reviewed works, where MLu: Machine Learning is utilized, RPi: Raspberry Pi used, 

oRPi: only the RPi utilized as a central controller, DPS: Dataset Provided by the system, Adp: the system is adaptive to the user 

behavior, SP: security purpose in the system, AM: does any appliances controlled automatically, MM: does any appliances controlled 

manually, MF: Muli-Featured, WUI: Web-based User Interface. 

Ref. MLu RPi oRPi DPS Adp SP AM MM MF WUI 

(Okorie et al., 2020)        ✓ ✓  

(Iqbal et al., 2018)  ✓    ✓ ✓ ✓ ✓ ✓ 

(Pavithra & Balakrishnan, 

2015) 
 ✓ ✓   ✓ ✓ ✓ ✓ ✓ 

(Gota et al., 2020)       ✓ ✓ ✓ ✓ 

(Abbas & Abdullah, 2021) ✓ ✓  ✓ ✓  ✓ ✓   

(F. Mehmood et al., 2019) ✓ ✓    ✓ ✓   ✓ 

(Crisnapati et al., 2016) ✓ ✓    ✓ ✓ ✓ ✓ ✓ 

(Paredes-Valverde et al., 

2020) 
✓   ✓    ✓ ✓  

(Peng et al., 2019) ✓       ✓   

(Raju et al., 2021) ✓ ✓ ✓    ✓ ✓ ✓  

Proposed system ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

The proposed system outperforms the reviewed systems in 

various aspects. Firstly, the proposed system excels having a 

web-based user interface (UI) that enables local and internet-

based system access surpassing the systems reviewed in (Abbas 

& Abdullah, 2021; Okorie et al., 2020; Paredes-Valverde et al., 

2020; Peng et al., 2019; Raju et al., 2021). Secondly, the 

proposed system stands out for its ability to use only a RPi as a 

central controller, outperforming all reviewed systems except for 

the ones in (Pavithra & Balakrishnan, 2015; Peng et al., 2019). 

Thirdly, this system has a unique ability to adapt to user behavior 

by leveraging the dataset it creates, a feature missing in all 

reviewed systems except for the one in (Abbas & Abdullah, 

2021) which does not take into consideration the environmental 

conditions. Additionally, the proposed system outperforms the 

reviewed system in terms of using ML techniques to enhance 

home intelligence, surpassing the systems reviewed in (Gota et 

al., 2020; Iqbal et al., 2018; Okorie et al., 2020; Pavithra & 

Balakrishnan, 2015). Moreover, this system provides a variety of 

ways for users to interact with the system, including features 

related to security, energy-saving, and more, outperforming all 

reviewed works. Furthermore, this system provides real-time 

voice and text alerts to users via the UI and email to improve 

home security and safety. Finally, the proposed system provides 

a fully automated home, utilizing several sensors and appliances, 

and enhances home intelligence by applying automatic decision-

making on behalf of the user. 

6. CONCLUSION AND FUTURE WORKS 

Smart homes using Machine Learning (ML) offer significant 

benefits over traditional smart homes by incorporating the power 

of artificial intelligence. By leveraging ML algorithms, smart 

homes can automatically adjust settings and operations based on 

learned patterns and preferences, providing a more personalized 

and efficient experience for residents. One of the key applications 

of ML in smart homes is in the area of home automation. For 

example, ML algorithms can be used to control lighting, heating, 

cooling, and security systems based on the presence and behavior 

of residents. 

This study proposes a smart home system that aims to enhance 

security, comfort, energy efficiency, and intelligence. The system 

comprises three primary modes, including the manual mode, 

automatic mode, and intelligent mode. The manual mode allows 

the user to control different appliances and monitor the home 

environment through a web-based application. The automatic 

mode, on the other hand, reduces human intervention and 

maximizes security. This mode provides real-time alerts through 

the UI in both text and voice form and also sends text alerts via 
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email in the event of an intruder or fire detection. Additionally, 

this mode controls appliances automatically based on sensor 

readings to minimize energy consumption. The intelligent mode 

employs ML algorithms to predict and track user behavior 

patterns related to opening and closing curtains. Several 

experiments were conducted to compare the performance of 

various classifiers (DT, KNN, and MLP) applied to the "Curtain" 

dataset. The results revealed that DT provided the highest 

accuracy (97.4%) with the shortest average training time (5.45 

milliseconds) among all the implemented classifiers, making it 

the best choice for implementation in the proposed smart home 

system. 

For the future goal it has been aimed to enable the user to interact 

with the system using voice commands. Additionally, it has been 

planned to incorporate image processing capabilities into the 

system to automatically control the main door based on the image 

of the authorized person. Furthermore, for the intelligent mode, 

it has been aimed to create another dataset for user action for 

predicting user preferences using regression-based models. In 

addition, applying various feature selection techniques on the 

"Curtain" dataset in order to evaluate their impact on the 

performance of the utilized models. 
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