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1. Introduction

The Banach contraction principle [1] is considered a landmark fixed point theorem in the metric
fixed point theory. The main component of the metric fixed-point theory is the exploration of new
contraction principles to give fresh and helpful fixed-point theorems. Rakotch [2] was the first
mathematician who involved a function instead of a Lipschitz constant in the Banach contraction
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principle. Then, Boyd and Wong [3] generalized the Rakotch contraction principle. In an effort to
give a new contraction principle, Kannan [4] introduced a contraction principle that characterizes the
metric completeness, and gave a new direction in metric fixed point theory that led many
mathematicians to introduce various contraction principles. Among the classical contraction
principles, the most famous are: Meir and Keeler contraction principle [5], Chatterjea contraction
principle [6], Riech contraction principle [7], Hardy and Rogers contraction principle [8], Cı́rı́c
contraction principle [9] and Caristi contraction principle [10].

Recently, Wardowski [11] generalized Banach contraction principle by using an auxiliary nonlinear
function F : (0,∞) → (−∞,∞) that satisfied three conditions. In the literature, this new contraction
principle is known as F-contraction principle. This idea proved another milestone in metric fixed
point theory. The F-contraction principle has been revisited and generalized in many abstract spaces
(see [12–27] and references therein).

On the other hand, metric generalization also has a significant impact on metric fixed point theory.
Many mathematicians have contributed in this direction, producing many generalizations of a metric
space (see [28]). One of these generalizations was done by Perov [29]. By extending the co-domain of
the metric function from R to Rn, Perov [29] gave a vector version of the metric and hence produced
another generalization of the Banach contraction principle. By following the Perov, Boriceanu [30]
introduced a vector-valued b-metric and hence extended Perov [29] fixed point result to vector-valued
b-metric spaces.

In 2020, Altun et al. [31] presented a vector version of F-contraction principle and obtained an
extension of Wardowski [11] fixed point theorem in the vector-valued metric spaces as follow:

Theorem 1.1. [31] Every self-mapping T on a complete vector-valued metric space (X, d) that satisfies
the following inequality:

d(T (q),T (h)) � 0⇒ I ⊕ F(d(T (q),T (h))) � F(d(q, h))∀ q, h ∈ X,

admits a unique fixed point, provided F satisfies (AF1) − (AF3) and I = (τi)m
i=1 � 0.

Where the operator F : Pm → Rm satisfies the following conditions:

(AF1) ∀ Q,W ∈ Pm with Q � W, we have F(Q) � F(W);
(AF2) ∀ {vn : n ∈ N} ⊂ Pm, we have

lim
n→∞

v(i)
n = 0 if and only if lim

n→∞
u(i)

n = −∞, for each i;

(AF3) ∃ κ ∈ (0, 1) satisfying limvi→0+(vi)κui = 0.

In this paper, we investigate the possible conditions on F and T for which the mapping T admits a
unique fixed point in a vector-valued b-metric space and in this way, we generalize the Theorem 1.1.
Moreover, we introduce the (β,F)-contraction principle and call it Perov’s type (β,F)-contraction
principle. We obtain fixed point theorems on Perov’s type (β,F)-contraction in a vector-valued
b-metric space. Illustrative example and an application of the obtained fixed point theorem are given.

2. Preliminaries and related results

In this section we present a summary of prerequisites and notations to be considered in the sequel.
Let Rm =

{
v = (xi)m

i=1 = (x1, x2, · · · , xm) | ∀i xi ∈ R
}

represents all matrices of order m × 1 (will be
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called vectors), then (Rm,⊕,�) is a linear space with respect ⊕ and � defined by

v ⊕ w = (xi + yi)m
i=1 for all v = (xi)m

i=1 and w = (yi)m
i=1 ∈ R

m.

k � v = (k · xi)m
i=1 for all v = (xi)m

i=1 ∈ R
m and k ∈ R.

Note that + and · represent usual addition and multiplication of scalars. By using above operations, we
can define difference of vectors as: v 	 w = v ⊕ (−1) � w. Define the relations � and ≺ on Rm by

v � w⇔ xi ≤ yi and v ≺ w⇔ xi < yi;∀i. (2.1)

The relation � defines a partial-order on Rm. Let Pm denotes the set of positive definite vectors, that
is, if v = (xi)m

i=1 � 0 (zero vector of order m × 1) and v = (xi)m
i=1 ∈ R

m then v = (xi)m
i=1 ∈ P

m. Also
let Rm

0 =
{
v = (xi)m

i=1 = (x1, x2, · · · , xm) | ∀i xi ∈ [0,∞)
}
. The two vectors are considered equal if their

corresponding coordinates are equal.

Definition 2.1. [32] 1) Let V = [vi j] be an m × m complex matrix having eigenvalues λi, 1 ≤ i ≤ n.
Then, the spectral radius ρ(V) of matrix V is defined by ρ(V) = max1≤i≤m |λi|.

2) The matrix V converges to zero, if the sequence {Vn; n ∈ N} converges to zero matrix O.

Theorem 2.2. [32] Let V be any complex matrix of order m × m, then V is convergent if and only if
ρ(V) < 1.

Perov [29] applied Theorem 2.2 to obtain the following result in the vector-valued metric spaces. It
states that:

Theorem 2.3. [29] Every self-mapping J defined on a complete vector-valued metric space (X,d)
satisfying the following inequality:

d(J(g), J(h)) � Ad(g, h)∀ (g, h) ∈ X × X,

admits a unique fixed point provided ρ(A) < 1; A is a positive square matrix of order m.

By a vector-valued metric, we mean a mapping d : X × X → Rm obeying all the axioms of the
metric. The object d(x, y) is an m-tuple. Let

v = (vi)m
i=1 = (v1, v2, v3, · · · , vm) ∈ Pm,

vn =
(
v(i)

n

)m

i=1
=

(
v(1)

n , v(2)
n , v(3)

n , · · · , v(m)
n

)
∈ Pm,

F(v) = (ui)m
i=1 = (u1, u2, u3, · · · , um) ∈ Rm and

F(vn) =
(
u(i)

n

)m

i=1
=

(
u(1)

n , u(2)
n , u(3)

n , · · · , u(m)
n

)
∈ Rm,

(v)m
1 = (v, v, v, · · · , v) ∈ Rm.

We organize this paper as follows:
Section 2 contains definition and related properties of the vector-valued b-metric space. Section 3

consists of necessary lemmas and Perov’s type (β, F)-contraction principle, related fixed point theorem
and an example explaining hypothesis of obtained result. Section 4 consists of an application of the
main theorem.
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3. The vector-valued b-metric space

In light of the definitions of b-metric and vector-valued metric given by Czerwik [33] and Perov [31]
respectively, we proceed with the following definition.

Definition 3.1. (vector-valued b-metric) [30] Let G be a non-empty set. The operator A : G×G → Rm
0

satisfying the axioms (A1)− (A3) given below is known as a vector-valued b-metric. For all q, t, g ∈ G,
we have

(A1) q = t if and only if A(q, t) = 0.
(A2) A(q, t) = A(t, q).
(A3) A(q, g) � s �

[
A(q, t) ⊕ A(t, g)

]
; s ≥ 1.

The pair (G,A, s) represents a vector-valued b-metric-space.

For s = 1, every vector-valued b-metric space is a vector-valued metric-space, but this is not true when
s > 1. Thus, it can be remarked that every vector-valued metric-space is a vector-valued b-metric-space
but not conversely.

Example 3.2. Let G = R and the operator A : G ×G → Rm
0 is defined by

A(l, q) =
(
|H|2, |H|3, · · · , |H|m+1

)
∀l, q ∈ G,

where H = |l − q|. Then (G,A, s = 2m) is a vector-valued b-metric space. Note that it is not vector-
valued-metric space.

Example 3.3. Let G be a non-empty set. Let di : G × G → [0,∞) be a b-metric for each i with
respective constant si ≥ 1 (1 ≤ i ≤ m) for each positive integer i. The mapping A : G × G → Rm

0
defined by

A(q, t) = (d1(q, t), d2(q, t), · · · , dm(q, t)) for all q, t ∈ G

defines a vector-valued b-metric on G.
The axioms (A1) and (A2) hold trivially. For (A3), for all l, q, t ∈ G, consider

A(l, t) = (d1(l, t), d2(l, t), · · · , dm(l, t))

� (s1(d1(l, q) + d1(q, t)), s2(d2(l, q) + d2(q, t)), · · · , sm(dm(l, q) + dm(q, t)))

� s � (d1(l, q) + d1(q, t), d2(l, q) + d2(q, t), · · · , dm(l, q) + dm(q, t))

= s � ((d1(l, q), d2(l, q), · · · , dm(l, q)) ⊕ (d1(q, t), d2(q, t), · · · , dm(q, t)))

= s � (A(l, q) ⊕ A(q, t)) ; s = max{s1, s2, · · · , sm}.

In general, the vector-valued b-metric is discontinuous, so, it requires an auxiliary convergence result
to establish fixed point theorems in the vector-valued b-metric spaces. For this purpose we give the
following lemma (Lemma 3.4).

Lemma 3.4. Let (G,A, s) be a vector-valued b-metric space. If l∗, g∗ ∈ G and {ln}n∈N is such that
limn→∞ ln = l∗, then

1
s
� A(l∗, g∗) � lim

n→∞
inf A(ln, g∗) � lim

n→∞
sup A(ln, g∗) � s � A(l∗, g∗).
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Proof. By (A3), we have

1
s
� A(l∗, g∗) � A(l∗, ln) ⊕ A(ln, g∗)

⇒
1
s
� A(l∗, g∗) 	 A(ln, l∗) � A(ln, g∗).

Taking lim inf, we have
1
s
� A(l∗, g∗) � lim

n→∞
inf A(ln, g∗). (3.1)

Again by (A3), we get
A(ln, g∗) � s � (A(ln, l∗) ⊕ A(l∗, g∗)).

This implies
lim
n→∞

sup A(ln, g∗) � s � A(l∗, g∗). (3.2)

But also, we know that
lim
n→∞

inf A(ln, g∗) � lim
n→∞

sup A(ln, g∗). (3.3)

Combining (3.1)–(3.3), we get required result. �

Apart from Lemma 3.4, to fulfill the objective of this paper, the following compatibility condition
is required:

(AF4): for every positive term sequence vn =
(
x(i)

n

)m

i=1
, ∃ I = (τi)m

i=1 � 0 satisfying

I ⊕ F(svn) � F(vn−1) implies I ⊕ F(snvn) � F(sn−1vn−1).

Our findings rely mostly on the class of vector-valued nonlinear functions satisfying (AF1), (AF3)
and (AF4) denoted by Πb

s .

Remark 3.5. The collection of vector-valued nonlinear functions Πb
s is non-empty.

Let F : Pm → Rm be defined by F((xi)m
i=1) = (ln(xi + 1))m

i=1 for all v ∈ Pm, then (AF1) and (AF3) are
obvious.
We establish (AF4):
Let I ⊕ F(svn) � F(vn−1), then for m-tuple I =

(
ln(sn−1), ln(sn−1), · · · , ln(sn−1)

)
=

(
ln(sn−1)

)m

1
, we have(

ln(sn−1)
)m

1
⊕ F

(
s
(
x(i)

n

)m

i=1

)
� F

((
x(i)

n−1

))m

i=1(
ln(sn−1)

)m

1
⊕

(
ln

(
sx(i)

n + 1
))m

i=1
�

(
ln

(
x(i)

n−1 + 1
))m

i=1

⇒
(
ln

(
snx(i)

n + sn−1
))m

i=1
�

(
ln

(
x(i)

n−1 + 1
))m

i=1

⇒ ln
(
snx(i)

n + sn−1
)
≤ ln

(
x(i)

n−1 + 1
)

for each i

⇒ snx(i)
n ≤ x(i)

n−1 + 1 − sn−1 for each i.

Now consider

I ⊕ F(snvn) =
(
ln(sn−1)

)m

1
⊕

(
ln(snx(i)

n + 1)
)m

i=1
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�
(
ln(sn−1)

)m

1
⊕

(
ln(x(i)

n−1 + 1 − sn−1 + 1)
)m

i=1

=
(
ln(sn−1x(i)

n−1 − s2n−2 + 2sn−1)
)m

i=1
=

(
ln(sn−1x(i)

n−1 + sn−1(2 − sn−1))
)m

i=1

�
(
ln(sn−1x(i)

n−1 + 1)
)m

i=1
= F

((
sn−1x(i)

n−1

)m

i=1

)
= F

(
sn−1vn−1

)
.

Hence, F ∈ Πb
s .

Example 3.6. Let F : Pm → Rm be defined by

(a) F(v) = (ln(xi))m
i=1;

(b) F(v) = (xi + ln(xi))m
i=1;

(c) F(v) = ln(x2
i + xi)m

i=1;
(d) F(v) =

(
− 1
√

xi

)m

i=1
;

(e) F(v) =
(
xa

i

)m

i=1
; a > 0;

(f) F(v) = (ln(xi + 1))m
i=1.

Among these definitions, definition (a)–(d) satisfy (AF1)–(AF3) and definition (e), (f) belong to the
family Πb

s .

Define F : R2
+ → R

2 by F((g1, g2)) =
(
gt

1, ln(g2 + 1)
)

; t > 0 then F ∈ Πb
s .

The following lemma explains the reasons to omit axiom (AF2).

Lemma 3.7. Let F satisfies (AF1) and {vn}n∈N ⊂ P
m is a decreasing sequence satisfying limn→∞ u(i)

n =

−∞, then limn→∞ v(i)
n = 0 for each i ∈ {1, 2, · · · ,m}.

Proof. We note that for each i ∈ {1, 2, · · · ,m}, {v(i)
n }n∈N is bounded below and decreasing sequence of

real numbers, so it is convergent. Let limn→∞ v(i)
n = ζ ≥ 0 for each i. Suppose on contrary ζ > 0. Since,

v(i)
n ≥ ζ for each i, therefore, u(i)

n ≥ F(ζ). Thus, F(ζ) ≤ limn→∞ u(i)
n = −∞, a contradiction. Hence,

limn→∞ v(i)
n = 0. �

4. Fixed points of (β,F)-contractions

Recently, Altun et al. [31] obtained an existence theorem involving vector-valued nonlinear function
and explained it through various nontrivial examples. We will introduce and investigate the notion of
(β,F)-contractions where the function F is taken from Πb

s and β is defined below.

Definition 4.1. Let there exists F ∈ Πb
s and I � 0, the mapping T : (G,A, s)→ (G,A, s) is said to be a

(s,F)-contraction, if it satisfies the following inequality:

A(T (l),T (q)) � 0⇒ I ⊕ F(s � A(T (l),T (q)) � F(A(l, q)), for all l, q ∈ G. (4.1)

Remark 4.2. Note that for s = 1, Definition 4.1 is identical to Perov’s type F-contraction introduced
by Altun et al. [31]. Thus, class of (s,F)-contractions (defined in Definition 4.1) is more wider as
compared to that of Perov’s type F-contraction introduced by Altun et al. [31]. Now we explain
inequality (4.1) by the following example (Example 4.3).
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Example 4.3. Let G = {ln = 2
n
2 n|n ∈ N}. Define A : G × G → Pm by A (l, q) =

(
|l − q|2

)m

1
, then

(G,A, s = 2) is a vector-valued b-metric space. Define the mapping φ : G → G by

φ(l) =

{
2

n−1
2 (n − 1) if l = ln;

l0 if l = l0.

Take (1)m
1 = I � 0 and define F : Pm → Rm by F

(
(gi)m

i=1
)

= (gi)m
i=1. Then for every l, q ∈ G such that

φ(l) , φ(q), we have
F (2 � A(φ(l), φ(q))) 	 F (A(l, q)) � 	I.

Indeed for l = ln+k and q = ln, consider

2 � A(φ(ln+k), φ(ln)) 	 A(ln+k, ln)

=

((
2

n+k
2 (n + k − 1) − 2

n
2 (n − 1)

)2
−

(
2

n+k
2 (n + k) − 2

n
2 (n)

)2
)m

1

=
(
2n

(
1 − 2

k
2
) (

2
k
2 (2n + 2k − 1) − (2n − 1)

))m

1
≤ (−1)m

1 = 	 (1)m
1 .

Also we see that F ∈ Πb
s . Indeed, for F

(
(gi)m

i=1
)

= (gi)m
i=1, axioms (AF1) and (AF3) hold. For axiom

(AF4), we proceed as follow: let I ⊕ F
(
s �

(
g(i)

n

)m

i=1

)
� F

((
g(i)

n−1

))m

i=1
that is 1 + `g(i)

n ≤ g(i)
n−1 for each

i ∈ {1, 2, · · · ,m}. Now consider

I ⊕ F
(
`n �

(
g(i)

n

)m

i=1

)
= I ⊕ `n �

(
g(i)

n

)m

i=1

= I ⊕ `n−1 �
(
`g(i)

n

)m

i=1
� I ⊕ `n−1 �

(
g(i)

n−1 − 1
)m

i=1

= 1 + `n−1g(i)
n−1 − `

n−1 = 1 − `n−1 + `n−1g(i)
n−1 for each i

�
(
`n−1g(i)

n−1

)m

i=1
= F

(
`n−1 �

(
g(i)

n−1

)m

i=1

)
.

This shows that for I = (1)m
1 , φ is an F-contraction.

Remark 4.4. We observe that the function αs (defined in [34]) is superficial because we can always

have a function β : G ×G → [0,∞) defined by β(l, q) =
αs(l, q)

s2 with following properties:

(1) (φ is β-admissible)

β(l, q) ≥ 1 implies β(φ(l), φ(q)) ≥ 1 for all l, q ∈ G,

(2) the αs-completeness implies β-completeness and vice versa.

Definition 4.5. Let G be a non-empty set and β : G ×G → [0,∞). The function φ : G → G is said to
be β-admissible if

β(l, q) ≥ 1 implies β(φ(l), φ(l)) ≥ 1 for all l, q ∈ G and

triangular β-admissible if in addition β follows:

β(l, j) ≥ 1, β( j, q) ≥ 1, imply β(l, q) ≥ 1.

AIMS Mathematics Volume 8, Issue 10, 23871–23888.
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Definition 4.6. Let (G,A, s) be a vector-valued b-metric space and let β : G ×G → [0,∞). Let l ∈ G
and sequence {ln} ⊆ G. A mapping q : G → G is a β-continuous at l = l0, if whenever,

lim
n→∞

A(ln, l) = 0 and β(ln, ln+1) ≥ 1 we have lim
n→∞

A(q(ln), q(l)) = 0.

Example 4.7. Let G = [0,∞) and define A : G ×G → Rm
0 by

A(l, q) =
(
|H|2, |H|3, · · · , |H|m+1

)
∀ l, q ∈ G,

where H = |l − q|, and let q : G → G be defined by

q(l) =

{
sin(πl) if l ∈ [0, 1];
cos(πl) + 2 if l ∈ (1,∞),

β(l, q) =

{
l + q + 1 if l, q ∈ [0, 1];
0 otherwise.

Obviously, q is not continuous at l0 = 1, however, q is a β-continuous mapping at this point. Indeed,
the assumption limn→∞A(ln, l0) = 0 leads us to choose ln = 1 − 1

n ⊆ [0, 1] and β(ln, ln+1) ≥ 1 directs to
choose [0, 1] as domain of mapping q. Thus,

lim
n→∞
|q(ln) − q(l)|i = lim

n→∞

(
sin

(
π

(
1 −

1
n

)))i

= 0 for each i; 2 ≤ i ≤ m + 1.

Hence limn→∞A(q(ln), q(l)) = 0.

Definition 4.8. If an arbitrary Cauchy sequence {ln} ⊆ G satisfying β(ln, ln+1) ≥ 1 converges in G, the
space (G,A, s) is called β-complete.

Remark 4.9. Every complete vector-valued b-metric space is a β-complete vector-valued b-metric
space but not conversely.

Look at the following example.

Example 4.10. Let G = (0,∞) and define the vector-valued b-metric A : G ×G → Rm
0 by

A(l, q) =
(
|H|2, |H|3, · · · , |H|m+1

)
for all l, q ∈ G,

where H = |l − q|. Define β : G ×G → [0,∞) by

β(l, q) =

{
l2 + q2 if l, q ∈ [2, 5];
0 if not in [2, 5].

We observe that the space (G,A, s) is not a complete but it satisfies β-completeness criteria. Indeed, if
{ln} is a Cauchy sequence in G such that β(ln, ln+1) ≥ 1, for all n ∈ N, then ln ∈ [2, 5]. Since [2, 5] is a
closed subset of R, so, there exists l ∈ [2, 5] such that A(ln, l) → 0 as n → ∞. Hence (G,A, 2m) is a
β-complete vector-valued b-metric space.

Definition 4.11. If an arbitrary sequence {ln} ⊂ G satisfies the condition:

β(ln, ln+1) ≥ 1 and A(ln, l)→ 0⇒ β(ln, l) ≥ 1,

∀ n ∈ N. Then the space (G,A, s) is known as β -regular space.
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Let G = [2, 5] and define vector-valued b-metric as in Example 3.2 and β as in Example 4.10. Let
ln = 2 + 3

n be nth term of a sequence in G. Then (G,A, s) is a β-regular space.

Definition 4.12. Let there exists F ∈ Πb
s and I � 0 (G,A, s), the mapping T : G → G is said to be a

(β,F)-contraction, if it satisfies the following inequality:

A(T (l),T (q)) � 0∀l, q ∈ G, β(l, q) ≥ 1 imply

I ⊕ F(sβ(l, q) � A(T (l),T (q)) � F(A(l, q)). (4.2)

Remark 4.13. Every F-contraction is (β,F)-contraction but not conversely. For β(l, q) = 1, we have
(s,F)-contraction

Suzuki [35] established the following lemma.

Lemma 4.14. [35] If there is a number C > 0 such that the sequence {xn} ⊂ (G, d) satisfies the
inequality:

d(xn, xn+1) ≤ Cn−ν for every ν > 1 + log2 s.

Then {xn} is a Cauchy sequence.

Now we have another lemma that extends the Lemma 4.14.

Lemma 4.15. If there is a number C > 0 such that the sequence {xn} ⊂ (G,A, s) satisfies the inequality:

A(xn, xn+1) �
(
Cn−ν

)m
1 for every ν > 1 + log2 s and for every positive integer n.

Then {xn} is a Cauchy-sequence.

Proof. Let G be any non-empty set and s = max{si : 1 ≤ i ≤ m}. Let di : G × G → [0,∞) be a
b-metric for every i ∈ {1, 2, 3, · · · ,m}and si ≥ 1. Define the vector-valued b-metric A by

A(q, t) = (di(q, t))m
i=1 for all q, t ∈ G.

Let {xn} be a sequence in G and assume that

A(xn, xn+1) �
(
Cn−ν

)m
1 for every ν > 1 + log2 s and for every n ∈ N.

Then, by definition of partial order � defined by (2.1), we have for each i

di(xn, xn+1) ≤ Cn−ν for every ν > 1 + log2 si and for every n ∈ N.

Since Lemma 4.14 does not depend on a particular b-metric, therefore, Lemma 4.14 can be applied for
each di (1 ≤ i ≤ m). Thus, {xn} is a Cauchy sequence with respect to every di (1 ≤ i ≤ m). Thus,

di(xn, xm)→ 0 as n,m→ ∞ for each i.

This leads us to write that

A(xn, xm)→ (0, 0, · · · , 0) = O as n,m→ ∞.

Hence {xn} is a Cauchy-sequence in (G,A, s). �

AIMS Mathematics Volume 8, Issue 10, 23871–23888.



23880

Now we have an analogue of Lemma 4.15 subject to F contraction.

Lemma 4.16. Let {Dn} be a sequence in Pm where Dn := ( j(i)
n )m

i=1. Assume that there exist a mapping
F : Pm → Rm, I = (τi)m

i=1 � O and k ∈ (0, `) : ` = 1/1 + log2 s satisfying (AF3) and the following:

n � I ⊕ F (sn � Dn) � F (D0) . (4.3)

Then Dn �
(
Cn−

1
k

)m

1
.

Proof. The inequality (4.3) implies limn→∞ F (sn � Dn) = (−∞)m
1 and by Lemma 3.7, we get limn→∞ sn�

Dn = 0. By (AF3),

lim
n→∞

(sn j(i)
n )kϑ(i)

n = 0 for each i ; F(sn � Dn) := (ϑ(i)
n )m

i=1 ∈ R
m.

By (4.3), we also have the following information for each i.(
sn j(i)

n

)k
ϑ(i)

n − (sn j(i)
n )kϑ(i)

0 ≤ −
(
sn j(i)

n

)k
nτi ≤ 0. (4.4)

As n→ ∞ in (4.4), we have
lim
n→∞

n
(
sn j(i)

n

)k
= 0 for each i.

Equivalently there exists a positive integer N1 such that n
(
sn j(i)

n

)k
≤ 1 for n ≥ N1. It then follows for

each i that
sn j(i)

n ≤
1

n
1
k

⇒ j(i)
n ≤

1
sn n−

1
k ≤

1
s

n−
1
k .

This implies j(i)
n ≤ Cn−

1
k for n ≥ N1 and for each i, where C = s−1. Hence Dn �

(
Cn−

1
k

)m

1
. �

Now we give main theorem of this paper.

Theorem 4.17. Let there exists l0 ∈ G such that β(l0, f (l0)) ≥ 1, then, every β-admissible (β,F)-
contraction f : G → G defined on the β-complete vector-valued b-metric space (G,A, s) admits a
fixed point provided it is β-continuous on (G,A, s) or (G,A, s) is a β-regular space with additional
assumption that F is continuous.

Proof. (a) Let l0 ∈ G be as assumed and construct a Picard iterative-sequence {ln} of points in G such
that, l1 = f (l0), l2 = f (r1) and generally ln = f (ln−1). Given β(l0, f (l0)) = β(l0, l1) ≥ 1 and f is
β-admissible, so, β( f (l0), f (l1)) ≥ 1 i.e β(l1, l2) ≥ 1. This leads to a general formula β(ln), ln+1) ≥ 1
for all non-negative integers n. If A(ln, ln+1) = 0, then ln = ln+1 = f (ln) as required. (Step 1) Let
An = A(ln, ln+1) � 0 and since β(ln, ln+1) ≥ 1 for all non-negative integers n, so, by contractive condition
(4.1), we get

F (s � A ( f (ln−1), f (ln))) � F (sβ(ln−1, ln) � A( f (ln−1), f (ln)))

� F (An−1) 	 I.

This implies
I ⊕ F (s � An) � F (An−1) . (4.5)
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Due to (AF4), inequality (4.5) implies

I ⊕ F (sn � An) � F
(
sn−1 � An−1

)
. (4.6)

(Step 2) Let An−1 = A(ln−1, ln) � 0 and since β(ln−1, ln) ≥ 1 for all positive integers n, so, by contractive
condition (4.1), we get

F (s � A ( f (ln−2), f (ln−1))) � F (sβ(ln−2, ln−1) � A( f (ln−2), f (ln−1)))

� F (An−2) 	 I.

This implies
I ⊕ F (s � An−1) � F (An−2) . (4.7)

The condition (AF4) in association with (4.7) implies

I ⊕ F
(
sn−1 � An−1

)
� F

(
sn−2 � An−2

)
.

Thus, inequality (4.6) leads to have a new inequality:

F (sn � An) � F
(
sn−2 � An−2

)
	 2 � I.

Finally, Step n provides the following inequality:

F (sn � An) � F (A0) 	 n � I, for all positive integers n. (4.8)

By Lemma 4.16, {An} �
(
Cn−

1
k

)m

1
. Since 1

k > 1 + log2 s, so, by Lemma 4.14, {ln} is a Cauchy sequence
in β-complete vector-valued b-metric space (G,A, s). Thus, there exists (say) l∗ ∈ G such that
limn→∞A(ln, l∗) = 0. As, β(ln, ln+1) ≥ 1 for all non-negative integers, so, by the β-continuity of f , we
have

lim
n→∞

A( f (ln), f (l∗)) = lim
n→∞

A(ln+1, f (l∗)) = 0f .

Since (G,A, s) is not continuous in general, by Lemma 3.4, we have

1
s
� A(l∗, f (l∗)) � lim

n→∞
inf A(ln+1, f (l∗)) = lim

n→∞
A(ln+1, f (l∗)) = 0f .

This implies that A(l∗, f (l∗)) = 0f and by axiom (A1) of vector-valued b-metric, we get l∗ = f (l∗).
Hence, f admits a fixed point l∗.
(b) Case 1. If there exists a subsequence {lni} of {ln} such that lni = f (l∗) for all positive integers i, then,
l∗ = limi→∞ lni = limi→∞ f (l∗) = f (l∗). As required.

Case 2. Let there is no such subsequence of {ln} as in Case 1. We have proved in part (a) that
limn→∞A(ln, l∗) = 0, equivalently, ∃ K0 ∈ N such that for all n ≥ K0, A( f (ln), l∗) � A(l∗, f (l∗)). Since
(G,A, s) is β-regular, thus, β(ln, l∗) ≥ 1. By contractive condition (4.1) and monotonicity of F , we have

I ⊕ F(s � A(ln+1, f (l∗))) � I ⊕ F(sβ(ln, l∗) � A( f (ln), f (l∗)))
� F (A(ln, l∗)) � F (A(l∗, f (l∗))) . (4.9)
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We are looking for A(l∗, f (l∗)) = 0, aiming at contradiction, suppose on contrary that A(l∗, f (l∗)) � 0.
By Lemma 3.4, monotonicity and continuity of F, we have

I ⊕ F(A(l∗, f (l∗))) � I ⊕ F(s � lim
n→∞

inf A(ln+1, f (l∗))

= I ⊕ lim
n→∞

inf F(s � A(ln+1, f (l∗))

� F (A(l∗, f (l∗))) by (4.9).

This is a contradiction to I � 0. Thus, A(l∗, f (l∗)) = 0. Finally, by axiom A1, we obtain l∗ = f (l∗). �

Remark 4.18. Additionally, if g∗ is also a fixed point of f such that β(l∗, g∗) ≥ 1, then f admits a
unique fixed point.

Now we explain the hypothesis of the above theorem with an example.

Example 4.19. Let G = [0,∞) and define the mapping A : G ×G → Rm
0 by

A(l, q) =
(
|H|2, |H|3, · · · , |H|m+1

)
for all l, q ∈ G,

where H = |l − q|. Define β : G ×G → [0,∞) by

β(l, q) =

{
K iff l ≥ q (K ∈ [1,∞));
0 otherwise.

so that (G,A, s) is a β-complete vector-valued b-metric space with s = 2m. Define the mapping f : G →
G, for all l ∈ G by

f (l) = ln
(
1 +

l
6

)
. Then,

f is β-continuous self-mapping: Indeed, consider the sequence ln = K
n2 for all positive integers n. As,

K
n2 ≥

K
(n+1)2 , so, β(ln, ln+1) ≥ 1 and limn→∞A(ln, l) = 0 implies (l2, l3, · · · , lm+1) = 0. This is true for l = 0.

Now lim
n→∞

A( f (ln), f (l)) = lim
n→∞

((
ln

(
1 +

K
6n2

))i)m+1

i=2
= 0 f .

Thus, whenever β(ln, ln+1) ≥ 1 and limn→∞A(ln, l) = 0, we have limn→∞A( f (ln), f (l)) = 0 f .
f is β-admissible mapping: Indeed, let β(l, q) ≥ 1, then, l ≥ q, thus, we have ln

(
1 + l

6

)
≥ ln

(
1 +

q
6

)
i.e

β( f (l), f (q)) ≥ 1. Also let l0 = 1, f (l0) = ln
(

7
6

)
. As, l0 ≥ f (l0), so, β(l0, f (l0)) ≥ 1.

Finally, for each l, q ∈ G with l ≥ q and choosing K such that ` > sK
6i (2 ≤ i ≤ m + 1), we have for

∆ f = | f (l) − f (q)|

(
sβ(l, q)|∆ f |

i + 1
)m+1

i=2
=

sK

∣∣∣∣∣∣ln
(
1 +

l
6

)
− ln

(
1 +

q
6

)∣∣∣∣∣∣i + 1

m+1

i=2

�

sK
(

l
6
−

q
6

)i

+ 1
m+1

i=2

=

( sK
6i (l − q)i + 1

)m+1

i=2
.

Thus, sβ(l, q)|∆ f |
i + 1 ≤

sK
6i (l − q)i + 1 for each i.
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This implies, ln
(

6i

sK

)
+ ln

(
sβ(l, q)|∆ f |

i + 1
)
≤ ln

(
(l − q)i + 1

)
for each i.

So that,
(
ln

(
6i

sK

))m+1

i=2
⊕

(
ln

(
sβ(l, q)|∆ f |

i + 1
))m+1

i=2
�

(
ln(l − q)i + 1

)m+1

i=2
.

Let F : Rm
+ → R

m be defined by F(v) = (ln(xi + 1))m
i=1, for all v = (xi)m+1

i=2 ∈ R
m
+ , then F ∈ Πb

s (as shown

in Section 2). Thus, for all l, q ∈ G such that A( f (l), f (q)) � 0, I =
(
ln

(
6i

sK

))m+1

i=2
we obtain

I ⊕ F (sβ(l, q) � A( f (l), g(q))) � F (A(l, q)) .

Note that f has a unique fixed point l = 0.

Corollary 4.20. Let A : G × G → R4
0 and (G,A, s) be a β-complete vector-valued b-metric space. If

f : G → G be a continuous self-mapping satisfying the inequality:

s3 � A( f (l), f (q))) � Q � A(l, q), (4.10)

∀ l, q ∈ G, τ > 0 be such that e−τ ∈
(
0,

1
1 + log2 s

)
. Then f has a unique fixed point in G.

Proof. Define F : R4
+ → R

4 by F(v) = (ln(vi))4
i=1 and mapping β by β(l, q) = s2 ∀ l, q ∈ G in the proof

of Theorem 4.17 and Q =


e−τ 0 0 0
0 e−τ 0 0
0 0 e−τ 0
0 0 0 e−τ

 . Then the inequality (4.10) reduces to (4.1) and f

has a unique fixed point in G. �

Note that for s = 1, Corollary 4.20 represents the Perov’s fixed point theorem [29].

5. Application of Theorem 4.17

Perov [29], presented some applications of his fixed point theorem to Cauchy problems for the
system of ordinary differential equations and respectively, to the boundary value problems. Here we
will see that Theorem 4.17 is also applicable to the following delay integro-differential problem:

l(t) =

∫ t

t−L
f (h, l(h), l

′

(h)) dh. (5.1)

The Eq (5.1) generalizes the following delay-integral-equation:

l(t) =

∫ t

t−L
f (h, l(h)) dh. (5.2)

The model for the spread of a few infectious diseases with a seasonally variable contact rate is
represented by the Eq (5.2), where

(a) l(t) : The prevalence of infection at time t in the population.
(b) 0 < L : The amount of time a person can still spread disease.
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(c) l
′

(t) : The current rate of infectivity.
(d) f (t, l(t), l

′

(t)) : The rate of newly acquired infections per unit of time.

Now we look for existence and uniqueness of the positive, periodic solution to (5.1) by the application
of Theorem 4.17.

Let ∃ p > 0 and f ∈ C(R × R+ × R) satisfying

f (t + p, l, q) = f (t, l, q)∀ (t, l, q) ∈ R × R+ × R.

Let us define the functional spaces by

F (p) = {l ∈ C1(R) : l(t + p) = l(t) t ∈ R}.

F+(p) = {l ∈ F (p) : l(t) ≥ 0 t ∈ R}.

Let V = F+(p) × F (p), define a metric A : V × V → R2 by

A((l1, q1), (l2, q2)) = (‖l1 − l2‖
2 , ‖q1 − q2‖

2),

where, ‖l‖ = max{|l(t)| : t ∈ [0, p], l ∈ F (p)}. The function β : V × V → [1,∞) defined by
β(l, q) = K2 for all l, q ∈ V . Then (V,A, s) is a β-complete vector-valued b-metric space. Now we
develop the structure to apply Theorem 4.17. Let g(t) = l

′

(t), then, we have

g(t) = f (t, l(t), g(t)) − f (t − L, l(t − L), g(t − L)).

Thus, Eq (5.1) can be written as:
l(t) =

∫ t

t−L
f (h, l(h), g(h)) dh

g(t) = f (t, l(t), g(t)) − f (t − L, l(t − L), g(t − L)).

Let Y : V → C(R) ×C(R) be a mapping defined by

Y(l, q) = (Y1(l, q),Y2(l, q) for all (l, q) ∈ V,

where Y1 and Y2 are defined by the following matrix equation:
Y1(l, q)(t)

Y2(l, q)(t)

 =


∫ t

t−L
f (h, l(h), q(h)) dh

f (t, l(t), q(t)) − f (t − L, l(t − L), q(t − L))

 .
We need to assume the following conditions about function f :

(I1) f ∈ C(R × R+ × R) and there exists N1,N2 ≥ 0 such that

N1 ≤ f (t, l, q) ≤ N2 for all (t, l, q) ∈ R × R+ × R;

(I2) f ∈ C(R × R+ × R) follows the equation:

f (t + p, l, q) = f (t, l, q); p > 0;
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(I3) there exist ω,K > 0 so that ∀t ∈ R, l(t), u(t) ∈ R+ and q(t), ε(t) ∈ R

| f (t, l(t), q(t)) − f (t, u(t), ε(t))| ≤
e−ω

sK
|l(t) − u(t)| ,

(I4) there exists l0 ∈ V such that β(l0,Y(l0)) = K2.

By the assumption of I1, we infer that

N1L ≤ Y1(l, q)(t) ≤ N2L for all t ∈ R and (l, q) ∈ V.

Theorem 5.1. Let the function f ∈ C(R ×R+ ×R) satisfies conditions (I1) − (I4) and e−2ω

s2K2 <
1

4+L2 , then,
Eq (5.1) admits a solution in F+(p).

Proof. We note that the conditions (1) and (2) of Theorem 4.17 can be verified by using (I4) and
continuity of f respectively. In the following, we prove the contractive condition (4.2). By definition,

Y1(l, q)(t + p) =

∫ t+p

t+p−L
f (h, l(h), q(h)) dh

=

∫ t

t−L
f (u − p, l(u − p), q(u − p)) du

=

∫ t

t−L
f (u − p + p, l(u − p + p), q(u − p + p)) du

=

∫ t

t−L
f (u, l(u), q(u)) du

= Y1(l, q)(t) for all t ∈ R, (l, q) ∈ F.

This shows Y1(V) ⊆ F+(p). Similarly, we have Y2(V) ⊆ F+(p). Let (l1, q1), (l2, q2) ∈ V and consider

|Y1(l1, q1)(t) − Y1(l2, q2)(t)|2

=

∣∣∣∣∣∣
∫ t

t−L
f (h, l1(h), q1(h)) dh −

∫ t

t−L
f (h, l2(h), q2(h)) dh

∣∣∣∣∣∣2
≤

(∫ t

t−L
| f (h, l1(h), q1(h)) − f (h, l2(h), q2(h))| dh

)2

≤

(∫ t

t−L

(
e−ω

sK
(|l1(h) − l2(h)|)

)
dh

)2

≤
e−2ωL2

s2K2 ‖l1 − l2‖
2

and

|Y2(l1, q1)(t) − Y2(l2, q2)(t)|2

=

∣∣∣∣∣∣ f (t, l1(t), q1(t)) − f (t − L, l1(t − L), q1(t − L))−
f (t, l2(t), q2(t)) + f (t − L, l2(t − L), q2(t − L))

∣∣∣∣∣∣2
≤

(
| f (t, l1(t), q1(t)) − f (t, l2(t), q2(t))|+
| f (t − L, l1(t − L), q1(t − L)) − f (t − L, l2(t − L), q2(t − L))|

)2
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≤

(
e−ω

sK
(|l1(t) − l2(t)|) +

e−ω

sK
(|l1(t − L) − l2(t − L)|)

)2

≤
4e−2ω

s2K2 ‖l1 − l2‖
2 .

Consequently, we obtain the following matrix inequality:(
‖Y1(l1, q1) − Y1(l2, q2)‖2

‖Y2(l1, q1) − Y2(l2, q2)‖2

)
�

 e−2ωL2

s2K2 ‖l1 − l2‖
2

4e−2ω

s2K2 ‖l1 − l2‖
2


=

 e−2ωL2

s2K2 0
0 4e−2ω

s2K2

 (‖l1 − l2‖
2

‖l1 − l2‖
2

)
.

Now define the mappings F : R2
+ → R

2 by F(l, q) = (ln(l), ln(q)) and I =
(

s
e−2ωL2 ,

s
4e−2ω

)
, we obtain

I ⊕ F (sβ((l1, q1), (l2, q2)) � A(Y(l1, q1),Y(l2, q2))) � F (A((l1, q1), (l2, q2))) .

Finally, keeping in mind the definition of mapping β and above inequality, we say that the mapping Y
satisfies all the requirements of Theorem 4.17 and hence, admits a fixed point in its domain.
Consequently, the Eq (5.1) has a positive, periodic solution. �

6. Conclusions

The findings and analyses discussed here could inspire further investigation into this topic by
interested academics. A fundamental finding in vector-valued b-metric space, the main result
(Theorem 4.17), concerns F-contraction in vector-valued b-metric spaces. In order to demonstrate the
presence of solutions to various linear and nonlinear equations reflecting models of the associated
real-world issues, the application approach is also discussed.
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