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Conduction system pacing on
track to replace CRT? Review of
current evidence and prospects of
conduction system pacing
Ahmed T. Moustafa, Anthony SL. Tang and Habib Rehman Khan*

Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada

Conduction system pacing (CSP) has been emerging over the last decade as a pacing
option instead of conventional right ventricular (RV) pacing and biventricular (BiV)
pacing. Numerous case reports, some observational studies and a few randomized
control trials have looked at optimum pacing strategies for heart failure (HF) with
left bundle branch block (LBBB) or cases where left ventricular (LV) dysfunction is
anticipated due to chronic RV pacing (RVP). Evolution of pacing strategies from
standard RVP to septal RVP, BiV pacing and now CSP have shown improving
hemodynamic responses and possible ease of implantation of CSP systems. In this
review article, we review the literature on the evolution of CSP and common
scenarios where it might be beneficial.
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Atrioventricular conduction system—anatomy and
physiological properties

The cardiac conduction system comprises specialized cells with properties of

automaticity and conduction. The sinoatrial (SA) node and the atrioventricular (AV)

node can function as pacemakers with the ability of automaticity. The Bundle of His,

approximately 18 mm long in an adult heart, traverses the right fibrous trigone

commonly dividing into two specialized bundle branches (right and left bundle branch,

RBB and LBB). These are encapsulated by a fibrous sheath that separates the specialized

myocytes from the myocardium thus allowing rapid electrical conduction. At the distal

branches of these bundles, there is absence of this fibrous sheath, allowing

communication with the local ventricular myocardium resulting in myocardial

contraction (Figure 1) (1). The LBB fibers are widely distributed and progressively

broaden to create a subendocardial network, before dividing further into the fascicles of

the LBB. This broad network further explains the feasibility of left bundle branch area

pacing (LBBAP), unlike His bundles, where the target area for effective pacing is very

narrow. Conduction abnormalities can occur in any segment of the conduction system

from the SA node, AV node or the His-Purkinje system (Figure 2).
Conduction tissue disease with bundle branch block

LBBB cause interventricular dyssynchrony with RV systole earlier than LV systole. It also

contributes to intraventricular dyssynchrony, which is a result of myocyte-to-myocyte
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FIGURE 1

Normal cardiac conduction system.
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propagation of signal from RV to LV through the septum, with the

earliest breakthrough of signals being the LV septum and the latest

being the inferior-basal LV wall. This mechanical disparity results

in a pre-systolic stretch of the late activated areas, which by way of

Frank-Starling law results in an enhanced systolic, albeit late,

contraction. As a result, systolic stress, strain, and myocardial

oxygen consumption is increased in late activated regions and

reduced in early activated regions, with subsequent loss of

pumping efficiency (2–4).

Disruption of the conduction system can have varying

detrimental effects. Early landmark data, such as the

Framingham study, showed that new LBBB was associated with
Frontiers in Cardiovascular Medicine 02
underlying coronary artery disease, cardiomyopathies, infiltrative

diseases and heart failure (5). Incidental finding of LBBB in the

presence of scar, as shown on cardiac magnetic resonance

(CMR) imaging, has worse outcomes than those who have no

scar (6). Bundle branch block (BBB) is deleterious on long-term

cardiovascular outcomes and has higher mortality in those

individuals with myocardial infarction or abrupt BBB following a

percutaneous procedure such as percutaneous coronary

intervention (PCI) or transcatheter aortic valve implantation

(TAVI) (7). Meta-analysis of studies shows any form of BBB to

have a higher association with mortality in patients presenting

with acute heart failure (8). In patients with LBBB, there is an
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FIGURE 2

Cardiac conduction system abnormalities.
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increasing evidence of LV diastolic impairment despite having a

preserved LV systolic function resulting in elevated filling

pressure and a rise in serum NT-proBNP levels (9).

Landmark clinical trials had shown that resynchronization

with Biventricular Pacing—Cardiac Resynchronization therapy

(BiV-CRT) improved quality of life, reduced LV remodeling, and

reduced cardiovascular outcomes such as hospitalization and

mortality in patients with impaired LV function in the setting of

LBBB (10–12). Correction of RBBB with CRT in the setting of
Frontiers in Cardiovascular Medicine 03
heart failure has not been shown to be as successful as shown in

meta-analysis and is thought to be due to underlying

comorbidities such as pulmonary hypertension (13).

There is minimal evidence supported by case reports to suggest

that correcting the LBBB in preserved LV function has any

long-term benefit (14). More studies are required to compare the

effects of pacing different regions of the conduction system

evaluating an improvement or maintaining LV function in these

subsets of patients over long periods (15).
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Correction of conduction tissue
disease

Patients with symptomatic SA node disease and AV block

will require pacemakers. The pacemakers can be RV-only,

dual-chamber pacemakers, CRT, endocardial LV lead, HIS Bundle

pacing (HBP) or LBBAP (Figure 3). Advancing technologies in this

field have led to an increasing amount of literature being published

particularly in the field of CRT, HBP and LBBAP (Figure 4).
Pacing-induced cardiomyopathy and
the need for resynchronization therapy

Right ventricular pacing (RVP) has saved the lives of a

substantial number of people, especially those with sick sinus
FIGURE 3

Illustration of pacing techniques. (1) Atrial pacing. (2) Right ventricular (RV) pacin
(5) Biventricular pacing (BVP) with an epimyocardial left ventricular lead via th
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syndrome (SSS) and AV block such as complete heart block

(CHB). However, chronic RVP has resulted in LV dysfunction in

some patients.

The placement of the leads at the RV has deleterious effects on

the normal functioning of the heart with the weakening of heart

muscle, heart failure and risk of arrhythmia. Pacing-induced

cardiomyopathy (PICM) from chronic high burden RVP has

varied in definitions across studies, with several different

thresholds for drop in LVEF identified. Most widely used

definition is drop in LVEF to less than 40%–50%, with an

absolute drop in LVEF of at least 5%–10%, with 10%–20% of

patients with normal LVEF speculated to develop PICM from

chronic high burden RVP (16–19). Permanent RVP results in

interventricular dyssynchrony, due to a change in the normal

activation of the LV. This effect is more prominent in patients

with dilated LV and lower left ventricular ejection fraction
g. (3) His bundle pacing (HBP). (4) Left bundle branch area pacing (LBBAP).
e coronary sinus (CS).
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FIGURE 4

Number of publications over the last 20 years based on three main pacing techniques of HBP (HIS bundle pacing), LBBAP (left bundle branch area pacing)
and CRT (cardiac resynchronization therapy).
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(LVEF) (16, 18, 20). The altered pattern of ventricular activation, is

responsible for intraventricular dyssynchrony, in a similar fashion

as LBBB with earliest activation being the ventricular septum, and

the latest being the inferior, basal wall of the LV. This contributes

to impaired mechanical contraction and eventually PICM (21).
Conduction system pacing with His
bundle pacing and left bundle branch
area pacing to normalize bundle
branch block

Conduction system pacing (CSP) requires engaging the

conduction system at either the level of the His bundle (HBP) or

the left bundle branch (LBBAP) resulting in myocardial capture
FIGURE 5

His bundle pacing with underlying block at the level of the atrioventricular (AV)
and the surrounding septal myocardium, resulting in a paced beat with a fusio
with a narrow complex paced beat.
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that is considered physiological. Physiological pacing through

CSP has been evolving to avoid the unfavourable effects of RV

pacing resulting in ventricular dyssynchrony (22–24).

HBP is considered the most physiological as it captures the

proximal origin of the ventricular conduction system beyond the

AV node, and proximal BBB can be corrected at its level due to

the longitudinal dissociation theory (25, 26). This theory

suggested that fibers from His bundle are predestined to fibers

composing individual bundle branches. Therefore, HBP at levels

of proximal blocks can allow for correction of BBB and result in

cardiac resynchronization (25, 26). HBP can be selective (S-HBP)

without simultaneous local myocardial capture or non-selective

(NS-HBP) where a small portion of cardiac myocardium is

simultaneously activated (Figure 5). The overall myocardial

performance is comparable between S-HBP and NS-HBP, with
node. (A) Non-Selective His bundle pacing with capture of both His bundle
n pattern. (B) Selective His bundle pacing with capture of His bundle only,
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early studies showing no clinical difference in outcomes from heart

failure, hospitalization, or death, as well as activation pattern on

echocardiography (27, 28). However, there is greater longevity of

pacemakers with S-HBP due to higher excitability of HBP

compared to myocardial excitability termed chronaxie, with His

bundle exhibiting shorter chronaxie requiring a shorter pacing

pulse width, further optimizing battery performance (29, 30).

HBP preserves LVEF by ensuring electrical activation of distal

Purkinje system and maintaining mechanical synchrony when

compared to right ventricular septal pacing (RVSP) during mid-

term follow-up in patients with AVB, narrow QRS, and LVEF

>40% (31). HBP has also been shown to have a lower risk of

inducing AF than conventional RVP (32). The 2018 AHA/ACC/

HRS guidelines recommend physiological ventricular activation

(CRT or HBP) in patients with AV block (class IIa indication),

and HBP in patients with AV block at the level of the AV node

(Class IIb indication), with mid-range LVEF (36%–50%) who

require permanent pacing and expected to require pacing more

than 40% of the time (33).

Despite HBP being the optimal pacing site for a physiological

response, it has its limitations. The technique of HBP requires

precision skills in targeting a small zone and is found to be

challenging in patients with distorted anatomy due to dilated

hearts, resulting in high fluoroscopic radiation exposure and a

long duration of procedures. Oversensing the atrial and

undersensing the ventricular signals is a frequent concern due to

the anatomical location of HBP. The success rate of achieving

HBP with predefined parameters varies between 76% and 96%

depending on the operator’s experience and the level of

conduction system disease (34). There is also variability in the

location of true His signals, necessitating different HBP lead tip

trajectory (more atrial vs. ventricular), as shown in the IMAGE-

HBP study, by identifying the HB anatomic landmarks on the

basis of CT imaging and lead tip location (35). Despite the

successful deployment of HBP, the pacing threshold is higher

than conventional RVP and can result in premature battery

depletion, loss of capture, early lead revisions, and associated

risks from repeated generator replacements. Mean number of

years for HBP generators to reach End Of Life (EOL)

necessitating a generator replacement is 5.9 ± 2.1 (36). When

compared to standard RVP, the need for lead revisions (6.7% vs.

3%) and for generator change (9% vs. 1%) were higher in the

HBP group at 5 years (37). Out of 844 patients with HBP, 199

(23.5%) patient’s thresholds increased more than 1.0 V in respect

to implant value, leading to HBP interruption in 51 patients, and

necessitating reintervention (lead revision or replacement) in 31

patients (36). Moreover, in cases of LBBB when the level of

conduction block is more distal, HBP cannot correct the LBBB.

LBBAP technique was first described by Huang et al. in 2017 by

capturing the LBB area deep into the RV septum in a patient with

heart failure and LBBB (2). LBBAP has emerged as a suitable

alternative to HBP due to lower pacing thresholds, higher

sensing amplitudes, and more stable lead positions alongside

providing physiological pacing (38, 39). Depending on the area

captured with pacing, LBBAP could either be LBB pacing (LBBP)

with both selective and non-selective LBB pacing, as well as LV
Frontiers in Cardiovascular Medicine 06
myocardial-only septal pacing (LVSP), each defined with their

unique diagnostic criteria (38, 39). LBBP can be achieved by

engaging the conduction system of the LBB along its left-sided

septal course by deploying the lead deep into the RV septum to

reach the LBB (2). LBBP results in more selective pacing of LBB

and restores a synchronized LV electrical activation more readily

due to a broader area to implant the pacing lead. At a higher

pacing output, LBBP usually results in non-selective LBBP,

capturing both the LBB and the surrounding myocardium.

Whereas at a lower pacing output, only the LBB is captured if

the pacing lead tip is appropriately positioned to capture the

LBB, resulting in selective LBBP (Figure 6). LVSP share the

same approach, implanting the lead into the left ventricular

septum via a transseptal approach, albeit shallower for LVSP

(42). LVSP entails capture of LV septal myocardium in contrast

to the direct LBB conduction system capture with LBBP, is a

common procedural outcome during LBBP due to the inability

to accurately distinguish them sometimes, or due to the

implanters experience (43). Despite the subtle differences in LV

activation, QRS morphology and duration, long term outcomes

of LVSP vs. LBBP are unknown and may differ. A subgroup

analysis of LOT-CRT study showed better echocardiographic,

electrocardiographic, and clinical outcomes in LBBP compared to

LVSP (44). LBBP continues to be a more favorable outcome over

LVSP in heart failure patients to achieve pacing closest to

physiological activation.

LBBAP has shown to be safe and effective in LBBB patients

with LV impairment to maintain or improve cardiac function

compared to RV pacing and BiV-CRT pacing, while taking a

shorter time and less radiation exposure to the patient than HBP

(45). Early small retrospective and prospective studies showed

promising results with the evolution of LBBAP to correct LBBB

and improve heart failure through a reduction in QRS duration

(QRSd) resulting in quicker LV activation time, with a low,

stable pacing capture threshold (46, 47).

LBBAP represents a natural evolution of conduction system

pacing to overcome the challenges posed by the current

limitations of HBP (48). There are some safety concerns however

associated with LBB pacing which include LV perforation, acute

lead dislodgement, and RBB injury necessitating a temporary

pacing lead for backup in some patients with LBBB (49–52).

Coronary artery injury, specifically septal branches of the left

anterior descending artery (LAD) is a risk of LBBAP (53). One

other limitation of LBBAP is the inability of the lead to penetrate

deep into the septum due to underlying fibrosis in some patients

with ischemic or non-ischemic cardiomyopathies (54). The long-

term safety profile, lead performance, and risks associated with

the extraction of the deep septal lead needs to be determined

(55). The efficacy of LBBAP for cardiac resynchronization

requires investigation in prospective randomized clinical trials.

For instances where adequate narrowing of the QRS cannot be

achieved by HBP due to distal conduction tissue disease, His

optimized CRT (HOT-CRT) was considered an alternative for

narrowing QRS by fusion of HBP and LV pacing via the

coronary sinus (56). Similarly, LBBAP-optimized CRT (LOT-

CRT) allows for fusion between LBBAP and LV pacing through
frontiersin.org
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FIGURE 6

Baseline left bundle branch block (LBBB) and respective QRS morphology and duration with pacing different parts of the conduction system. (A) Pacing
above the level of block at the His Bundle with the paced beat resembling LBBB. (B) Non-Selective left bundle branch pacing (LBBP) with capture of both
left bundle branch (LBB) and surrounding myocardium resulting in a paced beat with fusion pattern and atypical RBBB pattern with qR in V1. (C) Selective
LBBP with capture of LBB only, resulting in a typical wider RBBB pattern with rSR′ in V1. LAF, left anterior fascicle; LPF, left posterior fascicle.
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the coronary sinus (57). Both HOT-CRT and LOT-CRT techniques

have shown significant improvements in QRSd, LVEF, and

reduction in NT-proBNP and HF symptoms (44, 58).

Current recommendations for CSP (HBP or LBBAP) from the

2023 HRS/APHR/LAHRS guidelines include patients with

indications for pacemaker therapy with anticipated ventricular

pacing ≥40% and an LVEF of 36%–50% (class IIa) or LVEF

>50% (class IIb). CSP maybe considered if less than 40% pacing

is anticipated, with LVEF of 36%–50%, with or without a LBBB

(class IIb), whereas only LBBAP maybe considered if LVEF is

>50% (class IIb). CSP maybe also considered in HF patients with

LBBB, LVEF 36%–50%, QRSd ≥150 ms and NYHA class II-IV

(class IIb), or if effective CRT cannot be achieved with BiV

pacing and LVEF ≤35% (class IIa). In patients with non-LBBB,

LVEF ≤35%, QRSd 120–149 and NYHA class III–IV, CSP could

be considered (class IIb) (59).
Frontiers in Cardiovascular Medicine 07
Biventricular pacing resynchronization
of ventricles and limitations

BiV pacing (BVP) was developed in the early 2000s by pacing

both ventricles resulting in fusion and correcting BBB in the

management of heart failure (60). Conventional BiV-CRT is

achieved by placing a lead in an epicardial coronary vein.

Evidence for BiV-CRT stems from the MIRCLE trial, the first

trial showing improved exercise tolerance, heart failure

symptoms and quality of life (61). Subsequent trials (CARE-HF,

COMPANION, REVERSE, MADIT-CRT and RAFT) showed

similar promising outcomes (10, 62–65). Currently, BVP is

an established guideline treatment termed cardiac

resynchronization therapy (CRT) for patients with heart failure

(LVEF <35%), LBBB and on optimal recommended heart

failure drugs (66–68).
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BiV-CRT has been shown to reverse LV dysfunction by

narrowing QRS, and improving hemodynamic response, even in

patients with chronic RVP and mild heart failure (69–71).

Several pathways have been identified by which BiV-CRT

improves cardiac function and heart failure symptoms. Most

importantly is correction of LBBB, improving both inter- and

intraventricular dyssynchrony, eliminating the disparities in the

timing of shortening of earlier activated regions with reciprocal

stretch of late activated regions (72). Derivate of pressure over

time maximum (dP/dTmax) of the LV, is one of the oldest

measures of LV global contractility and is a good index of

ventricular performance. Shortening of an inappropriately long

AV delay by CRT results in an earlier pressure development in

the LV due to pre-excited pacing, increasing the pulse pressure

and LV dP/dTmax (73–75).

BiV-CRT has its challenges and complications. Besides the

problems associated with conventional pacing, there are several

others, like the problems associated with the LV lead insertion

due to coronary sinus anatomy and perforation, phrenic nerve

stimulation, and displacement of leads, along with longer

procedure times with subsequently increased risk of infections

(76, 77).

Despite the success, 30%–45% are considered non-responders

to CRT and do not benefit, albeit there is a lack of a universally

accepted definition for non-responders (78). Patients with a

history of Atrial fibrillation (AF) may not have good outcomes

with the BiV-CRT alone and will require >98% BVP achieved by

medications or by catheter ablation of the AV node (79, 80).

Another predictor identified that is associated with poor response

to CRT is a QRS morphology with typical LBBB being more

responsive to CRT compared to atypical LBBB or RBBB (70).

The location of the epicardial LV lead also plays an important

role explained by pacing not being at the most delayed region or

presence of scar at the LV pacing site (81, 82). With apical

epicardial placement resulting in worse clinical outcomes

compared to placement at the basal to mid-myocardial segments

of the lateral wall in addition to variable activation wavefront

vectors and velocities resulting in altered fusion (83). The

advantages of multisite pacing in the LV has also not improved

response rates and are likely due to large areas of fibrosis and

not the anatomical site of pacing (84, 85).

A “CRT team” using CMR and longitudinal myocardial strain

to identify a target area for optimal epicardial LV lead placement

prior to implantation, defined as the most delayed and still viable

region, showed a high response rate with only 7% non-

responders and no negative responders (86). In areas of

progressive scar, phrenic nerve capture, and higher rates of

coronary sinus lead dislodgements, quadripolar leads have shown

advantageous to bipolar leads in preserving CRT response and

avoiding premature battery depletion (87–89).

LV endocardial pacing was designed to offer another

alternative option for LV resynchronization with a greater choice

of the site of LV pacing without the restriction of implanting in

coronary venous tributaries. Approaches for LV endocardial

pacing include atrial transseptal route and across the mitral valve,

via the interventricular septum, via a transapical route, and lastly
Frontiers in Cardiovascular Medicine 08
wireless LV endocardial pacing. The main limitation to LV

endocardial pacing is placement of the lead in the systemic

circulation with increased risk of thromboembolism and the

requirement for long-term anticoagulation (90). In addition, the

LV endocardial pacing approach via the intra-atrial septum

passing through the mitral valve has its challenges, such as

impeding mitral valve closure and increasing the risk of

degeneration and infective endocarditis (91). The transapical

implantation method of endocardial LV pacing is beneficial as it

avoids the mitral valve and transseptal route. However, it has

only been described in case reports and small series (92, 93).

Due to its limitations, LV endocardial pacing has not been

sought after as an alternative to conventional BVP.
His bundle pacing compared with
biventricular pacing

CSP in the form of HBP is used in patients with heart failure

with reduced LVEF (HFrEF) and broad QRS and has shown to

have promising results as supported by a recent meta-analysis

(94). There have been few case reports, observational and

randomized control trials comparing HBP to CRT, showing a

reduction in QRSd, LV volumes and improvement in LVEF

(94, 95). HBP, compared to BiV pacing, was superior in

symptomatic AF patients undergoing AV node ablation, with

moderately reduced LVEF (≥35% and <50%) and a narrow QRS

(≤120 ms), with a statistically significant reduction in indexed LV

volumes and an increase in LVEF (96). Similarly, the

ALTERNATIVE-AF trial demonstrated modest improvement in

LVEF with HBP compared to BiV pacing in patients with

symptomatic persistent AF, reduced LVEF (≤40) and a narrow

QRS (≤120 ms) (97). However, further adequately powered trials

are necessary to determine whether these improvements in LV

function can translate to improvements in clinical endpoints.
Left bundle branch area pacing
compared with biventricular pacing

CSP in the form of LBBAP has evolved after the era of HBP

mostly due to the latter’s limitation with successful His

engagement, increasing capture threshold during follow-up,

proximity to atrium resulting in oversensing and low sensing

amplitude at the His bundle location. In contrast, LBBAP regions

typically have higher sensing, lower capture thresholds and

similar paced QRS durations. Compared to BiV pacing, LBBAP

showed improved symptoms, LVEF and reduction in QRS and

LV volumes (55, 94, 98, 99). The randomized trial LBBP-

RESYNC, demonstrated a greater improvement of LVEF,

reduction in indexed LV systolic volume with LBBAP compared

to BiV pacing in patient with symptomatic HF, LBBB and an

LVEF ≤40, with comparable improvement in functional status

with both pacing modalities (100). A metanalysis of only

four available non-randomized controlled trials of LBBAP vs.

BiV-CRT showed a significantly shortened QRSd (MD:
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−29.18 ms, 95% CI: −33.55 to 24.8, P < 0.001), improved LVEF

(MD: 6.93%, 95% CI: 4.69 to 9.17, P < 0.001), reduced LV end-

diastolic dimension (MD: −2.96 mm, 95% CI: −5.48 to −0.44, P
= 0.02), improved NYHA class (MD: −0.54, 95% CI: −0.84 to

−0.24, P < 0.001), and higher echocardiographic and clinical

response rate (48). Two non-randomized trials comparing

LBBAP and BiV pacing, one with 371 patients, and an

international multicentre trial with 1,778 patients, showed a

significant reduction in the primary outcome, which was a

composite outcome of both HF hospitalization and all-cause

mortality, driven by a greater reduction in HF hospitalizations

without a significant difference in all-cause mortality or long-

term complications in the LBBAP group, with greater LVEF

improvement, improved functional status, and a significant

reduction in procedural and fluoroscopy times (101, 102). In a

non-randomized trial, with 12 months follow-up, patients

with LBBB, LVEF ≤35% and heart failure had better

electromechanical resynchronization with LBBP compared to

optimized BiV pacing with adaptive algorithm (BVP-aCRT),

with a significant reduction in QRSd (126.54 ± 11.67 vs.

102.61 ± 9.66 ms, P < 0.001). Furthermore, LBBP demonstrated

higher clinical and echocardiographic response, especially higher

super-response (≥20% absolute increase or LVEF ≥50%)
compared to BVP-aCRT (103). LBBAP is a promising alternative

over BiV-CRT, however, high quality randomized controlled

trials with longer terms are essential for validation.
Future considerations

The rapid acceptance and evolution of CSP along with its safety

has led to rapid growth of research in multiple facets being

explored. Current randomized recruiting studies on CSP listed on

clinicaltrials.gov include CONSYST-CRT (NCT05187611)

compares CSP to BiV-CRT in 130 patients with indications for

CRT, and Left vs. Left (NCT05650658) comparing both pacing

strategies in 2,136 patients with LVEF <50%, RAFT-Preserved

(NCT04582578) compares CSP to BiV-CRT in HF with

preserved ejection fraction, RAFT P&A (NCT05428787)

compares LBBAP to BiV-CRT in patients with AF underdoing a

pace and ablate strategy, CSP-SYNC (NCT05155865), HOT-CRT

(NCT04561778), PHYSPAVB (NCT05214365) compares CSP

versus conventional RV pacing, LEAP (NCT04595487) compares

CSP to RV pacing, LEAP-Block (NCT04730921) compares

LBBAP to RV pacing in patients with AV block, HIS-PrEF

(NCT04529577) compares RV pacing to HBP in HFrEF, HIS-

alt_2 (NCT04409119) compares CSP to BiV-CRT in HFrEF with
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LBBB, LBBAP-AFHF (NCT05549544) compares LBBAP with

BiV pacing in patients requiring an AV node ablation in LVEF

<50%, LEFT-BUNDLE-CRT (NCT05434962) compares LBBAP

to BiV-CRT in HFrEF. Some of these studies are reviewing the

clinical effectiveness of CSP to current conventional and gold

standards such as BiV-CRT with outcomes targeting electrical

(QRS), function (LVEF) and biochemical changes (NT-proBNP).

Other studies are looking at mechanisms of clinical response,

and myocardial activation sequence using CSP compared to BiV.
Conclusion

Conduction tissue pacing in HIS Bundle pacing and LBBAP is

feasible, safe, and quicker, with results comparable to cardiac

resynchronization therapy. Extensive studies are required to

directly compare the long-term clinical effectiveness of

conduction system pacing against CRT.
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