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Incorporating inflammatory
biomarkers into a prognostic risk
score in patients with non-
ischemic heart failure: a machine
learning approach

Jiayu Feng1, Xuemei Zhao1, Boping Huang1, Liyan Huang1,
Yihang Wu1, Jing Wang1, Jingyuan Guan1, Xinqing Li1,
Yuhui Zhang1* and Jian Zhang1,2*

1State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for
Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing, China, 2Key Laboratory of Clinical Research for Cardiovascular Medications,
National Health Committee, Beijing, China
Objectives: Inflammation is involved in the mechanisms of non-ischemic heart

failure (NIHF). We aimed to investigate the prognostic value of 21 inflammatory

biomarkers and construct a biomarker risk score to improve risk prediction for

patients with NIHF.

Methods: Patients diagnosed with NIHF without infection during hospitalization

were included. The primary outcome was defined as all-cause mortality and

heart transplantations. We used elastic net Cox regression with cross-validation

to select inflammatory biomarkers and construct the best biomarker risk score

model. Discrimination, calibration, and reclassification were evaluated to assess

the predictive value of the biomarker risk score.

Results: Of 1,250 patients included (median age, 53 years, 31.9% women), 436

patients (34.9%) experienced the primary outcome during a median of 2.8 years of

follow-up. The final biomarker risk score included high-sensitivity C-reactive

protein-to-albumin ratio (CAR) and red blood cell distribution width-standard

deviation (RDW-SD), both of which were 100% selected in 1,000 times cross-

validation folds. Incorporating the biomarker risk score into the best basic model

improved the discrimination (DC-index = 0.012, 95% CI 0.003–0.018) and

reclassification (IDI, 2.3%, 95% CI 0.7%–4.9%; NRI, 17.3% 95% CI 6.4%–32.3%) in

risk identification. In the cross-validation sets, the mean time-dependent AUC

ranged from 0.670 to 0.724 for the biomarker risk score and 0.705 to 0.804 for

the basic model with a biomarker risk score, from 1 to 8 years. In multivariable Cox

regression, the biomarker risk scorewas independently associatedwith the outcome

in patients with NIHF (HR 1.76, 95% CI 1.49–2.08, p < 0.001, per 1 score increase).

Conclusions: An inflammatory biomarker-derived risk score significantly

improved prognosis prediction and risk stratification, providing potential

individualized therapeutic targets for NIHF patients.
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GRAPHICAL ABSTRACT

We utilized a machine learning-based elastic net Cox regression for variable selection from easily obtainable inflammatory biomarkers. We per-
formed inner loop cross-validations to determine the parameter l and then selected the model with the highest C-statistic in outer loops. The pro-
cess above was repeated 1,000 times to choose the inflammatory markers that presented at 100% frequency in repetitions. We constructed a
biomarker risk score based on CAR and RDW-SD. The biomarker risk score increased discrimination and reclassification of the predictive model.
1 Introduction

Non-ischemic heart failure (NIHF) is a clinical syndrome with

symptoms and/or signs, accompanied by elevated natriuretic peptide

levels and/or objective evidence of congestion, in the absence of

significant coronary artery disease (CAD) (1). This condition is

associated with high mortality and requirement for heart

transplantation. Despite advances in medical therapy, response to

treatment can be variable, underscoring the need for accurate risk

prediction and personalized management to improve outcomes.

Inflammation has been identified as a critical underlying

mechanism in the development and progression of HF (2).

Research has shown that NIHF is associated with a unique and

persistent inflammatory response that differs from the acute

myocardial ischemia and subsequent reperfusion injury seen in

ischemic heart failure (3–5). These differences have significant

implications for disease pathogenesis and treatment strategies.

Inflammatory biomarkers, such as high-sensitivity C-reactive

protein (hsCRP), fibrinogen (FIB), albumin, erythrocyte

sedimentation rate (ESR), and indices within the complete blood
Frontiers in Immunology 02
cell count (including white blood cells [WBC], neutrophils,

lymphocytes, and red blood cell distribution width [RDW]), have

been identified as potential predictors of adverse outcomes in

patients with CAD or HF (6–10). It is worth noting that, despite

biomarkers like FIB, albumin and RDW were not traditionally used

as inflammatory biomarkers; several studies have shown that these

biomarkers can reflect chronic inflammation, and inflammatory

activation may be the central link in the prognostic role of these

biomarkers (6, 11). Furthermore, derived parameters from these

biomarkers, such as the fibrinogen-to-albumin ratio (FAR), hsCRP-

to-albumin (CAR), neutrophil-to-lymphocyte ratio (NLR), systemic

immune-inflammation index (SII), and prognostic nutritional

index (PNI), have also been demonstrated to serve as prognostic

factors (11–14). However, the prognostic value of inflammatory

biomarkers in NIHF and which parameters are the most predictive

remain largely unknown.

Our study aimed to use a machine learning approach to

investigate and identify the most predictive inflammatory

biomarkers and their derived parameters for the prognosis of

NIHF. Additionally, we aimed to develop a biomarker risk score
frontiersin.org
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that incorporates these valuable indexes to enhance the accuracy of

NIHF risk prediction.
2 Materials and methods

2.1 Patients

This study retrospectively included patients who were

diagnosed with NIHF and aged >18 years old, between 2006 and

2017, at the Heart Failure Care Unit of Fuwai Hospital. The

diagnosis of NIHF was made based on clinical presentation and

objective evidence, such as imaging or natriuretic peptides, in the

absence of significant CAD (myocardial infarction [MI], stent

implantation, or coronary artery bypass grafting, ≥50% stenosis

confirmed by CTA or coronary angiography). Patients with

infective or systemic diseases were excluded from the study,

including those with (1) viral myocarditis, (2) infective

endocarditis, (3) cancer, (4) autoimmune disease, (5) blood

system disease, and (6) infection during hospitalization. Ethical

approval was obtained from the Ethics Committee of Fuwai

Hospital, and all participants provided written informed consent

(Approval number 2014-501).
2.2 Follow-up and endpoint

During the follow-up period, the participants were given

suitable medical treatment as directed by the guideline. The

composite outcome was established as the combination of all-

cause mortality and heart transplantation because these events

can serve as hard endpoints to reflect the prognosis of

NIHF patients.
2.3 Data collection and inflammatory
parameters definition

The study obtained information on demography, symptoms

and signs, laboratory examination, therapies, and echocardiography

from the Fuwai Electronic Medical Record System. A vein blood

sample was collected from all hospitalized patients on the morning

following admission and collected in EDTA tubes. All biomarkers

were tested at the central laboratory following standard procedures.

The inflammatory biomarkers analyzed in this study were

comprehensively evaluated using both single and derived

parameters. We investigated 10 single parameters (white blood

cell [WBC], neutrophils, lymphocytes, red blood cell distribution

width [RDW], RDW-SD, platelet [PLT], fibrinogen [FIB], albumin,

high-sensitivity C-reactive protein [hsCRP], and erythrocyte

sedimentation rate [ESR]) and 11 derived parameters, namely,

neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte

ratio (PLR), neutrophil-to-platelet ratio (NPR), lymphocyte-

to-hsCRP ratio (LCR), RDW-to-platelet ratio (RPR), RDW-to-

albumin ratio (RAR), platelet-to-albumin ratio (PAR), FIB-to-
Frontiers in Immunology 03
albumin ratio (FAR), hsCRP-to-albumin ratio (CAR), SII

(neutrophil * platelet/lymphocyte), and PNI (albumin+5

* lymphocyte).
2.4 Statistical analysis

2.4.1 Baseline characteristics demonstration
Baseline characteristics are presented as frequencies (percentages)

for categorical variables and medians (25th to 75th percentile) for

continuous variables. Characteristics were compared using a c2 test
or the Fisher exact test for categorical variables and a Student t-test or

Mann–Whitney U-test for continuous variables.

2.4.2 Inflammatory biomarker selection and the
biomarker risk score construction

For inflammatory variable selection and risk score construction,

we utilized a machine learning-based elastic net Cox regression that

combines Ridge (L2) and LASSO (L1) regularization. This approach

was chosen because it can help to mitigate the impact of

multicollinearity and to identify the most important variables

(15). All inflammatory markers were standardized to z-scores

(mean = 0, standard deviation [SD] = 1) prior to input. The

relative contribution of L1 and L2 regularization is controlled by

a mixing parameter a, which was set to 0.5. The elastic net Cox

regression was performed by the R package “glmnet”. To determine

the optimal value of the model complexity parameter l, we
performed a fivefold cross-validation inner loop and selected the

l value that resulted in the minimum partial likelihood deviation.

Next, the best l value obtained from the inner loop was used to fit a

model in each training set of a fivefold outer loop cross-validation.

For inflammatory biomarker selection, we then selected the model

with the highest C-statistic in the corresponding test set of the outer

loop, and the best model in each outer loop produced a set of

inflammatory biomarkers with non-zero coefficients.

To generate a stable model with the most effective variables, we

repeated the entire process above 1,000 times and chose the

inflammatory biomarkers that presented at 100% frequency in

repetitions to construct the biomarker risk score. The coefficients

of the variables included in the biomarker risk score were

determined by fitting them into a new elastic net Cox regression.

To compare different variable selection strategies, we tested the

performance of models constructed using biomarkers selected at

>95% and >90% frequency of the 1,000 cross-validation iterations,

compared to the model with 100% appeared variables.

2.4.3 The basic predictive model construction
The basic model was constructed using the same approach of

elastic net Cox regression incorporating age, gender, systolic blood

pressure (SBP), New York Heart Association (NYHA) III/IV,

current smoking, dilated cardiomyopathy (DCM), chronic

obstructive pulmonary disease (COPD), atrial fibrillation (AF),

diabetes, N-terminal Pro Brain natriuretic peptide (NT-proBNP),

serum creatine (Scr), hemoglobin, low-density lipoprotein

cholesterol (LDL-C), therapy with angiotensin-converting enzyme
frontiersin.org
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inhibitor/angiotensin receptor blocker (ACEI/ARB), and

beta-blockers.

2.4.4 Assessment of the performance of the
biomarker risk score and the biomarker risk score
plus basic model

Regarding discrimination, we evaluated the time-dependent

receiver operating characteristic (ROC) area under the curve

(AUC) of the biomarker risk score from 1 to 8 years. The time-

dependent ROC was performed by the R package “timeROC”. To

test the model’s stability, we also presented the mean and SD of

the time-dependent AUC in 100 times fivefold cross-validation.

The improvement in the Harrel’s C-statistic (DC-index) by

adding the biomarker risk score to the basic model was also

assessed. We tested the 95% confidence interval (CI) of the DC-
index in 1,000 bootstrap samples. To assess calibration, we used

the Greenwood–Nam–D’Agostino (GND) test to evaluate the

agreement between observed and predicted risk, where p < 0.05

indicated lack of fit. For reclassification assessment, we

conducted continuous net reclassification improvement (NRI)

and integrated discrimination improvement (IDI) analyses at 8

years. The IDI and NRI were calculated by the R package

“survIDINRI” . Lastly, we performed Cox regressions to

investigate the independent prognostic roles of the biomarker

risk score and its components after adjusting for covariates in the

basic model. The Schoenfeld residual was used to test the

proportional hazard assumption by the R function “coxzph”.

We reported the hazard ratio (HR) and 95% CI, and considered p

< 0.05 to be statistically significant. We conducted all statistical

analyses using R software version 4.1.3.
Frontiers in Immunology 04
3 Results

3.1 Baseline characteristics

This study included 1,250 hospitalized patients diagnosed with

NIHF (Supplementary Figure 1). Table 1 provides a summary of

baseline characteristics based on the primary outcome. The median

age of the patients was 53 years (interquartile range, 42–64), with

339 (31.9%) being women. Patients who met the endpoint had

higher levels of RDW, RDW-SD, ESR, and hsCRP, while having

lower levels of lymphocyte, PLT, and albumin than patients who did

not meet the endpoint. We also examined derived parameters,

finding that patients who met the endpoint had higher levels of

FAR, CAR, RAR, RPR, NLR, PLR, and NPR, while having lower

levels of PAR, LCR, and PNI (Supplementary Table 1).
3.2 Selection of inflammatory biomarkers
for the biomarker risk score construction

According to our pre-defined inflammatory biomarker selection

strategy, from 1,000 iterations of fivefold cross-validation, CAR and

RDW-SD appeared in 100% of the 1,000 repetitions. Moreover,

variables with a frequency >90% in the final model are CAR, LCR,

PLT, PNI, and RDW-SD; those with a frequency >95% are CAR,

PLT, and RDW-SD. The frequencies of selection and their median

coefficients for each inflammatory biomarker are shown in Figure 1.

Three models were constructed based on variables with frequencies

100%, >95%, and >90%, and their average C-index and average

partial likelihood deviance in cross-validation are presented in
TABLE 1 Baseline characteristics for NIHF patients with or without primary outcome.

Overall Primary outcome (−) Primary outcome (+) p-value

N 1,250 814 436

Clinical characteristics

Age (years) 53 [42, 64] 52 [41, 63] 56 [45, 66] 0.001

Female (%) 399 (31.9) 258 (31.7) 141 (32.3) 0.866

Heart rate (b.p.m.) 80 [69, 93] 80 [70, 94.8] 79 [68, 90] 0.037

SBP (mmHg) 116 [102, 130] 120 [107, 133] 106 [96, 120] <0.001

DBP (mmHg) 70 [62, 80] 72 [65, 81.8] 68 [60, 75] <0.001

BMI (kg/m2) 24.2 [21.3, 27.1] 24.8 [22.0, 27.7] 22.8 [20.5, 25.9] <0.001

DCM (%) 510 (40.8) 326 (40.0) 184 (42.2) 0.498

Valvular heart disease (%) 160 (12.8) 100 (12.3) 60 (13.8) 0.512

T2DM (%) 200 (16.0) 133 (16.3) 67 (15.4) 0.714

COPD (%) 56 (4.5) 22 (2.7) 34 (7.8) <0.001

Hypertension (%) 497 (39.8) 352 (43.2) 145 (33.3) 0.001

AF (%) 463 (37.0) 283 (34.8) 180 (41.3) 0.027

(Continued)
fron
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Supplementary Table 2. We ultimately selected the variables with a

frequency of 100% (CAR and RDW-SD) to construct the biomarker

risk score, as this model had the lowest complexity and no

significant difference in mean C-index, time-dependent AUC, and

partial likelihood deviance compared to the other two models

(Supplementary Figure 2). The linear predictor of elastic net

regression including CAR and RDW-SD was calculated as the

biomarker risk score in the total population, and the formula was

biomarker risk score = 0.20*CAR+0.47*RDW-SD.
Frontiers in Immunology 05
3.3 Predictive value of the biomarker risk
score and adding the biomarker risk score
to the basic model

Over a median follow-up period of 2.8 (1.0–4.6) years, 360

patients (28.8%) died, and 76 patients (6.1%) received heart

transplants. The time-dependent AUC for the biomarker risk

score was 0.720 at 1 year, 0.712 at 3 years, 0.671 at 5 years, and

0.684 at 8 years, as depicted in Figure 2. When combining the
TABLE 1 Continued

Overall Primary outcome (−) Primary outcome (+) p-value

N 1,250 814 436

NYHA Class III/IV (%) 946 (75.7) 566 (69.5) 380 (87.2) <0.001

Smoking (%) 283 (22.6) 178 (21.9) 105 (24.1) 0.412

Drinking (%) 253 (20.2) 173 (21.3) 80 (18.3) 0.253

Laboratory Test

Fibrinogen (g/L) 3.39 [2.90, 4.06] 3.35 [2.90, 3.98] 3.45 [2.87, 4.16] 0.297

Albumin (g/L) 41.00 [37.50, 44.20] 41.70 [38.20, 44.80] 39.90 [36.50, 42.80] <0.001

HsCRP (mg/L) 2.88 [1.41, 6.88] 2.49 [1.26, 5.56] 3.61 [1.71, 9.19] <0.001

WBC (109/L) 6.70 [5.52, 8.08] 6.72 [5.64, 8.12] 6.64 [5.15, 8.00] 0.092

Neutrophil (109/L) 4.22 [3.34, 5.36] 4.16 [3.37, 5.30] 4.30 [3.28, 5.45] 0.796

Lymphocyte (109/L) 1.72 [1.29, 2.20] 1.79 [1.40, 2.25] 1.51 [1.06, 2.05] <0.001

Platelet (109/L) 187.50 [148.00, 237.00] 194.00 [154.00, 244.00] 176.50 [138.00, 221.00] <0.001

RDW (%) 13.70 [12.80, 14.90] 13.35 [12.60, 14.38] 14.45 [13.40, 15.70] <0.001

RDW-SD (fl) 44.80 [41.60, 48.70] 43.75 [40.90, 46.80] 47.40 [43.30, 51.40] <0.001

ESR (mm/h) 6.00 [2.00, 14.00] 6.00 [2.00, 12.00] 7.00 [3.00, 17.00] <0.001

Hemoglobin (g/L) 143.0 [128.0, 157.0] 145.0 [131.0, 159.0] 138.5 [124.0, 153.0] <0.001

Scr (mmol/L) 90.0 [74.6, 109.8] 87.4 [73.4, 106.1] 93.9 [77.4, 116.0] <0.001

NT-Pro BNP (pg/ml) 1,939.8 [828.5, 4,101.5] 1,533.0 [658.5, 3,299.5] 3,070.2 [1,362.2, 5,601.5] <0.001

Echocardiography 1.8 [1.6, 2.0] 1.8 [1.7, 2.0] 1.7 [1.6, 1.9] <0.001

LAD (mm) 46.0 [41.0, 52.0] 45.0 [40.0, 50.0] 49.0 [44.0, 55.0] <0.001

LVEDD (mm) 64.0 [53.0, 72.0] 63.0 [54.0, 70.0] 66.0 [52.2, 76.0] 0.005

LVEF (%) 35.6 [27.1, 53.0] 38.0 [29.0, 54.0] 32.0 [25.0, 51.0] <0.001

RVD (mm) 24.0 [21.0, 28.0] 24.0 [21.0, 27.0] 26.0 [22.0, 31.0] <0.001

Therapy

Digoxin (%) 793 (63.4) 535 (65.7) 258 (59.2) 0.026

ACEI/ARB (%) 726 (58.1) 532 (65.4) 194 (44.5) <0.001

b-blocker (%) 1,013 (81.0) 691 (84.9) 322 (73.9) <0.001

MRA (%) 927 (74.2) 620 (76.2) 307 (70.4) 0.032

Diuretics (%) 1,041 (83.3) 674 (82.8) 367 (84.2) 0.589
fron
Values are shown as median [interquartile range] or as frequencies [percentage]. SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; DCM, dilated
cardiomyopathy; T2DM, Type 2 diabetes mellitus; COPD, chronic obstructive pulmonary disease; AF, atrial fibrillation; NYHA, New York Heart Association; hsCRP, high-sensitivity C-reactive
protein; WBC, white blood cell; RDW-SD, red blood cell distribution width-standard deviation; ESR, erythrocyte sedimentation rate; Scr, serum creatine; NT-Pro BNP, N-terminal Pro Brain
natriuretic peptide; LAD, left atrial diameter; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; RVD, right ventricular diameter; ACEI, angiotensin-
converting enzyme inhibitor; ARB, angiotensin receptor blocker; MRA, mineralocorticoid receptor antagonist.
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biomarker risk score with the basic model, the time-dependent

AUC at 1 year, 3 years, 5 years, and 8 years was 0.811, 0.780, 0.756,

and 0.719, respectively. Moreover, the biomarker risk score

exhibited consistent discrimination across cross-validation over 1

to 8 years, with mean time-dependent AUCs ranging from 0.670 to

0.724 for biomarker risk score and 0.705 to 0.804 for the basic

model with biomarker risk score added, as shown in Figure 3. The

addition of the biomarker risk score to the basic model improved

the model’s C-index from 0.746 to 0.758, with a DC-index of 0.012
and 95% CI from bootstrapping of 0.003 to 0.018, as demonstrated

in Table 2. The calibration plot in Figure 4 indicates that the

biomarker risk score was well-calibrated, with a non-significant p-

value of the GND test (c2 = 4.92, p = 0.295). Furthermore, compared

to the basic model, the model including the biomarker risk score

significantly improved reclassification (IDI, 2.3% [0.7%–4.9%], p <

0.001; NRI, 17.3% [6.4%–32.3%], p = 0.007).
3.4 The independent association between
the biomarker risk score and the outcome
of patients with NIHF

The Kaplan–Meier curves show that higher levels of the

biomarker risk score were associated with poor prognosis in

patients with NIHF when the study population was stratified into

groups based on the tertiles of the biomarker risk score (Figure 5).

In the multivariable regression, after adjusting for confounders

(variables within the basic model), the biomarker risk score was

also independently associated with the outcome (Table 3). With

every 1 score increase in the biomarker risk score, the risk of death
Frontiers in Immunology 06
or heart transplantation in patients with NIHF is expected to

increase by 1.76 times (adjusted HR 1.76, 95% CI 1.49–2.08, p

< 0.001).
4 Discussion

In this study, we utilized a machine learning-based elastic net

Cox regression for variable selection from easily obtainable

inflammatory biomarkers in clinical settings. Ultimately, we

constructed a biomarker risk score based on CAR and RDW-SD,

and repeated cross-validation demonstrated the high stability of this

model. Importantly, a well-calibrated biomarker risk score can

improve prognostic prediction in patients with NIHF by

increasing discrimination and reclassification performance for all-

cause mortality and heart transplantation. The biomarker risk score

was also independently associated with adverse outcomes in

multivariable regression, suggesting that it can identify high-risk

patients and screen potential candidates for inflammation-

targeted therapy.

A lot of studies have proved that cell death is a clear trigger of

inflammation, which contributes to ischemic HF following MI (16,

17). However, the inflammation observed in NIHF is not initially

related to cell death. In contrast to MI, there is modest neutrophil

recruitment in the pressure overload heart, which is consistent with

the deficiency of cardiomyocyte death. However, the transverse

aortic constriction-induced pressure overload heart model shows an

increase in F4/80 positive macrophages (3, 18). Research suggests

that cardiomyocytes are the primary sites where genes related to

inflammation are expressed in response to non-ischemic stressors,
FIGURE 1

The frequencies of selection or each inflammatory marker in 1,000 cross-validations and their median coefficients. RDW-SD, red blood cell
distribution width-standard deviation; PLT, platelet; FIB, fibrinogen; ALB, albumin; hsCRP, high-sensitivity C-reactive protein; WBC, white blood cell;
ESR, erythrocyte sedimentation rate; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; NPR, neutrophil-to-platelet ratio; LCR,
lymphocyte-to-hsCRP ratio; RPR, RDW-to-platelet ratio; RAR, RDW-to-albumin ratio; PAR, platelet-to-albumin ratio; FAR, FIB-to-albumin ratio;
CAR, hsCRP-to-albumin ratio; SII, systematic inflammatory index (neutrophil * platelet/lymphocyte); and PNI, prognostic nutritional index (albumin
+5 * lymphocyte).
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including pressure overload, isoproterenol, and angiotensin II

(AngII). The Ca2+/calmodulin regulated kinase (CaMKIId)
activation is the underlying mechanism that triggers cardiac

inflammation in non-ischemic stimuli (3, 19). The distinctive

inflammatory response and mechanisms of NIHF imply the
Frontiers in Immunology 07
necessity of studying specific inflammatory biomarkers in HF

patients with non-ischemic etiologies.

A previous study by Zhu et al. included 538 patients with acute

heart failure (37.9% ischemic HF) and determined CRP, RDW, and

NLR as predictors within an inflammatory prognostic score based
FIGURE 3

The time-dependent AUC over 8 years of the biomarker risk score, basic model, and the biomarker risk score plus basic model. The basic model
was also constructed using elastic net Cox regression incorporating age, gender, SBP, NYHA III/IV, current smoking, DCM, COPD, AF, diabetes, NT-
proBNP, creatine, hemoglobin, LDL-C, therapy with ACEI/ARB, and beta-blockers.
TABLE 2 Discrimination and reclassification of adding the biomarker risk score to the basic model in predicting prognosis.

DC-index IDI p for IDI NRI p for NRI

CAR 0.004 (−0.001 to 0.007) 0.011 (0.001–0.028) 0.02 0.099 (−0.019 to 0.191) 0.073

RDW-SD 0.011 (0.002–0.017) 0.016 (0.001–0.038) 0.04 0.144 (0.050–0.284) 0.013

Biomarker Risk Score 0.012 (0.003–0.018) 0.023 (0.007–0.049) <0.001 0.173 (0.064–0.323) 0.007
fr
The 95% confidential interval (CI) of the DC-index was calculated in 1,000 bootstrap samples. The continuous net reclassification improvement (NRI) and integrated discrimination
improvement (IDI) analyses at 8 years. CAR: hsCRP-to-albumin ratio; RDW-SD, red blood cell distribution width-standard deviation.
BA

FIGURE 2

The time-dependent receiver-operating characteristic curves (ROC) of the biomarker risk score (A), and the biomarker risk score plus basic model
(B). The basic model was also constructed using elastic net Cox regression incorporating age, gender, SBP, NYHA III/IV, current smoking, DCM,
COPD, AF, diabetes, NT-proBNP, creatine, hemoglobin, LDL-C, therapy with ACEI/ARB, and beta-blockers.
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on the optimal cutoff of 12 inflammatory biomarkers and LASSO

analysis (14). However, this study did not exclude patients with

infection or acute coronary syndrome during hospitalization; thus,

the results may have been affected by these acute inflammatory

states. Another study showed that the Pan-Immune-Inflammation

Value, calculated by components of complete blood cell counts, is a

better prognostic predictor in ST-segment elevation MI patients

(20). Nevertheless, there is still a lack of research to establish an
Frontiers in Immunology 08
inflammation score and thoroughly evaluate its discrimination,

calibration, and reclassification performance in patients with

NIHF. Our study focuses on NIHF populations without infection

or systemic diseases and included 21 inflammatory biomarkers.

Therefore, the ultimately screened inflammatory biomarkers

(CAR and RDW-SD) may more accurately reflect the damage

and repair caused by chronic inflammatory response of

cardiomyocytes themselves.
TABLE 3 The association between CAR, RDW-SD, and the biomarker risk score with the outcome at univariable and multivariable Cox regression.

Unadjusted HR Unadjusted p-value Adjusted HR Adjusted p-value

CAR 1.34 (1.23–1.46) <0.001 1.17 (1.07–1.28) 0.001

RDW_SD 1.67 (1.54–1.80) <0.001 1.31 (1.20–1.44) <0.001

Biomarker Risk Score 2.81 (2.42–3.26) <0.001 1.76 (1.49–2.08) <0.001
The adjusted hazard ratio (HR) and p-value were calculated from a multivariable Cox regression adjusting for age, gender, systolic blood pressure (SBP), New York Heart Association (NYHA)
III/IV, current smoking, dilated cardiomyopathy (DCM), chronic obstructive pulmonary disease (COPD), atrial fibrillation (AF), diabetes, N-terminal Pro Brain natriuretic peptide (NT-
proBNP), serum creatine (Scr), hemoglobin, low-density lipoprotein cholesterol (LDL-C), therapy with angiotensin-converting enzyme inhibitor/angiotensin receptor blocker (ACEI/ARB), and
beta-blockers. CAR: hsCRP-to-albumin ratio; RDW-SD, red blood cell distribution width-standard deviation.
B CA

FIGURE 5

The Kaplan–Meier curves of patients stratified by the tertiles of CAR (A), RDW-SD (B), and the biomarker risk score (C). CAR, hsCRP-to-albumin
ratio; RDW-SD, red blood cell distribution width-standard deviation.
FIGURE 4

The calibration plot of the biomarker risk score in predicting the all-cause mortality and heart transplantations. The Greenwood-Nam-D’Agostino
(GND) test was used for the performance of calibration and p > 0.05 indicated the good calibration.
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Previous studies have confirmed the prognostic role of the CRP/

hsCRP-to-albumin ratio in various diseases (12, 21). In our study,

we defined CAR as the ratio of hsCRP to albumin, based on prior

research confirming hsCRP as being more strongly associated with

cardiovascular disease prognosis than CRP (22). Furthermore, the

relationship between hsCRP and the prognosis of HF patients is

independent of ejection fraction or etiology (9). Hypoalbuminemia,

which is frequently observed in patients with HF, is likely linked to

inflammatory states and malnutrition (23). Based on Frank–

Starling’s law, a decrease in plasma oncotic pressure resulting

from hypoalbuminemia leads to fluid movement from the blood

vessels to the tissues, causing cardiogenic pulmonary edema and

worsening the prognosis of HF patients (24). Our study identified

CAR as a predictor through repeated elastic net regression, rather

than hsCRP or albumin alone. Additionally, even after adjusting for

factors including NT-ProBNP, CAR remained associated with

prognosis. Therefore, we speculate that an increase in the hsCRP-

to-albumin ratio may better reflect a patient’s systemic

inflammatory state and disease severity than a single indicator.

However, the NRI of CAR was not statistically significant (p =

0.073), indicating that we need to combine other inflammatory

indicators to construct a risk score and improve reclassification.

In addition to CAR, another 100% selected variable in 1,000

times cross-validation was RDW-SD, which reflects the variability

of circulating red blood cell size. Studies have shown that RDW is

currently considered a marker of chronic inflammation, and there is

a significant correlation between RDW and inflammatory

parameters (25, 26). As a result of the activation of both cell- and

cytokine-mediated inflammatory pathways in HF, the

inflammation can cause the release of premature erythrocytes and

impair bone marrow function, which leads to an increase in the

heterogeneity of red blood cells and the rise of RDW (27).

Furthermore, abnormalities in iron metabolization, renal

function, and nutrition have also been involved in the

pathophysiology of RDW increase in HF patients (28). Although

these mechanisms interact and jointly participate in the occurrence

and development of diseases, the inflammatory mechanism is at the

center of worsening prognosis. Malnutrition, anemia and some

other conditions reflected by RDW in HF patients all lead to

chronic inflammation of the body, releasing pro-inflammatory

cytokines and exacerbating the damage of the heart.

Our previous research found that RDW is an independent

predictor of mortality among HF patients across all clinical

subtypes (29). Other studies have also shown that RDW can

predict long-term outcomes regardless of anemia status in HF

patients and as a marker of impaired exercise tolerance in

patients with chronic HF (30, 31). Moreover, the RDW-to-

albumin ratio (RAR) has been identified as an innovative

biomarker of inflammation in HF (32), which is similar to the

variable screening results of this study. While RAR was also

included as a candidate inflammatory biomarker, the machine

learning process ultimately selected RDW-SD, defined as the

standard deviation of erythrocyte volumes, as another final

predictive factor. Another study also proposed that future

research investigating the prognostic value of RDW is expected to

concentrate on RDW-SD to eliminate the influence of MCV on
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RDW (33). In this study, the independent correlation between

RDW-SD and prognosis, as well as its good discrimination and

reclassification in prognosis prediction, confirmed its effectiveness

as an inflammatory predictor. The incorporation of CAR and

RDW-SD into a biomarker risk score further enhanced risk

stratification beyond the individual biomarker, potentially leading

to precise therapeutic interventions targeting the inflammation

pathways of patients with NIHF.

This study had several limitations. First, because this study was

retrospective, there may be selection bias and potential confounding

factors that were not fully accounted for. Secondly, the number of

patients who underwent dynamic monitoring of inflammatory

biomarkers during follow-up was low, which prevented the

analysis of any association between changes in biomarkers and

patient prognosis. Thirdly, the study only looked at 21 easily

obtainable inflammatory biomarkers, and did not investigate

newer, more specific biomarkers, such as those in the interleukin

family. Lastly, the inflammatory predictive model established in this

study has yet to be validated by an external cohort; hence, caution

should be exercised in generalizing its results, and further validation

is needed.
5 Conclusions

In this study, we developed a biomarker risk score based on two

specific biomarkers, CAR and RDW-SD, which were selected from

a group of 21 commonly used inflammatory biomarkers using a

machine learning approach. The biomarker risk score significantly

improved the accuracy of prognostic prediction in patients

with NIHF by increasing discrimination and reclassification

performance, indicating that it may be a valuable tool for

identifying high-risk patients and screening candidates for

inflammation-targeted therapy.
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