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Abstract: The synchronization control problem of a class of chaotic systems with unknown
uncertainties and outside perturbation is addressed in this article by employing an innovative
adaptive sliding mode controller (SM, SMC) constructed using a disturbance observer (DO). For the
synchronous error system, the external disturbances estimated by the disturbance observer cannot be
measured directly. If the appropriate gain matrix is chosen, the DO can approximate the unknown
external disturbances well. Then a continuous adaptive SM controller based on the DO’s output is
designed by using adaptive techniques and the system dimensional expansion method. The Duffing-
Holmes chaotic system is finally selected to numerically test the efficiency of the suggested strategy.
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1. Introduction

The problem of synchronous control of chaotic systems has become a challenging task due to
their complexity and unpredictability, in particular, their sensitivity to initial conditions. Nonetheless,
chaotic synchronization has drawn a lot of interest and emerged as a hot topic due to its significant
promise for many practical applications [1–4]. For example, in the field of secure communication,
the difficulty of deciphering communication signals can be increased with the help of chaotic
synchronization scheme, and the security of secure communication can be improved [5]. In the field
of electrical power systems, the chaotic synchronization scheme can eliminate the chaotic vibrations
generated by the power system and enable the system to operate safely and smoothly [6]. In the
practical engineering field, chaotic synchronization systems can be applied to the fault diagnosis of
rolling bearings [7]. There are several control techniques to achieve chaos synchronization, including
active control, adaptive control, SMC, robust adaptive SMC, DO-based, and so on [8–14].
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However, chaotic systems, frequently feature various levels of uncertainty that protrude into and
out of the system. The structure and parameters of the mathematical model representing the controlled
component are not always precisely known in advance by the designer from the perspective of the
interior of the system. It is equivalently defined in terms of a huge number of unanticipated disturbances
as the impact of the external environment on the system. It is vital to look into and address how
to develop an effective controller in light of these uncertainties so that the system has exceptional
dynamic quality and outstanding output performance. Among them, the performance of adaptive
control is particularly prominent [15]. SMC, as a robust nonlinear control method, is mainly used
to solve synchronization problems in chaotic systems [16–20]. In order to approximate and account
for these outside disturbances, DO is frequently utilized [21–26].

The synchronization control of uncertain chaotic systems has recently made some progress.
Reference [12] describes the design of two nonlinear control methods. The first technique is a
finite-time stable active control that takes into account a few parameters, and the second strategy is
a finite-time unbounded adaptive control method that can adjust to parameter uncertainty. A feedback
linearization technique based on a DO is suggested in the reference [27] for managing chaotic systems
when there is an external disturbance. Reference [24] offers a succinct introduction to DO and a clear
explanation of its functionality. A new design technique for nonlinear DO is introduced in [25] for a
class of nonlinear systems characterized by input-output differential equations. For the robust trajectory
tracking problem of underwater vehicles in the presence of unpredictable external disturbances and
parameter uncertainties, a nonlinear DO is set out in [26]. The research described above goes into
considerable length on this subject. However, the literature does not take into account the inherent
uncertainty of chaotic systems and assumes that the boundaries of external disruptions are known
in advance [28–30]. In real-world scenarios, the master and slave systems could not be the same,
and it might be challenging to define the limits of outside interference. Consequently, analyzing the
synchronization problem for chaotic systems with unclear terms and unknown constraints on external
disturbances for real-world applications is more beneficial. In reference [9], an adaptive SM controller
is designed to address synchronization issues in Duffing-Holmes chaotic systems with uncertainties and
external disturbances. However, this paper does not need to understand in advance the boundaries of
external disturbance, but to ensure that the external disturbance and derivative bounded uncertainties.
In this article, we look into ways to exceed the limit for both the number of external disturbances and
the number of their derivatives.

The following constitutes this paper’s primary innovative work:
(1) The DO-based SM controller designed in this paper breaks through the restriction that the

internal uncertainty of the system is bounded and must be known. At the same time, the time-varying
disturbance can be observed, which is rare in previous work. There are two types of DO designs.
For constant and bounded disturbances, the linear DO performs well for estimation and has excellent
dynamical properties, namely that the observer error tends to zero asymptotically. For time-varying
disturbances, nonlinear DO can finitely perform estimation work with bounded observer error.

(2) In this study, a novel SM controller is designed that can handle the synchronization control issue
of uncertain chaotic systems with different initial conditions of master and slave systems. The new SM
controller is based on adaptive technology and DO.

The article has been set up as follows: The master-slave chaotic synchronization system and the
equation of state for the synchronization error are both covered in Section 2. In Section 3, this paper
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design linear and nonlinear DO for constant and time-varying external disturbances. Based on the DO
design, the adaptive SM controller’s design process is detailed in Section 4, and the Lyapunov stability
theory is used to demonstrate the system’s effectiveness. Section 5 presents the simulation findings.
This paper is concluded in Section 6.

Notations: In this article, Rn denotes n dimensional real vector space, Rn×n denotes n×n real matrices.
R represents the set of real numbers. ‖ · ‖ is interpreted as Euclidean norm. The meaning of |h| is the
boundary of the function h. λmin(Q) is the minimum eigenvalue of Q. diag(·) represents a diagonal
matrix. sign(·) is the sign function.

2. System description and problem formulation

In this study, n-dimensional master and slave chaotic systems are considered. The master chaos
system is  ẋ j =x j+1, 1 ≤ j ≤ n − 1,

ẋn =h(x, t),
(2.1)

where x(t) = [x1(t), x2(t), ..., xn(t)]T ∈ Rn is the master system state and h(x, t) is a nonlinear function
of x and t. System (2.1) is commonly used to describe physical systems such as the Duffing-Holmes
damping spring system, the Van der Pol system, robot systems and flexible joint institutions. The
chaotic system of the slaves is ẏ j =y j+1, 1 ≤ j ≤ n − 1,

ẏn =h(y, t) + 4h(y, t) + d(t) + u,
(2.2)

where y(t) = [y1(t), y2(t), ..., yn(t)]T ∈ Rn is the slave system state, u ∈ R is the control input, h(y, t)
is a given nonlinear function of y and t, 4h(y, t) is an uncertainty term representing the unmodeled
dynamics or structural changes of system (2.2) and d(t) is the external disturbance to system (2.2).

This paper supposes that systems (2.1) and (2.2) have unique solutions in time interval [t0,+∞), t0 >

0 for any given initial terms x0 = x(t0) and y0 = y(t0) under h(x, t), h(y, t) and 4h(y, t) that satisfy some
necessary conditions. The state synchronization errors are denoted as ξ(t) = [ξ1(t), ξ2(t), ..., ξn(t)]T ∈

Rn, where ξ j , y j − x j, j = 1, 2, ..., n. The synchronization error dynamic equation can be described as:ξ̇ j = ξ j+1, 1 ≤ j ≤ n − 1,
ξ̇n = ρ(ξ, t) + 4h(ξ + x) + d(t) + u(t),

(2.3)

where ρ(ξ, t) , h(ξ + x, t) − h(x, t) and y = ξ + x.

Remark 1. Given that this paper will design sliding mode controllers that take into account both
internal and external disturbances, it is necessary to make assumptions about ρ(ξ, t),4h(ξ + x) and
u(t).

Assumption 1. Suppose that ρ(ξ, t),4h(ξ + x) and u(t) have a derivative of time t, respectively.

The purpose of this work is to demonstrate that when a slave system is subjected to an
external disturbance, master-slave systems starting from various initial circumstances can attain
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synchronization. The targets are as follows: When the slave system is perturbed by an unknown
constant, namely d(t) , d1, where d1is an unknown constant, the disturbance is estimated by designing
a linear DO and the master-slave system is intended to achieve asymptotic synchronization through
the use of a sliding mode control law, that is, limt→∞ ‖ξ(t)‖ = 0, where ‖ · ‖ is the European norm.
When the slave system is perturbed by a time-varying disturbance, namely d(t) , d2(t), where d2(t)is
an unknown time-varying disturbance, the disturbance is estimated by designing a nonlinear DO and a
sliding mode control law is designed to achieve bounded synchronization of the master-slave system,
that is, limt→∞ ‖ξ(t)‖ ≤ µ̄, where µ̄ is a positive real number. When the slave system is subject to
internal uncertainty and an external disturbance, an adaptive DO-based SM controller is designed to
achieve bounded synchronization of the master-slave systems.

3. Design of disturbance observer

In this section, two DOs for different types of disturbances are designed to implement disturbance
estimation.

When the constant-type external disturbance d1 is added to the system (2.2), we design a linear DO
as:

˙̂d1 = l[ξ̇n − ρ(ξ, t) − u(t) − d̂1], (3.1)

where d̂1 is the estimated value of the constant-type external disturbance d1 and l is the gain of the
linear DO.

Let the observer’s error be ξd1 = d̂1 − d1. When the system (2.2) have only suffered external
disturbance d1, that is, 4h = 0. Combining Eqs (2.3) and (3.1), we obtain the derivative of ξd1 as

ξ̇d1 = ˙̂d1 − ḋ1 = l[ξ̇n − ρ(ξ, t) − u − d̂1] − ḋ1 = −lξd1, (3.2)

where ḋ1 = 0.
By choosing a positive observation gain, l > 0, the disturbance error ξd1 will approach zero when

t → ∞. The d̂1 can asymptotically estimate the constant disturbance d1 of the system (2.2).
When the time-varying type of external disturbance d2(t) is added to the system (2.2), satisfying: ω̇(t) =Wω(t),

d2(t) =Vω(t),
(3.3)

where ω(t) ∈ Rm is the interference-generating component, W ∈ Rm×m and VT ∈ Rm are gain matrices
that will be designed in the following.

We consider the system (2.2) have suffered both external disturbance d2(t) and internal uncertainty
4h. Due to the presence of internal uncertainties, the previously designed linear DO does not fit the
requirements and the estimation error is not controlled. So, we have to adjust the observer. Here we
make the following assumption about the internal uncertainty:

Assumption 2. Let the uncertainty component 4h in system (2.2) be bounded and satisfy that |4h| < α,
where α is a positive constant.
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A nonlinear DO for estimating the external disturbance d2(t) is given under Assumption 2 as
follows: 

ϑ̇ = (W + LV)(ϑ − Lξn) + L(ρ(ξ, t) + u + α),
ω̂ = ϑ − Lξn,

d̂2 = Vω̂,

(3.4)

where ϑ ∈ Rm is the state of the nonlinear DO, L ∈ Rm is the observer gain, and d̂2 is the estimate of
the external disturbance d2(t). The estimated error is denoted as ξd2 = ω̂ − ω.

Taking the derivation of ξd2 and combining it with Eq (3.4):

ξ̇d2 = ˙̂ω − ω̇,
= (W + LV)ξd2 + Lα − L4h.

(3.5)

By choosing appropriate gains W, L, and V so that W + LV is Hurwitz, ξd2 of system ξ̇d2 = (W + LV)ξd2

is asymptotically stable, that is, limt→∞ = 0. The following lemma has been given for the observer
error by designing W, L, and V .

Lemma 1. If the appropriate matrices W, L, and V are chosen, let W + LV be Hurwitz. Then the
nonlinear DO(3.1) can approximate the time-varying external external disturbances well, and the
estimated error will not exceed µ‖V‖, where µ > 0.

Proof. Since W + LV is Hurwitz, there are positive matrices Pd,Qd ∈ R
m×m satisfied:

Pd(W + LV) + (W + LV)T Pd = −Qd. (3.6)

Select Vd = ξT
d2Pdξd2 as a Lyapunov function, and taking the time derivative of Vd:

V̇d = ξ̇T
d2Pdξd2 + ξT

d2Pdξ̇d2. (3.7)

Substituting Eqs (3.5) and (3.6) into Eq (3.7):

V̇d = −ξT
d2Qdξd2 + 2ξT

d2PdL(α − 4h)
≤ −ξT

d2Qdξd2 + 2‖ξd2‖‖Pd‖‖L‖(α + |4h|).
(3.8)

Since Qd is a positive definite matrix, ξT
d2Qdξd2 ≥ λmin(Qd)‖ξd2‖

2, where λmin(Qd) is the minimum
eigenvalue of the positive definite matrix Qd. The Eq (3.8) can be rewritten as:

V̇d ≤ − λmin(Qd)‖ξd2‖
2 + 4‖ξd2‖‖Pd‖‖L‖α

≤ − ελmin(Qd)‖ξd2‖
2 − (1 − ε)λmin(Qd)‖ξd2‖

2

+ 4‖ξd2‖‖Pd‖‖L‖α, 0 < ε < 1.
(3.9)

By indicating ‖ξd2‖ ≥
4‖Pd‖‖L‖α

(1−ε)λmin(Qd) , µ:

V̇d ≤ −ελmin(Qd)‖ξd2‖
2. (3.10)

The meaning of the representative of (3.10) is that, when ‖ξd2‖ ≥ µ, there is a limited time such that
V̇d < 0 holds, that is, ‖ξd2‖ ≤ µ in a limited time, then ‖ξd2‖ ≤ µ.

Finally, ξd2 is ultimately uniformly bounded, that is, |d̂2 − d2| ≤ µ‖V‖. �
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Remark 2. The convergence rate of the DO error can be adjusted by choosing the value of ελmin(Qd).
While W + LV is Hurwitz, this design job that is easy to implement in modern control theory. The
ultimate estimate error depends on the parameters α and V. A Hurwitz matrix, also known as a stable
matrix, is a square matrix in which all eigenvalues have negative real parts.

Remark 3. In this section, two DOs were designed to estimate the external disturbances. In order
to achieve good synchronization effect, the corresponding disturbance observer is selected according
to the type of external disturbance. In practice, disturbances are typically of a fixed type, so the DOs
presented in this paper can satisfy most of the system requirements.

Remark 4. In addition, the nonlinear DO presented in this paper considers the system’s internal
disturbance, which is rare in current chaotic synchronous control systems.

Remark 5. This paper aims to realize the synchronization task of uncertain chaotic systems, which
requires the design of suitable controllers. However, SMC is robust as a widely used nonlinear
controller. This paper will combine SMC and DO to design the controller.

4. Design of control strategy and stability analysis

4.1. Design of adapive sliding mode controller based on disturbance observer

In this section, a smooth controller will be designed that takes into account both DO (3.1) and
DO (3.4) as well as the SM surface. Meanwhile, the design of the SM surface is also related to the
type of DO. Since both controller design and SM surface design are related to DO, it is necessary
to combine the synchronization error system (2.3) with the dynamic system of DO (3.1) or (3.4). In
the following, the augmented system with different DOs will be presented and the SM surface will
be designed. Considering the internal disturbances of the system (2.2), we would like to implement
adaptive parameters and finally design an adaptive SM controller based on DO. Finally, we present the
reachability conclusion for the SM surface.

First, d̂q is denoted by DO, which is linear DO (3.1) as q = 1, and is nonlinear DO (3.4) as
q = 2. ξdq is the disturbance error, q = 1, 2. Using the concept of the augmented system combined
with system (2.3) and the DOs (3.1) and DO (3.4), the error-normalized state space equation under
Assumption 1 can be obtained as:

ξ̇ j = ξ j+1, 1 ≤ j ≤ n − 1
ξ̇n = ξn+1 − Vqξdq , q = 1, 2

ξ̇n+1 =
d
dt

(ρ(ξ, t) + 4h(ξ + x) + d̂q) + u̇,

(4.1)

when q = 1, V1 = 1; q = 2, V2 = V . Notice that the auxiliary scalar

ξn+1 = ρ(e, t) + 4h(ξ + x) + d̂q + u

has a derivative about t according to Assumption 1 and DO (3.1) or (3.4).
Next, an integral SM surface will be designed for system (4.1)

σ = ξn+1(t) − ξn+1(0) +

∫ t

0

n+1∑
i=1

riξidt, (4.2)
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where ξn+1(0) represents the initial value of ξn+1. According to SMC theory, σ̇ = 0 is always valid when
the system remains on the SM surface. Therefore, the derivative of equivalent controller is obtained as:

u̇eq = −
d
dt

(ρ(ξ, t) + 4h(ξ + x) + d̂q) −
n+1∑
i=1

riξi

from σ̇ = 0 and system (4.1). The dynamical equation of ξn+1 under the ueq can be described as:

ξ̇n+1 = −

n+1∑
i=1

riξi. (4.3)

Combining linear DO (3.1) and system (3.2), 4h = 0, and Eq (4.3), the dynamic equation of SM can
be expressed as: 

ξ̇ j = ξ j+1, 1 ≤ j ≤ n − 1,
ξ̇n = ξn+1 − ξd1(t),

ξ̇n+1 = −

n+1∑
i=1

riξi,

ξ̇d1 = −lξd1.

(4.4)

The matrix differential equation of the system (4.4) is:

˙̃ξ = Aξ̃, (4.5)

where ξ̃ = [ξ1, ξ2, ..., ξn+1, ξd1]T ∈ Rn+2, its initial value is ξ̃(0) = [ξ1,0, ξ2,0, ..., ξn+1,0, ξd1,0]T ∈ Rn+2, and
gain matrix

A =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 1 0
−r1 −r2 −r3 · · · −rn+1 0
0 0 0 · · · 0 −l


.

By choosing appropriate parameters ri > 0, i = 1, · · · , n + 1 and l > 0, the asymptotic stability of
the system (4.5) can be guaranteed, that is to say, as t → ∞, the state ξ̃ reaches the equilibrium point
zero along the SM surface (4.2). The size of ri and l affects the speed at which the system state reaches
the equilibrium point.

Combining nonlinear DO (3.4), 4h , 0, and Eq (4.3), the dynamic equation of SM can be
expressed as: 

ξ̇ j = ξ j+1, 1 ≤ j ≤ n − 1,
ξ̇n = ξn+1 − Vξd2,

ξ̇n+1 = −

n+1∑
i=1

riξi.

(4.6)

The matrix differential equation of the system (4.6) can also be expressed as:

ξ̇ = Āξ + V̄ξd2, (4.7)
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where ξ = [ξ1, ξ2, ..., ξn+1]T ∈ Rn+1,

Ā =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−r1 −r2 −r3 · · · −rn+1


,

and

V̄ =



0
...

0
−1
0


V.

Here, we can choose ri > 0, r = 1, · · · , n+1 to ensure that Ā is the Hurwitz. Next, the crucial conclusion
of this paper will be given under Lemma 1.

Theorem 1. Under Lemma 1, if the gain matrix Ā is the Hurwitz, then the state ξ of the system (4.7) is
eventually uniformly bounded, and the bound shall not exceed µ̄.

Proof. Since Ā is a Hurwitz matrix, there are positive definite matrices P,Q ∈ R(n+1)×(n+1), such that

PĀ + ĀT P = −Q. (4.8)

Choose V1 = ξT Pξ as the Lyapunov function, and its first derivative is

V̇1 = ξT Pξ̇ + ξ̇T Pξ. (4.9)

Putting Eqs (4.7) and (4.8) into Eq (4.9):

V̇1 =ξT (PĀ + ĀT P)ξ + 2ξT PV̄ξd2

= − ξT Qξ + 2ξT PV̄ξd2

≤ − ξT Qξ + 2‖ξT ‖‖P‖‖V̄‖‖ξd2‖.

(4.10)

Since Q is a positive definite matrix,

ξT Qξ ≥ λmin(Q)‖ξ‖2, (4.11)

where λmin(Q) is the minimum eigenvalue of Q.
Combining Eqs (4.10) and (4.11):

V̇1 ≤ − λmin(Q)‖ξ‖2 + 2‖ξT ‖‖P‖‖V̄‖‖ξd2‖

≤ − Q̄λmin(Q)‖ξ‖2 − (1 − Q̄)λmin(Q)‖ξ‖2

+ 2‖ξ‖‖P‖‖V̄‖‖ξd2‖,

(4.12)

when
− (1 − Q̄)λmin(Q)‖ξ‖2 + 2‖ξ‖‖P‖‖V̄‖‖ξd2‖ ≤ 0, (4.13)
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according to Lemma 1,

‖ξ‖ ≥
2‖P‖‖V̄‖‖ξd2‖

(1 − Q̄)λmin(Q)
≥

2‖P‖‖V̄‖µ
(1 − Q̄)λmin(Q)

, µ̄ (4.14)

the following equation can be obtained,

V̇ ≤ −Q̄λmin(Q)‖ξ‖2, 0 < Q̄ < 1. (4.15)

From Eq (4.15), it can be obtained that when ‖ξ‖ ≥ µ̄, there exists a limited time such that V̇ < 0
holds, that is, ‖ξ‖ ≤ µ̄ in a limited time. That is to say,

‖ξ‖ ≤ µ̄. (4.16)

Finally, ξ is uniformly bounded, that is, ‖x(t) − y(t)‖ ≤ µ̄ in a limited time. �

Remark 6. The SM dynamical equation based on linear DO (4.5) can also be written in the form
of Eq (4.7) by the block matrix method, that is, ξ̃ = Āξ − lξd1 by choosing A = diag{Ā,−l} and
ξ̃ = diag{ξ, ξd1}. Therefore, the two augmentation systems used in this paper are essentially the same.

Remark 7. Effectively, the convergence of the augmented system is not invariant. Equation (4.5)
converges asymptotically to zero, but Eq (4.7) is only uniformly bounded. The reason is that linear
DO dynamic error systems are asymptotically stable, while nonlinear DO dynamic error systems are
uniformly bounded.

Remark 8. From Lemma 1 and Theorem 1, the error bound µ̄ relies on the parameter α. In this
paper, the value of α has been given. From the Assumption 1, we know that d

dt4h(ξ + x) exists, but in
order to guarantee the accessibility of the SM, we need to know that it is bounded. When this bound
is known, a general approximation law is chosen to ensure SM achieveability. However, when this
bound is unknown, estimates of the parameters need to be taken into account. Adaptive techniques are
widely used for estimation. The SM approximation laws are considered in combination with adaptive
techniques to achieve SM reachability.

Based on the nonlinear DO, an adaptive SM controller will be designed in the following parts.

Assumption 3. Let | ddt4h(ξ + x)| be bounded, satisfying | ddt4h(ξ + x)| < θ, where θ is an unknown
positive number.

Taking θ̂ as the estimated parameter of θ that satisfies the following adaptive law:

˙̂θ = |σ|, θ̂(0) = θ̂0, (4.17)

where θ̂0 is the initial condition of θ̂, which is a bounding positive number. Now define the adaptive
error as θ̃ = θ̂ − θ. Since θ is a constant,

˙̃θ = ˙̂θ = |σ|. (4.18)

Choosing the SM reaching law as:

σ̇ = −(θ̂ + k)sign(σ), (4.19)
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where sign(·) is the sign function, k is a positive number. The law of reaching chosen here includes the
law of adaptation.

Combing Eqs (4.2) and (4.19):

ξ̇n+1 +

n+1∑
i=1

riξi = −(θ̂ + k)sign(σ). (4.20)

Under Eq (4.1) , the first derivative of the adaptive SMC signal u is:

u̇ = −
d
dt

(ρ(ξ, t) + 4h + d̂q) −
n+1∑
i=1

riξi − (θ̂ + k)sign(σ). (4.21)

The uncertainty component 4h is unknown in the actual world. The designed adaptive SMC law
under DO can be expressed as:

u(t) =

∫ t

0
[−

d
dt

(ρ(ξ, t) + d̂q(t)) − (θ̂ + k)sign(σ) −
n+1∑
i=1

riξi]dt, (4.22)

where the initial value of u is chosen as 0.

4.2. The reachability of sliding mode surface

In this section, the proposed control scheme (4.22) can drive the system (4.1) into the SM
surface (4.2) σ(t) = 0 in a limited time, that is, the reaching condition σ(t) ˙σ(t) < 0 will be satisfied.

Theorem 2. Consider error system (4.1), if the adaptive SMC law (4.22) under nonlinear DO (3.4) is
chosen, then the error state reaches the SM surface σ(t) = 0 in a finite time and maintains on.

Proof. Choosing the Lyapunov function V = 1
2 (σ2 + θ̃2). Under Eqs (4.1), (4.2), and (4.22), the first

derivative of V with respect to time t can be obtained as:

V̇ = σσ̇ + θ̃ ˙̃θ = σ[−(θ̂ + k)sign(σ) +
d
dt
4h(ξ + x)] + θ̃ ˙̃θ. (4.23)

Taking Eq (4.18) into Eq (4.23):

V̇ = σ[−(θ̂ + k)sign(σ) +
d
dt
4h(ξ + x)] + θ̃|σ|. (4.24)

Combing with Assumption 3, V̇ can be amplified:

V̇ ≤ |σ|θ − (θ̂ + k)|σ| + θ̃|σ|. (4.25)

Then, we have
V̇ ≤ −k|σ|. (4.26)

As a result, the erroneous state will eventually reach the SM surface σ(t) = 0 and continue, according
to the Lyapunov stability theory. �

Remark 9. In summary, Theorem 2 creates an adaptive SMC law based on the nonlinear DO that
permits the augmented error system to reach the SM surface in finite time and remain there. The
convergence of the sliding-mode kinetic equation is already provided by Theorem 1, which states that
the synchronization error will eventually be uniformly confined. The goal of this study is to synchronize
the slave system with the master system. To show the value of the suggested strategy, the give numerical
examples will be given.
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5. Simulation examples

Consider the master-slave Duffing-Holmes system as:ẋ1 =x2,

ẋ2 =x1 − 0.25x2 − x1
3 + 0.3 cos t,

(5.1)

and 
ẏ1 =y2,

ẏ2 =y1 − 0.25y2 − y1
3 + 0.3 cos t

+ 4h(y) + d(t) + u.

(5.2)

Let ξ1 = y1 − x1, ξ2 = y2 − x2, combining Eqs (5.1) and (5.2), the error state equation of the system can
be obtained 

ξ̇1 =ξ2,

ξ̇2 =ξ1 − 0.25ξ2 − y1
3 + x1

3

+ 4h(ξ + x) + d(t) + u.

(5.3)

Take the gain parameter of SM surface (4.2) as

[r1 r2 r3] = [1360 336 30].

The adaptive SM controller (4.22) can be designed as

u =

∫ t

0
[−ξ2 + 0.25ξ3 + 3y1

2y2 − 3x1
2x2 −

˙̂d2

− (r3ξ3 + r2ξ2 + r1ξ1) − (θ̂ + k)sign(σ)]dt.
(5.4)

In this paper, two types of DO are designed for different external disturbances, and the SMC law
is further designed to synchronize the master-slave system. In the following, the effectiveness of the
above method will be verified in three cases.

Case 1: constant disturbance d(t) , d1.
Take the uncertain component 4h = −0.05y1, the constant external disturbance d1 = 1 , l = 10,

ξd(0) = 2 , the SM reaching law gain k = 1, the step size is taken as 0.001, the initial values of the
controller u(t) and the estimated parameter θ̂ are u(0) = 0 and θ̂0 = 0.

Under the initial conditions y1(0) = 0.5, x1(0) = 0.1 , y2(0) = −0.5, and x2(0) = 0.1, the simulation
results are shown in Figures 1–4. As can be seen from Figures 1 and 4, the master/slave system can
achieve synchronization in less than one second with a fast synchronization rate by employing the
adaptive SM controller proposed in this paper. Moreover, the synchronization error remains close to 0
even when the full system contains uncertainties and external disturbances. As can be seen in Figures 3
and 4, the system error states are regulated to zeros asymptotically and the chattering does not appear
with this continuous control, even when the overall system is undergoing uncertainty and disturbance.
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Figure 1. The evaluating synchronization of Case 1: x1 and y1.
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Figure 2. The evaluating synchronization of Case 1: x2 and y2.
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Figure 3. The controller of Case 1: u.
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Figure 4. The error states of Case 1: ξ.

Case 2: periodic time-varying disturbance d(t) , d2(t).
Take the uncertain component as internal uncertainty 4h = 0.2 cos(πt), the time-varying external

disturbance d2 = sin t; the parameters of nonlinear DO:

W =

[
0 1
−1 0

]
, V = [1 0], LT = [−20 − 99], ξT

d (0) = [2 2];

the SM reaching law gain k = 1; the initial value of the controller u(0) = 0; the adaptive parameter
initial value θ̂0 = 0.

The simulation results of the same initial conditions as Case 1 are shown in Figures 5–8. In
Figures 5, 6 and 8, it is shown that the master/slave system can also rapidly achieve bounded
synchronization by employing the adaptive SM controller proposed in this paper. It can be seen that the
synchronization error exists at a certain error even if the entire system contains both uncertainty terms
and external disturbances. Also, the continuous control will disappear the chattering; see Figure 7.
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Figure 5. The evaluating synchronization of Case 2: x1 and y1.
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Figure 6. The evaluating synchronization of Case 2: x2 and y2.
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Figure 7. The controller of Case 2: u.
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Figure 8. The error states of Case 2: ξ.
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Case 3: damped time-varying disturbance d(t) , d2.

Take the uncertainties and designed parameter terms as 4h = 0.2 cos(πt), d2 = ξ−0.1t , W = −0.1,
L = 1, V = −3, ξd(0) = 2, u(0) = 0, θ̂0 = 0.

The simulation results of the same initial conditions as Case 1 are shown in Figures 9–12. In
Figures 9, 10, and 12 it is shown that the master/slave system can also rapidly achieve bounded
synchronization by employing the adaptive SM controller proposed in this paper. However, the error in
Case 3 is larger than that in Case 2. Also, continuous control does not exhibit chattering; see Figure 11.
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Figure 9. The evaluating synchronization of Case 3: x1 and y1.
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Figure 10. The evaluating synchronization of Case 3: x2 and y2.
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Figure 11. The controller of Case 3: u.
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Figure 12. The error states of Case 3: ξ.

Remark 10. The simulation examples show that the control method provided in this paper can achieve
the synchronization requirement, but it depends on the type of external disturbance. The above
cases all work in the presence of bounded external disturbances, which are common in practical
applications. Unbounded external disturbances, which have relatively large effects on the system and
few applications, are not designed in this paper.

6. Conclusions

This paper offers an adaptive DO-based SMC technique to tackle the synchronization control
problem and achieve satisfactory control for a class of uncertain chaotic systems. In the presence of
ongoing disturbances, it is demonstrated that the suggested controller may asymptotically converge
the observer error regime and the synchronization error regime to zero. In the presence of time-
varying disturbances, the observer error regime and the synchronization error regime can eventually be
uniformly bounded. The error system’s stability (or uniformly boundedness) is demonstrated using the
Lyapunov approach. According to numerical simulations, the SMC technique developed in this study
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is effective and does not exhibit chattering.
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