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Discovering new drugs for disease treatment is challenging, requiring a
multidisciplinary effort as well as time, and resources. With a view to improving
hit discovery and lead compound identification, machine learning (ML)
approaches are being increasingly used in the decision-making process.
Although a number of ML-based studies have been published, most studies
only report fragments of the wider range of bioactivities wherein each model
typically focuses on a particular disease. This study introduces FP-MAP, an
extensive atlas of fingerprint-based prediction models that covers a diverse
range of activities including neglected tropical diseases (caused by viral,
bacterial and parasitic pathogens) as well as other targets implicated in
diseases such as Alzheimer’s. To arrive at the best predictive models,
performance of ≈4,000 classification/regression models were evaluated on
different bioactivity data sets using 12 different molecular fingerprints. The best
performing models that achieved test set AUC values of 0.62–0.99 have been
integrated into an easy-to-use graphical user interface that can be downloaded
from https://gitlab.com/vishsoft/fpmap.
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1 Introduction

Development of therapeutic drugs is an expensive affair with expected costs ranging
from $1 billion to more than $2 billion (Schlander et al., 2021) depending on the therapeutic
area and disease complexity. The molecular universe is very large with some estimates
placing their number at over 1060 different drug-like molecules (Reymond and Awale, 2012).
There now exist virtual databases such as SAVI (Patel et al., 2020), ZINC (Irwin et al., 2020),
ENAMINE (Sadybekov et al., 2021) and the GDB (Reymond and Awale, 2012), that contain
hundreds-of-millions to billions of diverse molecules that can be queried to find novel
molecules of interest. Since making and testing all the interesting compounds is out of
question, there is a need to weed out molecules that are not relevant to drug discovery,
i.e., exclude those that exhibit less than acceptable biological activity. However, despite recent
efforts (Gorgulla et al., 2020; Bender et al., 2021; Glaser et al., 2021; Gentile et al., 2022;
Luttens et al., 2022) reliable simulationmethods for large scale activity prediction still remain
elusive.

To circumvent some of the challenges, machine learning (ML) approaches are being
increasingly used for the prediction of biological activities (Cova and Pais, 2019; Lane et al.,
2020; Elbadawi et al., 2021). Here, a wide variety of ML algorithms are trained to identify
quantitative structure-activity relationships (Wu et al., 2020; Pillai et al., 2022) that are then
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used to generate predictions that are subsequently used to select the
next screening subset, thereby facilitating more efficient use of time
and resources (Dreiman et al., 2021; Graff et al., 2021). Key to the
success of the models is the quality and amount of data, the
molecular representation and the ML method. Although
annotated data remains limited, public databases such as
ChemBL (Gaulton et al., 2016) and concerted efforts to make
data open access (Capuzzi et al., 2017; Wu et al., 2018; Kexin
Huang, 2020) have spawned a number of machine learning
projects (Mayr et al., 2018; Lane et al., 2020). Molecular
representation plays a crucial role in machine learning and is
problem-specific (David et al., 2020; Raghunathan and
Priyakumar, 2021) with popular choices being fingerprints (bit
string indicating absence/presence of features), molecular graphs
(network of nodes and edges) and molecular embeddings (Jaeger
et al., 2018). While a wide array of ML algorithms have been
employed, there is no clear winner, although ensemble learning
has been shown to yield good results across many data sets (Wu
et al., 2020; Sabando et al., 2021).

To help researchers ease their way into drug discovery and
carry out screening experiments, automated ML platforms and
web-based tools have gained significant traction in recent years
(Liu et al., 2019; Singh et al., 2020; Togo et al., 2022). While a
great number of software and web tools are devoted to
physicochemical properties, ADMET and ADMET-related
filtering (Venkatraman, 2021; Xiong et al., 2021), prediction
software that cover a broad range of biological activities are
relatively fewer (Scotti et al., 2022). In many cases, the prediction
software are limited to a single disease or class and largely operate

as online prediction services that are not easily amenable to large
scale screening (see Table 1 for a short summary of recently
published software tools that provide online prediction services).
Furthermore, in spite of a large number of published models, only
a few are publicly accessible while many are part of proprietary
collections (Ma et al., 2015; Aleksić et al., 2021).
Cheminformatics web services and software for bioactivity
prediction is indeed growing (Ruusmann et al., 2015) and a
great many software and services such as VCCLab (Tetko
et al., 2005) and DPubchem (Soufan et al., 2018) offer a
platform for calculations of a comprehensive series of
molecular properties and data analysis. Other services such as
AssayCentral (www.collaborationspharma.com/assay-central)
focus on allowing pharmaceuticals or individuals to leverage
their internal databases. In a recent study, over 5,000 machine
learning models built from data sets extracted from ChemBL
have been made available on the AssayCentral platform (Lane
et al., 2020).

This article presents FP-MAP, a fast fingerprint-based
bioactivity prediction tool to help identify active molecules for a
number of pharmaceutically relevant targets. In particular FP-MAP
sets out to assemble predictive models for diseases and targets for
which there are currently no publicly available software. In order to
build the models, 12 different fingerprints were trialled and the best-
performing models (based on 5-fold cross-validated statistics) were
retained. A pre-assessment step was carried out wherein the
predictive ability of the fingerprint models was found to be
comparable or an improvement over previously reported results
for multiple data sets. For the different classification models

TABLE 1 Table lists several open access software for drug activity prediction.

Software Description Distribution

HergSPred (Zhang et al., 2022b) hERG Blockers/Nonblocker Web

MolPredictX (Scotti et al., 2022) predictions for 27 diseases Web

mycoCSM (Pires and Ascher, 2020) screen hits against Mycobacteria Web

pdCSM-PPI (Rodrigues et al., 2021) Protein-Protein Interaction Inhibitors Web

pdCSM-GPCR (Velloso et al., 2021) GPCR inhibitors Web

cardioToxCSM (Iftkhar et al., 2022) Cardiotoxicity Web

pdCSM-cancer (Al-Jarf et al., 2021) Cancer drugs Web

ChemBC (He et al., 2021) Breast Cancer Web/Standalone

ChemTB (Ye et al., 2021) Mycobacterium tuberculosis Web

MAIP (Bosc et al., 2021) blood-stage malaria inhibitors Web

S2DV (Shao et al., 2022) anti-hepatitis B drug screening Web

HRGCN (Wu et al., 2021a) Toxicity, HIV and BACE inhibitor Web

MolPMoFiT (Tinivella et al., 2021) HIV and BBB penetration Standalone

HIVprotI (Qureshi et al., 2018) HIV protein inhibitors Web

EBOLApred (Adams et al., 2022) Ebola virus cell entry inhibitors Web

embryoTox (Aljarf et al., 2023) Teratogenicity of Small Molecules Web

InflamNat (Zhang et al., 2022a) anti-inflammatory drug screening Web
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computed for severely imbalanced data sets, moderate to high area
under the ROC curve (AUC) values of 0.61–0.95 were obtained. FP-
MAP currently offers 24 different classification models for rapid
screening of compounds against a number of diseases caused by
bacteria and parasites such as schistosomiasis, cholera and malaria
as well as other targets implicated in diseases such as Alzheimer’s,
cancer and cardiomyopathy. To facilitate the use of the models, the
software has been made available as an easy to use graphical user
interface and can be accessed from https://gitlab.com/vishsoft/
fpmap.

2 Materials and methods

2.1 Data sets studied

In order to assess the predictive ability of the fingerprint-based
machine learning models, multiple data set were analysed. A set of
79 pharmacologically important biological targets were initially used
as a means to benchmark performance, proceeding which model
performance was assessed on more challenging targets that are
described briefly in the following sections.

TABLE 2 Molecular fingerprints used for predictive modelling.

Fingerprint Group Size (bits)

ECFP2 Rogers and Hahn (2010); Willighagen et al. (2017) Circular 1,024

ECFP4 (Rogers and Hahn, 2010; Willighagen et al., 2017) Circular 1,024

ECFP6 (Rogers and Hahn, 2010; Willighagen et al., 2017) Circular 1,024

FCFP2 (Rogers and Hahn, 2010; Willighagen et al., 2017) Circular 1,024

FCFP4 (Rogers and Hahn, 2010; Willighagen et al., 2017) Circular 1,024

FCFP6 (Rogers and Hahn, 2010; Willighagen et al., 2017) Circular 1,024

MACCS (Durant et al., 2002) Substructure 166

PUBCHEM (NCBI, 2009; Willighagen et al., 2017) Substructure 881

AVALON (Landrum, 2022) Substructure 1,024

RDK5 (Landrum, 2022) Path 1,024

RDK6 (Landrum, 2022) Path 1,024

RDK7 (Landrum, 2022) Path 1,024

For the extended connectivity fingerprints (ECFP) and functional class fingerprints (FCFP), the values of 2, 4, and 6 indicate the diameters of the atom neighbourhoods. For RDKit fingerprints

the values of 5, 6, and 7 indicate the size (in bonds) of the paths considered.

FIGURE 1
Plot shows the average AUC values for each fingerprint model averaged over 6 cardiac toxicity related outcomes. Error bars indicate the variability
(standard deviation) of the obtained AUCs. Individual prediction performances of the models can be seen in Supplementary Figuree S3 in the SI.
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2.1.1 Chemical toxicology
The toxicology data set includes 79 pharmacologically

important biological targets (see Supplementary Table S1 in the
SI). The compounds were extracted from ChemBL and ToxCast and
were categorized as binders if the reported activities against the
human protein targets (Ki/Kd/IC50/EC50) were ≤10 μM and as non-
binders if activities were > 10 μM (Allen et al., 2020). For the data
sets, deep learning neural networks yielded test data accuracies of
92% ± 4%.

2.1.2 ExcapeDB
The ExcapeDB (Sun et al., 2017) database comprises activity

data of chemical compounds on an array of protein targets. The data
were extracted from publicly available databases such as PubChem
and ChEMBL. A set of 12 gene targets were evaluated in this study.

2.1.3 PubChem
An important source of data is the PubChem Bioassay (Kim

et al., 2022) which contains small-molecule screening data. This
study analyses multiple data sets drawn from the PubChem archive
where the focus is primarily on rare diseases related to genetic
disorders and neglected tropical diseases.

2.1.3.1 Bubonic plague
YopH (Yersinia outer protein H) is a protein essential for the

virulence of yersinia pestis (Bubonic plague). The data set consists of
~140,000 compounds that were part of a high throughput screening
assay (https://pubchem.ncbi.nlm.nih.gov/bioassay/898) to identify
compounds that can interfere with YopH functionality. Actives were
defined as those with inhibition ≥50%.

2.1.3.2 Potassium channel blockers
The KCNQ1 (Potassium Voltage-Gated Channel Subfamily Q

Member 1) gene codes for the potassium channel protein which is
critical for electrical signaling in cells. In an effort to identify
compounds that inhibit KCNQ1 potassium channels, a little over
300,000 compounds were assayed (https://pubchem.ncbi.nlm.nih.
gov/bioassay/2642).

2.1.3.3 Trypanosoma brucei hexokinase
Trypanosoma brucei is a protozoan parasite that causes African

sleeping sickness. Glucose metabolism is essential for the parasite,
and hexokinases have been considered as important therapeutic
targets. The data set consists of a little over 220,000 compounds
(https://pubchem.ncbi.nlm.nih.gov/bioassay/1430) where the goal
was to identify specific inhibitors of Trypanosoma brucei
hexokinase activity (Morris et al., 2006). Compounds with more
than 50% inhibition are considered to be active.

2.1.3.4 Antimalarials
The MMV St. Jude malaria data set (Verras et al., 2017) contains

a set of 305,810 compounds that were assayed for malaria blood
stage inhibitory activity.

2.1.3.5 Leishmania
Leishmaniasis is a neglected disease caused by protozoan

parasites. Currently no safe vaccines exist. The data set
earlier studied by Casanova-Alvarez et al. (2021), includes
~ 196,000 compounds that have been tested for leishmania
parasite growth and viability inhibition against Leishmania
major promastigotes.

FIGURE 2
Plot shows the average BACC values for each fingerprint model averaged over 14 breast cancer cell lines. Error bars indicate the variability (standard
deviation) of the obtained accuracies. A target-wise summary of the prediction performances of the models can be seen in Supplementary Figure S4 in
the SI.
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2.1.3.6 Activators of kallikrein-7
The chymotrypsin-like serine protease kallikrein-7 (K7)

zymogen has been shown to play critical roles in skin diseases
and tumour progression. K7 expression was significantly decreased
in the brains of Alzheimer’s disease (AD) patients (Kidana et al.,
2018). Compounds that can directly activate K7 without a
requirement for proteolytic processing can enable development of
new therapeutics for cancer, skin diseases, and AD. The data set

contains over 350,000 compounds (https://pubchem.ncbi.nlm.nih.
gov/bioassay/652039).

2.1.3.7 Dengue
Antiviral drugs against dengue infection are much needed with

an estimated 4 billion people living in areas with a risk of dengue
(https://www.who.int/news-room/fact-sheets/detail/dengue-and-
severe-dengue). The data set consists of over 10,000 compounds

TABLE 3 Table summarizes the random forest classification performance for the various data sets studied.

Disease/Target Source #Active/#Inactive Fingerprint BACC (Cal/Val)

Malaria St Jude 2507/303303 FCFP6 0.636/0.640

Kallikrein-7 activator PubChema 3324/365562 RDK5 0.683/0.689

Hepatitis PubChemb 8443/200362 FCFP4 0.594/0.605

VIM2 Inhibitor PubChemc 2575/288127 FCFP4 0.646/0.648

Leishmania PubChemd 17630/178543 FCFP4 0.638/0.647

Schistosomiasis PubCheme 10701/331424 RDK5 0.686/0.706

Potassium Channels PubChemf 3878/301707 RDK5 0.547/0.550

T.Brucei Hexo Kinase PubChemg 239/220096 AVALON 0.536/0.521

Bubonic Plague PubChemh 223/139693 RDK5 0.598/0.572

Vibrio cholerae PubChemi 350/132090 PUBCHEM 0.557/0.578

Dengue PubChemj 318/9920 AVALON 0.532/0.540

Glucocerebrosidase PubChemk 549/45729 FCFP4 0.571/0.547

HSD17B10 ExcapeDB 3408/11510 AVALON 0.592/0.593

KDM4E ExcapeDB 3938/35058 FCFP4 0.553/0.552

TARDBP ExcapeDB 12128/387760 RDK5 0.518/0.510

TDP1 ExcapeDB 23083/276558 AVALON 0.679/0.692

DRD2 ExcapeDB 8323/343206 ECFP2 0.947/0.949

FEN1 ExcapeDB 1041/381446 AVALON 0.556/0.548

GSK3B ExcapeDB 3268/300183 ECFP2 0.843/0.833

HDAC3 ExcapeDB 354/311367 ECFP2 0.864/0.900

JAK2 ExcapeDB 2135/213875 FCFP6 0.851/0.866

LMNA ExcapeDB 14742/171388 AVALON 0.525/0.515

POLK ExcapeDB 823/392317 MACCS 0.623/0.613

ALOX15 ExcapeDB 1925/110264 AVALON 0.592/0.588

The final column shows the mean (repeated 3 times) balanced accuracy achieved for the best performing fingerprint across the calibration (80%) and test sets (20%). See also Figure 3.
ahttps://pubchem.ncbi.nlm.nih.gov/bioassay/652039
bhttps://pubchem.ncbi.nlm.nih.gov/bioassay/651820
chttps://pubchem.ncbi.nlm.nih.gov/bioassay/1527
dhttps://pubchem.ncbi.nlm.nih.gov/bioassay/1063
ehttps://pubchem.ncbi.nlm.nih.gov/bioassay/485364
fhttps://pubchem.ncbi.nlm.nih.gov/bioassay/2642
ghttps://pubchem.ncbi.nlm.nih.gov/bioassay/1430
hhttps://pubchem.ncbi.nlm.nih.gov/bioassay/898
ihttps://pubchem.ncbi.nlm.nih.gov/bioassay/504770
jhttps://pubchem.ncbi.nlm.nih.gov/bioassay/540333
khttps://pubchem.ncbi.nlm.nih.gov/bioassay/360
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(https://pubchem.ncbi.nlm.nih.gov/bioassay/540333) wherein
active compounds showed inhibition of cytopathic effect-based
assay greater than 13.25%.

2.1.3.8 VIM2 inhibitors
Antibiotic resistance caused by β-lactamase production presents

significant challenges to the efficacy of β-lactam antibiotics. Given
the paucity of new antibiotics, high throughput screening assay to
identify inhibitors of the Verona Integron-Encoded Metallo-β-
Lactamase 2 (VIM-2) have been carried out.

2.1.3.9 Cholera
Cholera is acute diarrhoeal disease caused by infection of the

intestine with Vibrio cholerae bacteria. Due to the prevalence of

multi-drug resistance in these bacteria new drugs to combat these
pathogens are required. The data set contains over
130,000 compounds (https://pubchem.ncbi.nlm.nih.gov/bioassay/
504770) of which 350 compounds showed potent cidal activity
against V. cholerae.

2.1.3.10 Schistosomiasis
Caused by parasitic worms (such as Schistosoma mansoni),

Schistosomiasis is prevalent in tropical and subtropical areas
particularly among poor and rural communities with ≈90% of
those requiring treatment living in Africa (https://www.who.int/
news-room/fact-sheets/detail/schistosomiasis). Owing to the
parasite becoming drug resistant and lack of suitable alternative
therapies, new targets and drugs for schistosomiasis treatment are

FIGURE 3
Heatmap of the 5-fold cross validated balanced accuracies (mean of 3 runs) achieved by the different fingerprint models.
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foremost importance. The data set contains over
300,000 compounds tested for inhibition of Thioredoxin
glutathione reductase (https://pubchem.ncbi.nlm.nih.gov/bioassay/
485364). Compounds defined as inconclusive were excluded from
further analysis.

2.1.3.11 Glucocerebrosidase
The deficiency of β-glucocerebrosidase results in Gaucher

disease, a rare genetic disorder for which there is no cure but can
be controlled using drugs. The PubChem assay (https://pubchem.
ncbi.nlm.nih.gov/bioassay/360) screens for small molecule
inhibitors that could potentially act as molecular chaperones on
the mutant forms β-glucocerebrosidase.

2.1.3.12 Leishmania
Available leishmaniasis treatments are limited and increasingly

confronted by issues such as toxic side effects and chemoresistance.
The data set includes close to 200,000 compounds assayed for
Leishmania parasite growth inhibition https://pubchem.ncbi.nlm.
nih.gov/bioassay/1063.

2.2 Molecular fingerprint representations

Molecular fingerprints have a long history of having been used
in similarity searching (Muegge and Hu, 2022). Their popularity can
be largely attributed to their ability to evaluate vast libraries of
compounds using just a fraction of the resources and time
(Venkatraman et al., 2022) that would otherwise be used with
more compute intensive approaches. The fingerprint
representations used in this study can be grouped into:

1. Those based on pre-defined generic substructures/keys (Bender
et al., 2009) such as PUBCHEM (NCBI, 2009), Klekota-Roth
(Klekota and Roth, 2008) and MACCS (Durant et al., 2002)

2. Circular topological fingerprints (Rogers and Hahn, 2010) that
represent molecular structures using circular atom
neighborhoods (defined by a radius). The extended
connectivity fingerprints (ECFP) and feature-class fingerprints
belongs to this group.

3. Topological path-based fingerprints in which linear/branched
paths up to a certain length are enumerated and encoded. Here,
RDKit topological fingerprints (Landrum, 2022) of path sizes 5, 6,
and 7 bonds have been used.

Table 2 provides a summary of the fingerprints used for
predictive modelling. Machine learning models for a total of
12 different fingerprints adapted from a set of fingerprints
studied earlier by Riniker and Landrum (2013) were evaluated.
These fingerprints have been widely used as molecular
representations with applications in similarity searching and
modelling structure-activity relationships (Zagidullin et al., 2021;
Muegge and Hu, 2022; Orosz et al., 2022). The fingerprints were
generated using available routines in open source cheminformatics
software such as RDKit (Landrum, 2022) and the Chemistry
Development Kit (Willighagen et al., 2017).

2.3 Modelling

Prior to modelling, a data cleaning step was followed wherein
the SMILES were standardized and cleaned using MayaChemTools
(Sud, 2016). Subsequently, for each data set, the available data was

FIGURE 4
Comparison of random forest fingerprint models with graph isomorphism networks for the test sets (average of 3 random selections).
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randomly split into calibration (80%) and test sets (20%). Model
training was performed using random forests (Breiman, 2001) (RF)
where the number of trees was set to 500. A 5-fold cross-validation
on the training set was carried out to tune the parameter “mtry”
(number of input features that will be randomly sampled at each
split when creating the tree models). Prediction performances were
subsequently assessed on the test set. The train/test splitting (80:
20 ratio) was repeated 3 times to assess variability of the prediction
performance and to rule out any significant impact on performance
owing to selection. The RF models were built using the caret (Kuhn,
2022) and ranger (Wright and Ziegler, 2017) packages in R (R Core
Team, 2022). The classification models were evaluated using the

balanced accuracy score (Kelleher et al., 2015) which accounts for
the skewness of the class distributions

BACC � Sensitivity + Specificity

2
(1)

Here, the sensitivity ( TP
TP+FN) and specificity ( TN

TN+FP) are defined in
terms of the counts of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). For comparison, other metrics
such as the area under the curve (AUC) are also reported.

In order to address the issue of applicability domain of the
models, outlier detection using isolation forest (Liu et al., 2008) has
been employed. Here, a test compound is assessed for its tendency to

FIGURE 5
Mean R2 obtained by the fingerprint models for different data sets (A) tuberculosis (Pires and Ascher, 2020) (B) GPCR (Velloso et al., 2021) and (C)
Cancer Al-Jarf et al. (2021).
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separate from the majority of samples using an isolation forest
constructed from binary trees. Isolation forests make use of decision
tree (are an unsupervised version of random forests) and work on
the assumption that for non-outlier points, it takes a large number of
splits to separate them into individual buckets (i.e., number of
partitions that it takes to isolate a point). By contrast, anomalous
points are likely to take much shorter paths for isolation. In this
study, the isofor package in R was used to identify potential outliers.

3 Results and discussion

3.1 Performance benchmarking

The performance of the fingerprint models was first assessed on the
79 targets (data summary in SupplementaryTable S1 in SI) earlier studied
by Allen et al. (2020). The heatmap of the balanced accuracies in
Supplementary Figure S1 in the SI shows that with the exception of
some selected targets such as MAPK1, PTPN11 and hERG, the
fingerprint models perform quite well with average accuracies
(average of the BACC values across all targets) close to 0.90 for most
targets (see Supplementary Figure S2 in the SI). The prediction results for
the fingerprint models compare favourably with the metrics reported for
deep learning neural networks (Allen et al., 2020) and can be attributed to
the fact that the data sets are relatively balanced (positive data percentage
of ≈50%). The fingerprint models were also evaluated against six types of
cardiac toxicity outcomes: arrhythmia, cardiac failure, heart block, hERG
toxicity, hypertension, and myocardial infarction (see Supplementary
Table S1 in the SI). These data setswere previously studied by Iftkhar et al.
(2022) who used a combination of graph-based signatures and
fingerprints to identify models capable of identifying molecules likely
to be toxic. Figure 1 summarizes the performance of the fingerprint
models which as can be seen, achieve relatively better predictive
performance in terms of the AUC.

As further validation of the fingerprint models, predictive
performance on a series of structurally diverse datasets consisting of
33,757 active and 21,152 inactive compounds for different breast cancer
cell lines was also evaluated. The data sets were earlier studied by He

et al. (2021), where a number of descriptor-based machine learning
models such as naïve Bayes (NB), support vector machine (SVM), k-
nearest Neighbors (KNN), extreme gradient boosting (XGB) as well as
deep learningmethods were tested. Comparison of themetrics obtained
for fingerprint models with those reported by He et al. (2021) shows
that the former achieve higher predictive accuracies with BACC > 0.70
(see Figure 2).

Overall, the performance on multiple data sets clearly shows that
fingerprints have goodpredictive power. Themajority of the data however,
has minimal skew, i.e., near equal numbers of actives and inactives with
some even displaying greater bias towards active compounds. Most
machine learning approaches are likely to yield strong performances
for such balanced data distributions. Data sets drawn from PubChem
have typically strongly imbalance and the question is whether fingerprints
can yield robust structure–activity relationship models for such data.

3.2 Performance evaluation of selected
bioactivity data sets

Encouraged by the performance of the fingerprints on the
different targets, model performance was further assessed on
24 different bioactivity data sets. Table 3 lists the balanced
accuracies for the calibration/test sets (average of 3 independent
trials) obtained for the targets. Although the performance varies, it is
generally seen that the fingerprint models yield reasonable results
even for cases with severe imbalance. The heatmap in Figure 3 shows
that in a number of cases such as potassium channel inhibitors,
KDM4E, LMNA and TARDBP, the selected fingerprints show only a
marginal difference in performance with balanced accuracies ≈0.55.
Among the fingerprints evaluated in this study, best results were
frequently seen to perform well include AVALON, ECFP2/FCFP4/
FCFP6 and RDK5.

The fingerprint performance was compared with that of a graph
isomorphism network (Xu et al., 2019; Wu et al., 2021b) (GIN)
which is a powerful graph neural network (GNN) for graph
classification (Kim and Ye, 2020). Using the torchdrug (Zhu
et al., 2022) machine learning framework, the GIN was built with
4 hidden layers (number of hidden units set to 256), using an Adam
optimizer and binary cross entropy loss function with batch
normalization applied to every hidden layer. The model was
subsequently trained for 100 epochs with the splits for train/
valid/test sets set to 60%, 20% and 20% respectively. The barplots
in Figure 4 show the comparison of the test set AUCs (mean of
3 independent runs) achieved by the RF and GNNmodels. As can be
seen from the plots, for the majority of the data sets, RF models
achieve relatively better metrics while for others the performances
are comparable.

For all data sets, isolation forest (built using 500 trees) based
outlier scores were calculated. Here, values closer to 1 indicate
potential outliers while those around 0.50 typically suggest
average outlierness. Values closer to 0 are more difficult to
categorize. Supplementary Figure S5 in the SI shows the
histograms of the distributions of the calculated scores.
Examination of the plots show that for most of the data sets
studied here, a cutoff of 0.5 (for some a lower value is
recommended) may be used as a decision threshold to identify
potential outliers (see Supplementary Figure S6 in the SI). Compared

FIGURE 6
Graphical user interface for FPMAP. Users can upload a SMILES
file (“Batch processing”) or alternatively enter a single SMILES string for
evaluation. Prediction results are written to the output file specified.
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with other distance based approaches [such as the local outlier factor
(Breunig et al., 2000) and one-class support vector machines (Chen
et al., 2013)] where the algorithms typically try to fit the regions
where the training data is the heavily concentrated, isolation forests
do not use any distance metrics and instead rely on the concept that
an ensemble of random trees are likely to produce shorter path
lengths for outliers.

The model performance although encouraging for some does
need significant improvement especially for data sets where the
availability of actives is quite low. While a case for balanced data sets
can be made, the skewed ratio between active and inactive
compounds is a realistic representation of the high-throughput
screening hit rates that are typically < 1% (Dreiman et al.,
2021). For some data sets, improved performances were seen
with substructure fingerprints such as AVALON that are based
on pre-defined generic substructure patterns. For others,
fingerprints such as ECFP/FCFP that take into account the
neighborhood of each atom yielded slightly better classification
models. Nonetheless, for many of the data sets (see Figure 3), the
model metrics showed only marginal differences. In an earlier study,
Riniker and Landrum (2013) observed strong correlations between
the fingerprints which may explain the similarities in the obtained
metrics. Overall, the choice of which fingerprint to use for modelling
is far from trivial and is to a large extent dependent on the target. In
this study, Avalon and FCFP4 fingerprints are generally seen
standout as useful descriptors and may serve as useful starting
points for future benchmarking studies. A potential avenue for
improvement in prediction performance could be to combine 2D
fingerprints with structure-based graph representations (Choo et al.,
2023). Alternatively, one may look towards language representations
which have recently been shown to yield good results on several
classification and regression benchmarks (Ross et al., 2022).

3.3 Performance on regression tasks

Given the relative success of the fingerprint-based RF classification
models, an immediate question is whether the performances can be
replicated for regression tasks. To this end, RF regression models were
computed for a number of previously analysed data sets that used
graph based signatures and other auxiliary attributes to identify
potential candidates against mycobacterium tuberculosis (Pires and
Ascher, 2020), cancer (Al-Jarf et al., 2021), and G protein-coupled
receptors (Velloso et al., 2021) (GPCRs). A total of 1904 fingerprint-RF
models were computed, spanning 36 different GPCRs, 8 organism-
specific Mycobacteria species (M. avium, M. caseum, M. kansasii, M.
phlei, M. tuberculosis, M. bovis, M. fortuitum, M. smegmatis and M.
intracellulare) and 74 distinct cancer cell lines corresponding to
9 tumor types (renal, breast, CNS, colon, leukemia melanoma, non
small cell lung, ovarian, prostate, and small cell lung). Supplementary
Figures S7–S9 in the SI summarize the regression performances of the
different fingerprints. When compared with the graph signature based
approaches, although marginal improvements were seen for some
cases, the overall performance measured in terms of the squared
Pearson correlation (R2) was largely found to be comparable, with
only models for tuberculosis yielding slightly lower R2 values (see
Figure 5). The fingerprint performance observed for these data sets
mirrors the trends seen for a number of ADMET-related responses

that were studied in a previous article [see (Venkatraman, 2021)] and
suggest that purely fingerprint-based models may have low predictive
utility for regression.

4 Software implementation and usage

Fingerprint calculations were carried out using the CDK
(Willighagen et al., 2017) and RDKit (Landrum, 2022) libraries.
Random forests models were built using the R (R Core Team, 2022)
package ranger (Wright and Ziegler, 2017). The models were
subsequently converted to predictive model markup language
(PMML) which is an XML format that facilitates sharing of
models between PMML compliant applications. For ease-of-use,
a Java-based graphical user interface (see Figure 6) has been created
which integrates the Java Evaluator API (https://github.com/jpmml)
for model evaluation. In addition to the GUI, FP-MAP has also been
made available as a command line interface.

5 Conclusion

This article sets out to assemble a comprehensive catalogue of
predictive models for small molecules with potential bioactivity against
various targets and diseases. Previous studies have provided only
fragments of the large spectrum of molecule pharmacodynamics and
bioactivity prediction models, many of which are not easily accessible.
Encouraged by the initial predictive performance of the fingerprints on
over 80 targets for which close to 1,000 models were computed,
machine learning algorithms were applied to a number of important
targets for which freely accessible predictionmodels are not available (to
the best of the author’s knowledge). For the 24 data sets included in the
current release of the software, the fingerprint-based binary
classification performances for severely imbalanced datasets ranged
from moderate (AUC ≈0.61) to high (AUC >0.90) and outperform
alternative approaches. FP-MAP provides a simple and easy to use
platform for predicting activity of novel compounds as well as for
benchmarking studies. As more and more curated data sets emerge
(Béquignon et al., 2023; Buterez et al., 2023), future efforts will focus on
expanding the palette of targets and diseases.
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