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Tumor-associated macrophages
mediate resistance of EGFR-TKIs
in non-small cell lung cancer:
mechanisms and prospects

Daoan Cheng †, Kele Ge †, Xue Yao †, Banglu Wang, Rui Chen,
Weiqing Zhao, Cheng Fang* and Mei Ji*

Departments of Oncology, the Third Affiliated Hospital of Soochow University, Changzhou, China
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the first-

line standard treatment for advanced non-small cell lung cancer (NSCLC) with EGFR

mutation. However, resistance to EGFR-TKIs is inevitable. Currently, most studies on

the mechanism of EGFR-TKIs resistance mainly focus on the spontaneous

resistance phenotype of NSCLC cells. Studies have shown that the tumor

microenvironment (TME) also mediates EGFR-TKIs resistance in NSCLC. Tumor-

associated macrophages (TAMs), one of the central immune cells in the TME of

NSCLC, play an essential role in mediating EGFR-TKIs resistance. This study aims to

comprehensively review the current mechanisms underlying TAM-mediated

resistance to EGFR-TKIs and discuss the potential efficacy of combining EGFR-

TKIs with targeted TAMs therapy. Combining EGFR-TKIs with TAMs targeting may

improve the prognosis of NSCLC with EGFR mutation to some extent.
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1 Introduction

1.1 Background

The epidermal growth factor receptor (EGFR) is one of the most frequently mutated

driver oncogenes in non-small cell lung cancer (NSCLC), and EGFR mutation is found in

approximately 50% of the Southeast Asian lung adenocarcinoma population (1). EGFR-

tyrosine kinase inhibitors (EGFR-TKIs) such as first-generation EGFR-TKIs gefitinib or

erlotinib have shown potent antitumor effects in advanced NSCLC patients with EGFR

mutation (2). Osimertinib, a third-generation EGFR-TKI, has been approved as first-line

therapy for advanced NSCLC patients with EGFR mutation due to its lower toxicity and

stronger antitumor effects (3). However, resistance to EGFR-TKIs is inevitable, and disease

progression occurs in most patients. The mechanisms of resistance to EGFR-TKIs are a

current research focus in NSCLC. Several resistance mechanisms have been elucidated,

including secondary mutations of EGFR, activation of bypass pathways, and histological
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transformation (4). The development of fourth-generation EGFR-

TKIs targeting the EGFR C797S mutation is underway (5). In recent

years, the resistance of EGFR-TKIs mediated by tumor-associated

macrophages (TAMs) has received broad attention (Table 1).

Previous studies have demonstrated that high infiltration of

TAMs is significantly associated with an unfavorable prognosis in

NSCLC patients treated with EGFR-TKIs (6–9).
1.2 TAMs in NSCLC

The origin of TAMs in NSCLC is multifaceted, involving both

tissue-resident macrophages (TRMs) and monocyte-derived

macrophages (MDMs) (10). And TRMs can be classified into

lung alveolar macrophages (LAMs) and interstitial macrophages

(IMs) based on their anatomical locations. TRMs are present during

embryonic development and can self-renew locally, independent of

the hematopoietic system (11). They are crucial in coordinating

tissue remodeling and maintaining tissue integrity (11). MDMs

originate from the hematopoietic system, and many can be observed

in inflammatory lesions (12). TAMs from different sources can

promote the progression of NSCLC (13). TRMs mainly contribute

to tumor generation, while MDMs primarily participate in tumor

metastasis (13).

Macrophages can generally be classified into M1 and M2 types

based on their polarization status (14, 15). M1-like macrophages

secrete pro-inflammatory factors, such as tumor necrosis factor-a
(TNF-a), interleukin-1b (IL-1b), IL-6, IL-12, and IL-23, to

participate in antigen presentation and play a role in immune
Frontiers in Immunology 02
surveillance (16). And M2-like macrophages secrete inhibitory

factors, such as IL-10 and transforming growth factor-b (TGF-b),
and have weak antigen-presenting ability (16). TAMs mainly

exhibit the M2-like macrophage phenotype (17) and are closely

associated with resistance to anti-tumor drugs in various solid

tumors, including NSCLC (6, 18–20). Additionally, TAMs exhibit

both inter- and intra-tumor heterogeneity. High infiltration of

TAMs has been linked to unfavorable prognosis in pancreatic

cancer (21), bladder cancer (22), and malignant glioma (23). But

in some instances, such as ovarian (24) and colorectal cancers (25),

it is associated with a more favorable outcome. In the NSCLC

investigation, a high TAMs infiltration level within tumor islets was

associated with a favorable prognosis. In contrast, a high level of

TAMs infiltration within tumor stroma was linked to unfavorable

prognosis (26, 27). The heterogeneity of TAMs in NSCLC may be

attributed to tumor hypoxia and the spatial distribution of TAMs

within the tumor microenvironment (TME) (28).
1.3 Effects of EGFR-TKIs on TAMs

Jia et al. (29) investigated the impact of EGFR-TKIs on the TME

in NSCLC from a dynamic perspective. During early-stage

treatment, EGFR-TKIs can increase the infiltration of CD8+T

cells and dendritic cells (DC) in TME while inhibiting the

infiltration of Foxp3+ regulatory T cells (Tregs) and M2-like

polarization of TAMs (29). However, with the continuation of

treatment, the immune-activated TME gradually dissipated while

the proportion of immunosuppressive cells, myeloid-derived

suppressor cells (MDSCs), progressively increased (29). Notably,

there was a significant increase in CD86+ macrophage expression

driven by EGFR during the initial phase of EGFR-TKIs treatment,

which exhibited robust antigen presentation capabilities (29).

However, the gradual accumulation of M2-like TAMs, MDSCs,

and Tregs during treatment hindered the antitumor immune effects

of DC and T cells (29–31).
1.4 Aims

This study aims to comprehensively review the current

mechanisms underlying TAM-mediated resistance to EGFR-TKIs

and discuss the potential efficacy of combining EGFR-TKIs with

targeted TAMs therapy (Figure 1). Combining EGFR-TKIs with

TAMs targeting may improve the prognosis of NSCLC with EGFR

mutation to some extent.
2 TAMs mediate EGFR-TKIs resistance
by activating bypass pathways

2.1 Background

Activation of phosphoinositide 3-kinase (PI3K)/protein kinase

B (AKT) and mitogen-activated protein kinase (MAPK) signaling
TABLE 1 Mechanisms of TAMs mediated resistance to EGFR-TKIs.

Mechanisms References

Activating bypass pathways

AKT/mTOR pathway 34

AKT, ERK1/2 and STAT3 pathways 17, 59

LncRNA-MSTRG.292666.16/miR-6836-5p/MAPK8IP3
pathway

35

NF-kB/RELB pathway 36

Suppressing T cells

NOS and PD-L1 pathways 91

M2-like polarization

Lipid metabolism pathways 103

STAT3/IL-4 pathway 107

LncRNA SOX2-OT/miR-627-3p/Smads pathway 114

Modulating tumor cell phenotypes

Stabilizing tumor cell phenotype 115

Promoting the EMT 129, 130
TAM, tumor-associated macrophage; mTOR, mammalian target of rapamycin; RELB, v-rel
reticuloendotheliosis viral oncogene homolog B; NOS: nitric oxide synthase; PD-L1,
programmed cell death 1 ligand 1; LncRNA SOX2-OT, long non-coding RNA SOX2
overlapping transcript; EMT, epithelial-mesenchymal transition.
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pathways compensates for the inhibition of EGFR signaling by

EGFR-TKIs, promoting resistance of EGFR-TKIs (32). Yuan et al.

(33) showed that TAMs can affect the biological behavior of lung

adenocarcinoma cells by activating the PI3K/AKT pathway. This

suggests that TAM-mediated EGFR-TKIs resistance may be closely

related to the activation of bypass pathways. Furthermore, several

studies have demonstrated that TAMs contribute to the resistance

of EGFR-TKIs by activating bypass pathways, such as AKT/

mammalian target of rapamycin (mTOR) pathway (34), AKT

pathway (17), extracellular signal-related kinases 1 and 2 (ERK1/

2) pathway (17), signal transducer and activator of transcription 3

(STAT3) pathway (17), LncRNA-MSTRG.292666.16/miR-6836-

5p/MAPK8IP3 pathway (35) and atypical nuclear factor-kB (NF-

kB)/v-rel reticuloendotheliosis viral oncogene homolog B (RELB)

pathway (36).
2.2 AKT/mTOR pathway

EGFR-TKIs can increase the content of serum chemokine (C-C

motif) ligand 2 (CCL2) (29), which plays an essential role in the

process of EGFR-TKI resistance (8). CCL2 in the TME can recruit

macrophages (37–39). Xiao et al. (34) showed that gefitinib

resistance cell lines increased the release of CCL2 by decreasing

the expression of b-catenin protein. Furthermore, tumor cells
Frontiers in Immunology 03
recruit more M2-like macrophages by releasing CCL2, and these

macrophages promote gefitinib resistance by activating the AKT/

mTOR pathway (34). As a serine/threonine kinase, mTOR has a

catalytic domain similar to PI3K and is considered an atypical

protein kinase in the PI3K-related kinase family (40). Through

various mechanisms, including activation of growth factor receptor

pathway, inhibition of autophagy, and influence on lipid

metabolism pathway et al., mTOR could promote tumor

development, metastasis, and drug resistance (41, 42). The

rapamycin analogs, which inhibit mTOR, have been approved for

treating renal cell carcinoma, while several other mTOR inhibitors

are currently in development (40).
2.2.1 Prospects
Preclinical studies (43–50) have shown that mTOR inhibitors

can improve the resistance of NSCLC to EGFR-TKIs. For example,

Wang et al. (51) showed that the combination of ferumoxytol and

CpG oligodeoxynucleotide 2395 could effectively suppress EGFR

and its downstream AKT/mTOR signaling pathway, thereby

enhancing the antitumor activity of macrophages in NSCLC with

EGFR mutation. Qu et al. (52) employed a combination of MEK1/2

inhibitor AZD6244 and PI3K/mTOR inhibitor BEZ235 to improve

gefitinib resistance in a xenograft model of NSCLC. However,

Moran et al. (53) showed that afatinib, in combination with
FIGURE 1

TAMs mediated EGFR-TKIs resistance through different mechanisms. TAM, tumor-associated macrophage; mTOR, mammalian target of rapamycin;
NOS, nitric oxide synthase; EMT, epithelial-mesenchymal transition; RELB, v-rel reticuloendotheliosis viral oncogene homolog B; PD-L1,
programmed cell death one ligand 1.
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mTOR inhibitor sirolimus, did not show the expected anti-tumor

effect. The toxicity was not tolerable in NSCLC patients with EGFR-

TKIs resistance. The intricate resistance mechanism of EGFR-TKIs

may account for the limited antitumor efficacy. This implies the

necessity of identifying NSCLC patients who are responsive to

mTOR inhibitors. Notably, altering the administration mode of

mTOR inhibitors to target the TME in NSCLC might alleviate the

adverse effects of combination therapy. In conclusion, further

exploration is warranted for the combination of mTOR inhibitors

and EGFR-TKIs in EGFR-mutated NSCLC based on available

evidence (54, 55).
2.3 AKT, ERK1/2 and STAT3 pathways

Exosomes are extracellular vesicles ranging in size from 30 to

150nm, capable of transporting nucleic acids or proteins derived from

maternal cells and facilitating intercellular communication (56).

Exosomes play a crucial role in the pathogenesis, progression, and

metastasis of tumors (57). Yuan et al. (17) investigated the

contribution of TAM-derived exosomes to EGFR-TKI resistance

and demonstrated that these exosomes could impede the antitumor

efficacy of gefitinib. Further protein expression analysis confirmed

that TAMs-derived exosomes mediated EGFR-TKIs resistance by

activating AKT, ERK1/2, and STAT3 signaling pathways (17). On the

other hand, previous studies have shown that epiregulin (EREG), as a

ligand for EGFR, can promote the progression of NSCLC (58).

EREG-enriched macrophages induce gefitinib and erlotinib

resistance by inducing AKT phosphorylation in a human

epidermal growth factor receptor 2 (HER-2)-dependent manner (59).
2.3.1 Prospects
The abnormal activation of the AKT pathway is closely related to

the resistance of EGFR-TKIs in NSCLC (60, 61). Several studies (62–

67) have shown that inhibition of the AKT pathway can improve the

resistance of EGFR-TKIs in NSCLC. For example, Lai et al. (68)

demonstrated that Polyphyllin I can reverse osimertinib resistance by

regulating the PI3K/AKT pathway in NSCLC. Wang et al. (69)

showed that combination therapy with gefitinib and miR-30a-5p

could overcome acquired resistance to EGFR-TKIs by regulating the

PI3K/AKT pathway in NSCLC. However, Clément-Duchêne et al.

(70) showed no improvement in progression-free survival (PFS) and

overall survival (OS) for EGFR-mutated NSCLC treated with

enzastaurin (an oral AKT inhibitor) combined with erlotinib

compared to erlotinib alone in a phase II study. This finding

contradicts previous preclinical studies and warrants further

investigation to identify the subset of NSCLC patients who may

benefit from AKT inhibitors. Additionally, TAM-induced AKT

phosphorylation is closely associated with HER-2 (59), suggesting

that the use of HER-2 inhibitors may improve resistance to EGFR-

TKIs in NSCLC (71, 72). Consistent with this hypothesis, Peng et al.

(73) have developed a trastuzumab-modified, mannosylated liposome

system that effectively targets M2-type TAMs and HER-2 positive

NSCLC cells to overcome EGFR-TKIs resistance mediated by the

EGFR T790M mutation. Importantly, HER-2 and HER-3 belong to
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the HER family and have highly similar structures and biological

functions (74). Vicencio et al. (75) demonstrated that osimertinib

combined with HER-3 antibody therapy could enhance the antitumor

effect in NSCLC. Therefore, in addition to directly inhibiting the AKT

pathway, combining HER2 or HER3 inhibitors may be a therapeutic

strategy for improving the efficacy of EGFR-TKIs.
2.4 LncRNA-MSTRG.292666.16/miR-6836-
5p/MAPK8IP3 pathway

Non-coding RNAs (ncRNAs), including circular RNA

(circRNA), long ncRNA (lncRNA), and microRNA (miRNA)

et al., play an essential role in the initiation and progression of

cancer (76). Deng et al. (77) analyzed the serum exosomal-lncRNAs

of osimertinib resistant patients and found that the knock of

lncRNA MSTRG.292666.16 can improve the osimertinib

resistance in NSCLC cells. Furthermore, Wan et al. (35) showed

that TAM-derived exosomes promote osimertinib resistance by

activating MSTRG.292666.16/miR-6836-5p/1MAPK8IP3 signaling

pathway in NSCLC.

2.4.1 Prospects
TAM-derived exosomes play a crucial role in mediating

resistance to EGFR-TKIs. Unfortunately, there is a lack of

effective methods to target these exosomes. Further investigation

is warranted to refrain from the biogenesis of TAM-derived

exosomes or impede the binding of exosomes to tumor cells.
2.5 NF-kB/RELB pathway

In pathological conditions like cancer, myeloid cells may

transform myeloid-derived suppressor cells (MDSCs),

contributing to tumor metastasis and conferring resistance to

anti-cancer drugs (78). MDSCs play a crucial role in promoting

immunosuppression and inducing the generation of regulatory T

cells within the TME (79). Feng et al. (36) suggested that S100A9+

MDSC (a subset of monocytic MDSC) derived macrophages induce

gefitinib resistance via NF-kB/RELB pathway.

2.5.1 Prospects
The oncogenic role of NF-kB has been reported (80). Notably,

NF-kB can facilitate the epithelial-mesenchymal transition (EMT)

of tumor cells, which may constitute one of the potential

mechanisms by which TAMs mediate resistance to EGFR-TKIs

(80). Targeting NF-kB has been reported to improve EGFR-TKIs

resistance potentially. For example, Yeo et al. (81) improved

acquired resistance to EGFR-TKIs by inhibiting NF-kB and

activation-induced cytidine deaminase (AICDA) in NSCLC. Liu

et al. (82) reported that Liver X receptor ligands could induce

apoptosis in EGFR-TKIs resistant cells by inhibiting the AKT-NF-

kB pathway in NSCLC. On the other hand, RELB can upregulate

the expression of programmed cell death one ligand 1 (PD-L1) and

facilitate immune evasion in prostate cancer (83). Previous studies
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(84) have shown that PD-L1 expression is also increased in NSCLC

patients after developing resistance to EGFR-TKIs, and RELB may

up-regulate PD-L1 expression following EGFR-TKIs resistance in

NSCLC. Up-regulation of PD-L1 promotes an immunosuppressive

TME, which may also be one potential mechanism for EGFR-TKI

resistance (84). Therefore, RELB may be a potential target for

improving EGFR-TKIs resistance in NSCLC.
3 TAMs mediate EGFR-TKIs resistance
by suppressing T cells

3.1 Background

The EGFR signal can reduce chemokine (C-X-C motif) ligand

10 (CXCL10) and CCL5 by reducing interferon regulatory factor-1

(85). EGFR-TKIs can induce an interferon response in NSCLC, and

the efficacy of EGFR-TKIs is influenced by immune activation (86).

Previous studies (87–89) have shown that macrophages can

promote chemotherapy resistance by inhibiting T-cell-mediated

responses. Similarly, TAMs mediate T cell inhibition in the TME

(90), which causes resistance to EGFR-TKIs related to TAMs (91).
3.2 TAMs inhibit T cells by expressing
inducible nitric oxide synthase and PD-L1

Stimulator of interferon genes (STING) regulates the human

immune system (92). Lin et al. (91) demonstrated that the

enrichment of TAMs impedes T cell activation in NSCLC

patients treated with osimertinib. The immunosuppressive TME

attenuates the efficacy of EGFR-TKIs in anti-tumor therapy (91).

Reprogramming macrophages with STING agonist, MSA-2, can

restore T cell activation and reverse osimertinib resistance (91).

This implies that the combination of EGFR-TKIs and STING

agonists can potentiate the antitumor effects of EGFR-TKIs. In

addition, Lin et al. (91) demonstrated that TAMs may mediate T-

cell inhibition by up-regulating the expression of inducible nitric

oxide (NO) synthase and PD-L1. Studies have shown that NO can

promote cisplatin resistance in NSCLC and inhibit T cell

proliferation (93, 94). Upregulation of PD-L1 expression in TAMs

can increase immunosuppression and tumor aggressiveness in

NSCLC (95, 96). These mechanisms provide targets for

reactivating T cells in TME. However, Lin et al. (91) did not rule

out the possibility that other cells may also be involved in anti-

tumor immunity when stimulated by STING agonists, such as

dendritic cells and endothelial cells (97, 98).
3.3 Prospects

Further deliberation is warranted on strategies to enhance T cell

infiltration in the TME of NSCLC. Immune checkpoint inhibitors

(ICIs) can potentially induce M1 polarization of TAMs and

reactivate T cells within the TME (99). Theoretically, the
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combination therapy of ICIs and EGFR-TKIs may enhance the

efficacy of EGFR-TKIs in NSCLC. However, the combination of

ICIs and EGFR-TKIs has been found to result in intolerable toxicity

during clinical trials (100). Strategies to enhance T cell infiltration in

the TME of NSCLC, such as reprogramming TAMs or reducing

their infiltration, should be developed for clinical implementation.
4 TAMs mediate EGFR-TKIs resistance
through M2-like polarization of
macrophage

4.1 Lipid metabolism pathways

Lipid metabolism is closely related to TAMs polarization (101).

Chen et al. (102) showed that overexpression of sterol regulatory

element-binding protein 1 (SREBP1) can mediate osimertinib

resistance. Furthermore, Liang et al. (103) analyzed the role of 9

genes related to lipid metabolism in osimertinib resistance. They

found that T-cell lymphoma invasion and metastasis 2 (TIAM2)

can induce TAMs M2-like polarization mediated osimertinib

resistance through PI3K/AKT/mTOR signaling pathway (Figure 2).

4.1.1 Prospects
Targeting lipid metabolic pathways to cause repolarization of

TAMs is a feasible approach to improve resistance to EGFR-TKIs.

Jin et al. (104) found that simvastatin can mediate TAMs

repolarization by targeting cholesterol metabolism. Yin et al.

(105) developed a dual-targeting liposomal system for the

codelivery of simvastatin/gefitinib to treat NSCLC with brain

metastases. Dual-targeting liposomal system with modification of

anti-PD-L1 nanobody and transferrin receptor-binding peptide T12

can enter the blood-brain barrier to reverse EGFR T790M

mutation-mediated resistance via TAMs repolarization (105).
4.2 STAT3/IL-4 pathway

Chen et al. (106) found that T790M-cis-L792F mutation is one

of the mechanisms of osimertinib resistance. And Sun et al. (107)

found that the expression and secretion of IL-4 increased in

T790M-cis-L792F mutant cells, promoting the M2-like

polarization of TAMs. Furthermore, Sun et al . (107)

demonstrated that TAMs M2-like polarization is one of the

downstream mediators of the STAT3/IL-4 signaling pathway, and

blocking STAT3 with SH-4-54 and IL-4 with dupilumab can reverse

osimertinib resistance to some extent.

4.2.1 Prospects
Targeting STAT3 could be a promising strategy for overcoming

resistance to EGFR-TKIs (108). Park et al. (109) showed that the root

extract of Scutellaria baicalensis can induce apoptosis in EGFR-TKIs

resistant NSCLC by inhibiting STAT3. Shu et al. (110) reversed

afatinib resistance in NSCLC by knocking down lncRNA BLACAT1
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by regulating STAT3 signaling. In addition, it has been previously

reported that aberrant activation of STAT3 can promote M2-like

polarization of macrophages (111). Lu et al. (111) showed that

gefitinib combined with STAT3 inhibitor and anti-CD47

monoclonal antibody could reprogram TAMs and ameliorate

acquired resistance to gefitinib in NSCLC. Small molecule

inhibitors targeting STAT3 have shown preliminary antitumor

effects (112, 113). Further investigation into STAT3 and IL-4 as

potential targets is warranted to overcome resistance to EGFR-TKIs.
4.3 LncRNA SOX2-OT/miR-627-3p/Smads
pathway

Recently, Zhou et al. (114) found that long non-coding RNA

SOX2 overlapping transcript (lncRNA SOX2-OT) is highly expressed

in exosomes derived from NSCLC cells. Subsequently, exosomal

lncRNA SOX2-OT can promote M2-like polarization of TAMs and

promote EGFR-TKIs resistance (114). Mechanistically, lncRNA

SOX2-OT promotes M2-like polarization of TAMs by increasing

the expression of drosophila mothers against decapentaplegic

proteins (Smads) through sponging miR-627-3p (114).

4.3.1 Prospects
lncRNA SOX2-OT/miR-627-3p/Smads axis represents a

promising target for reprogramming TAMs. However, there still

needs to be more feasible approaches to target this pathway.
5 TAMs mediate EGFR-TKIs resistance
by modulating tumor cell phenotypes

5.1 Stabilizing tumor cell phenotypes

Zhao et al. (115) treated NSCLC cells with gefitinib and

subsequently co-cultured them with macrophages to mimic the

behavior of migrating macrophages. Migrating macrophages

contributed to gefitinib resistance by stabilizing tumor cell
Frontiers in Immunology 06
phenotypes before macrophage polarization. Additionally, Zhao

and colleagues (115) postulated that the upregulation of vimentin

mediated by TGF-b might also account for the accelerated

acquisition of gefitinib resistance in NSCLC cells.
5.1.1 Prospects
Reducing the recruitment of TAMs or depleting the TAMs in

the TME of NSCLC may be a potential approach to improve EGFR-

TKIs resistance. CCL2-chemokine (C-C motif) receptor 2 (CCR2)

signaling and the colony-stimulating factor 1(CSF1)-CSF1 receptor

(CSF1-CSF1R) axis are potential therapeutic targets (116, 117). For

example, previous studies (118) have shown that CSF1R inhibitors

can deplete M2 macrophages in the TME. Sidorov et al. (119)

demonstrated that the combination therapy of erlotinib and

MLN0128 (an mTOR inhibitor) effectively reduces the infiltration

of immunosuppressive chemokines, such as CCL2 and periostin, as

well as TAMs in the TME of glioblastoma, leading to a significant

improvement in survival outcomes for glioblastoma mice. Schmall

et al. (120) demonstrated that inhibiting the recruitment of TAMs

and promoting their M1-like polarization through CCR2 inhibition

can effectively inhibit lung cancer progression. In addition,

targeting surface receptors such as CD52, scavenger receptor-A,

folic acid receptor-b, and CD206 represents potential approaches

for depleting TAMs (121). Future research endeavors should

investigate the clinical applications of these protocols in NSCLC.
5.2 Promoting the EMT

EMT, the process of epithelial-to-mesenchymal transition, plays a

crucial role in physiological processes such as wound healing,

development, and stem cell behavior (122). However, it is closely

associated with tumorigenesis, tumor progression, and drug resistance

under pathological conditions (123). Importantly, EMT is one of the

mechanisms of acquired resistance to EGFR-TKIs (124). Approaches

to overcome EGFR-TKI resistance in NSCLC by reversing EMT are

currently under investigation, including the targeting of CD70, cyclin-

dependent kinase 7 (CDK7), lipid metabolism pathways, and
FIGURE 2

Tumor cells promoted M2-like polarization of TAMs. M2-like TAM: M2-like tumor-associated macrophage; mTOR, mammalian target of rapamycin;
lncR SOX2-OT, long non-coding RNA SOX2 overlapping transcript; Smads, drosophila mothers against decapentaplegic proteins.
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fibroblast growth factor receptor 1 (FGFR1) (125–128). Several studies

(129, 130) have revealed that TAMs can promote the EMT of tumor

cells. Bonde et al. (129) showed that TAMs promote tumor EMT

through TGF-b signaling and activation of the b-catenin pathway in

NSCLC. And Shen et al. (130) demonstrated that inhibition of TAMs

can reverse tumor EMT in NSCLC.

5.2.1 Prospects
Further investigation is warranted to target TAMs to reverse

EMT in EGFR-TKI-resistant cells. Reprogramming TAMs to reduce

the secretion of pro-EMT signals, such as TGF-b, may represent a

promising strategy. Consistent with this hypothesis, Jin et al. (104)

showed that targeting lipid metabolism could improve EMT-related

drug resistance by reprogramming TAMs in NSCLC.

6 Discussion

Resistance to EGFR-TKIs remains a global challenge, and

exploring new methods to enhance the efficacy of EGFR-TKIs is

imperative in NSCLC. This review summarizes the multiple

mechanisms of TAM-mediated EGFR-TKIs resistance in NSCLC,

including activation of bypass pathways, inhibition of T cell activity,

M2-like polarization, and regulation of tumor cell phenotypes.

Several pertinent issues warrant discussion.

Inhibiting the TAMs-related bypass pathway may be a potential

approach to improving resistance to EGFR-TKIs in NSCLC (Table 2).

The significance of the mTOR-related pathway in enhancing

resistance to EGFR-TKIs warrants reiteration. Previous studies (131)

have shown that high expression of mTOR correlates with a

diminished therapeutic response to erlotinib in NSCLC. TAMs can
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induce resistance to EGFR-TKIs by activating the AKT/mTOR

signaling pathway directly (34). Additionally, mTOR-related

pathways may mediate EMT-related EGFR-TKIs resistance (132).

Zhang et al. (133) demonstrated that MTI-31, an inhibitor of

mTORC1/2, effectively impedes the progression and EMT of

NSCLC while simultaneously enhancing antitumor immunity.

Significantly, the PI3K/AKT/mTOR signaling pathway can also

facilitate M2-like polarization of TAMs to promote EGFR-TKIs

resistance (103). Based on this existing evidence, combination

therapy involving mTOR inhibitors and EGFR-TKIs may improve

resistance to EGFR-TKIs by blocking multiple resistance signals.

However, current clinical trials have demonstrated that the

combination therapy does not yield a superior clinical response

compared to EGFR-TKIs monotherapy, and its toxicity profile is

challenging to manage (53). Further experimentation is warranted to

elucidate this phenomenon in the future. On the other hand, targeting

STAT3 may represent a promising strategy to enhance the efficacy of

EGFR-TKIs by overcoming TAM-mediated resistance. TAMs-derived

exosomes can mediate EGFR-TKIs resistance by activating STAT3

signaling pathway (17). Moreover, STAT3 also plays a crucial role in

promoting the M2-like polarization of TAMs (111). Combining

STAT3 inhibitors with EGFR-TKIs inhibits drug resistance

mediated by exosomes derived from TAMs and reprograms TAMs.

Previous studies (134–136) have shown the potential of STAT3

inhibitors in combination with EGFR-TKIs for anti-tumor therapy.

W2014-S, a novel STAT3 inhibitor, can significantly enhance the anti-

tumor effect of EGFR-TKIs in TKI-resistant NSCLC (137).Wang et al.

(138) demonstrated that the STAT3 inhibitor BBI608 could potentiate

the anti-tumor efficacy of EGFR-TKIs by modulating the ROR1/

ABCB1/P53 signaling pathway.
TABLE 2 Strategies for improving resistance to EGFR-TKIs by targeting TAMs.

Strategies Up/Down Targets References

Dictamnine Down PI3K/AKT/mTOR and MAPK pathways 43

Torin2 Down AKT/mTOR pathway 44

Temsirolimus Down mTOR 45

BEZ235 Down PI3K/mTOR pathway 46, 49, 52

Active fraction (HS7) from Taiwanofungus camphoratus Down AKT-mTOR, ERK and STAT3 pathways 47

Everolimus Down mTOR 45,48, 55

Ku-0063794 Down mTOR 50

Ferumoxytol and CpG oligodeoxynucleotide 2395 Down EGFR and AKT/mTOR pathways 51

T0901317 and GW3965 Down AKT 62

Bufalin Down MET/PI3K/AKT Pathway 63

Chloroquine Down AKT 64

Norcantharidin Down MET/PI3K/AKT Pathway 65

MiR-30a-5p Down PI3K/AKT Pathway 66, 69

BMS-708163 Down PI3K/AKT Pathway 67

Polyphyllin I Down PI3K/AKT Pathway 68

(Continued)
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Reprogramming TAMs is a crucial strategy for improving the

resistance to EGFR-TKIs in NSCLC. It is worth mentioning that

reprogramming TAMs can enhance the efficacy of EGFR-TKIs

through a variety of mechanisms, including inhibition of TAM-

related drug resistance pathway (34), reactivation of T cells in the

TME (91), and reversal of EMT of tumor cells (104). STING (91),

lipid metabolic pathways (101), mTOR (34), Smads (114), IL-4 (107),

and STAT3 (111) have been reported as targets for reprogramming

TAMs in NSCLC. In addition, other strategies for reprogramming

TAMs are currently under investigation, which may offer insights

into improving resistance to EGFR-TKIs in NSCLC. Parayath et al.

(139) reprogrammed TAMs by intraperitoneal injection of

Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-

125b in NSCLC. Sarode et al. (140) reprogrammed TAMs by

targeting the b-catenin/FOSL2/ARID5A signaling pathway in lung

cancer. Future research should investigate innovative approaches to

reprogramming TAMs in NSCLC with EGFR mutation.

Finally, reducing the number of TAMs in the TME of EGFR-

mutant NSCLC, either by inhibiting TAM recruitment or depleting

TAMs, may represent a promising strategy to overcome resistance

to EGFR-TKIs. The clinical applicability of these methods warrants

further investigation (116, 117).
7 Conclusions

TAMs mediate EGFR-TKIs resistance in NSCLC through various

mechanisms, including activation of bypass pathways, inhibition of T

cell activity, M2-like polarization, and regulation of tumor cell
Frontiers in Immunology 08
phenotypes. In the future, developing therapeutic regimens that

target TAMs, such as interfering with TAM-related pathways,

reducing infiltration of TAMs, and reprogramming the macrophage

phenotype, could enhance the anti-tumor effect of EGFR-TKIs.
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TABLE 2 Continued

Strategies Up/Down Targets References

anti-HER-3 antibody Down HER-3 and PI3K/AKT Pathway 71

anti-HER-3 antibody Up STING 75

HECrossMAb Down PI3K/AKT Pathway 72

Gefitinib and Vorinostat Up M1-like polarization of TAMs 73

Cosuppression of NF-kB and AICDA Down NF-kB and AICDA 81

Liver X receptors agonist Down AKT and NF-kB 82

STING agonist MSA-2 Up M1-like polarization of TAMs 91

Simvastatin Up M1-like polarization of TAMs 104, 105

The Root Extract of Scutellaria baicalensis Down STAT3 109

Knockdown of lncRNA BLACAT1 Down STAT3 110

STAT3 inhibitor and an anti-CD47 monoclonal antibody Up M1-like polarization of TAMs 111

Simvastatin Down EMT 104

MTI-31 Down EMT 133

W2014-S Down STAT3 137

BBI608 Down STAT3 138
EGFR-TKIs, epidermal growth factor receptor tyrosine kinase inhibitors; TAMs, tumor-associated macrophages; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; mTOR, mammalian
target of rapamycin; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-related kinases; STAT3, signal transducer and activator of transcription 3; MET, mesenchymal to
epithelial transition factor; HER-3, human epidermal growth factor receptor 3; STING: Stimulator of interferon genes; NF-kB, nuclear factor-kB; AICDA, activation-induced cytidine deaminase;
EMT, epithelial-mesenchymal transition.
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