
TYPE Original Research
PUBLISHED 15 August 2023
DOI 10.3389/frobt.2023.1221739

OPEN ACCESS

EDITED BY

Dimitrios Kanoulas,
University College London,
United Kingdom

REVIEWED BY

Maria Koskinopoulou,
Heriot-Watt University, United Kingdom
Dario Albani,
Technology Innovation Institute (TII),
United Arab Emirates

*CORRESPONDENCE

Georgia Chalvatzaki,
georgia.chalvatzaki@tu-darmstadt.de

†PRESENT ADDRESS

Leonardo F. R. Ribeiro,

TU Darmstadt, Darmstadt, Germany

RECEIVED 12 May 2023
ACCEPTED 03 July 2023
PUBLISHED 15 August 2023

CITATION

Chalvatzaki G, Younes A, Nandha D,
Le AT, Ribeiro LFR and Gurevych I (2023),
Learning to reason over scene graphs: a
case study of finetuning GPT-2 into a
robot language model for grounded task
planning.
Front. Robot. AI 10:1221739.
doi: 10.3389/frobt.2023.1221739

COPYRIGHT

© 2023 Chalvatzaki, Younes, Nandha, Le,
Ribeiro and Gurevych. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Learning to reason over scene
graphs: a case study of finetuning
GPT-2 into a robot language
model for grounded task
planning

Georgia Chalvatzaki1,2,3*, Ali Younes1, Daljeet Nandha1,
An Thai Le1, Leonardo F. R. Ribeiro4† and Iryna Gurevych1,2

1Computer Science Department, Technische Universität Darmstadt, Darmstadt, Germany, 2Hessian.AI,
Darmstadt, Germany, 3Center for Mind, Brain and Behavior, University Marburg and JLU Giessen,
Marburg, Germany, 4Amazon Alexa, Seattle, WA, United States

Long-horizon task planning is essential for the development of intelligent
assistive and service robots. In this work, we investigate the applicability of a
smaller class of large language models (LLMs), specifically GPT-2, in robotic
task planning by learning to decompose tasks into subgoal specifications for
a planner to execute sequentially. Our method grounds the input of the LLM
on the domain that is represented as a scene graph, enabling it to translate
human requests into executable robot plans, thereby learning to reason over
long-horizon tasks, as encountered in the ALFRED benchmark. We compare
our approach with classical planning and baseline methods to examine the
applicability and generalizability of LLM-based planners. Our findings suggest
that the knowledge stored in an LLM can be effectively grounded to perform
long-horizon task planning, demonstrating the promising potential for the future
application of neuro-symbolic planning methods in robotics.

KEYWORDS
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1 Introduction

The autonomous execution of long-horizon tasks is of utmost importance for future
assistive and service robots. An intelligent robot should reason about its surroundings, e.g.,
regarding the included objects and their spatial-semantic relations, and abstract an action
plan for achieving a goal that will purposefully alter the perceived environment. Such an
elaborate course of robot actions requires scene understanding, semantic reasoning, and
planning over symbols and geometries. The advent of Deep Learning led many researchers
to faithfully follow end-to-end approaches due to the representation power of differentiable
deep neural networks (LeCun et al., 2015).

The problem of sequential decision-making has been addressed both with search-
based and optimization approaches (Kaelbling and Lozano-Pérez, 2011; Toussaint, 2015;
Driess and Toussaint, 2019; Garrett et al., 2021; 2020), as well as learning-based (Nair and
Finn, 2019; Funk et al., 2021; Hoang et al., 2021) and hybrid methods (Kim et al., 2019;
Driess et al., 2020; Ren et al., 2021; Funk et al., 2022).While the first ones enjoy probabilistic
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completeness, they require full domain specification and have high
computational demands.The learning-based methods require broad
exploration to learn from experience, but they have shown better
generalization capabilities in similar domains to those experienced
during training.

Large Language Models (LLMs) have exhibited an
unprecedented generative ability (Bommasani et al., 2021), thanks
to the transformer architecture (Vaswani et al., 2017) combinedwith
massive datasets distilled from the internet. Naturally, in the quest
for general artificial intelligence, researchers try to benchmark such
models in reasoning tasks, among others (Wang et al., 2018; 2019).
Robotic embodied intelligence requires both logical and geometric
reasoning; hence, it is a holy grail of AI. Several researchers saw a
benefit in LLMs, and it was not long before several works explored
their application to robotics for endowing robots with reasoning
abilities in the scope of autonomous task planning and interaction
(Brohan et al., 2022; Wei et al., 2022b). However, most works have
focused on the prompting (Brown et al., 2020) and the subsequent
prompt engineering (White et al., 2023), in which engineers provide
appropriate inputs to LLMs for extracting outputs that can be
realizable by a robotic agent, either for human-instruction following
(Ouyang et al., 2022) or for planning (Singh et al., 2022; Zeng et al.,
2022).

In this work, we study a finetuning process for grounding a
small LLM for robotics, i.e., GPT-2 (Radford et al., 2021), to be used
as a high-level abstraction in a task planning pipeline. Particularly,
we propose a method that decomposes a long-horizon task into
subgoals in the form of goal specifications for a robotic task planner
to execute, and we investigate whether such a method can reach the
performance levels of an oracle task planning baseline.

Our contribution is twofold: (i) we propose a novel method for
linearizing the relations in a scene-graph structure representing the
domain (world) to provide it as grounding context when finetuning
a pretrained language model (e.g., GPT-2) for learning to draw
associations between possible actions (goto, pick, etc.) and objects
in the scene (e.g., kitchen, apple, etc.). Importantly, in our context,
we encode the relative position of objects (far, close, right, left, etc.),
allowing our model to account for the scene’s geometrical structure
when learning to plan. The proper structure of the input context is
necessary for enabling the model to reason about the combinatorics
of actions with affordable objects and their logical sequence (e.g., to
cook something, one must first go to the kitchen). (ii) We showed
that larger pretrained models do not necessarily possess grounded
reasoning abilities, while it is possible to finetune smaller models
on various tasks to use them as parts of a broader neuro-symbolic
planning architecture. Contrarily toworks that directly apply actions
suggested by the GPTs to robots, we use language models at a
higher level of abstraction, effectively suggesting sub-goals as PDDL
problems to be solved by a Fast Downward task planner Helmert
(2006), effectively decomposing thewhole problem into smaller ones
of lower complexity.

Our thorough experimental evaluation shows that finetuning
GPT-2 by additionally grounding its input on the domain can
help translate human requests (tasks) to executable robot plans, to
learn to reason over long-horizon tasks, as those encountered in
the ALFRED benchmark (Shridhar et al., 2020). We compare our
proposed approach with classical planning methods to investigate
the applicability and generalizability of the Pre-trained Language

Model (PLM)-based planners compared to classical task planners
operating on a limited computational budget for a fair comparison.
We conclude that the knowledge stored in a PLM can be grounded
on different domains to perform long-horizon task planning,
showing encouraging results for the future application of neuro-
symbolic planning methods in robotics.

2 State of the art

2.1 Reasoning with large language models

LLMs have attracted much attention for understanding
the commonsense and reasoning patterns in their latent space
(Zhou et al., 2020; Li et al., 2021; Bian et al., 2023). It has been shown
that some abilities in logical and mathematical reasoning seem to
emerge when LLMs are prompted appropriately (Wei et al., 2022b;
a). However, the engineering effort, as well as the lack of robustness,
is a key issue in prompting massive models (Ruis et al., 2022;
Valmeekam et al., 2022). While great effort seems to be consumed
on few-shot prompting of huge parametric models, it has also been
shown by other lines of work show that efficient finetuning of much
smaller models (Tay et al., 2022), or the use of small adaptation
modules (Adapters) (Houlsby et al., 2019; Pfeiffer et al., 2021)
can lead to methods that perform more robustly than large-scale
generalist few-shot prompters. In the same direction, the chatbot
versions of those huge models raised several points of criticism
recently, showing that much more is needed than just prompting a
blind human-preference alignment1.

2.2 Robot behavior planning

Long-horizon robot behavior planning is an NP-hard problem
(Wells et al., 2019). Current advances in ML and perception led
researchers to revisit this fundamental problem, i.e., the execution of
multi-stage tasks, whose completion requires many sequential goals
to be achieved, considering learning-based heuristics (Driess et al.,
2020). Researchers consider such problems as Task And Motion
Planning (TAMP) problems (Garrett et al., 2021; Ren et al., 2021;
Xu et al., 2022), with a symbolic plan over entities and predicate
with respective action operators with preconditions and effects
in the environment. In contrast, a motion plan tries to find a
feasible path to the goal. Nevertheless, most TAMP methods rely
on manually specified rules; they do not integrate perception, and
the combinatorial explosion when searching over symbolic and
continuous parameters prohibits scaling themethods to challenging,
realistic problems (Kim et al., 2019; Garrett et al., 2020).

Transformer models (Vaswani et al., 2017) that revolutionized
the field of Natural Language Processing (NLP) opened the way
for multiple new applications, in particular for robotics, e.g., visual-
language instruction following (Pashevich et al., 2021), 3D scene
understanding and grounding (Chen W. et al., 2022; Mees et al.,
2022), language-based navigation (Huang C. et al., 2022; Shah et al.,
2023). Due to their training on extensive databases, several

1 7 problems facing Bing, Bard, and the future of AI search, from The Verge.
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works explored the use of LLMs for task planning and long-
horizon manipulation (Huang et al., 2022b), mainly employing
clever prompting (Raman et al., 2022; Singh et al., 2022), using
multimodal information (Jiang et al., 2022; Zeng et al., 2022),
grounding with value-functions (Chen B. et al., 2022; Brohan et al.,
2022; Huang et al., 2022c), and deploying advances in code
generation to extract executable robot plans (Liang et al., 2022).
(Li et al., 2022) propose to use a PLM as a scaffold for decision-
making policies in interactive environments, demonstrating benefits
in the generalization abilities for policy learning evenwhen language
is not provided as input or output. Recently, PALM-e (Driess et al.,
2020) has integrated a vision transformer with the PALM language
model and has encoded some robotic state data to propose a
multimodal embodied model, which showed the potential of
integrating geometric information of the robot state but achieved
limited performance in robotic tasks.

3 Language models for grounded
robot task planning

3.1 Problem statement

Let us assume an agent that is able to move and manipulate
objects in an environment, e.g., a mobile manipulator robot in a
household environment. Let the environment be composed of a
combination of rooms, such as ‘bathroom,’ ‘living room,’ or ‘kitchen.’
Each room contains objects and receptacles, i.e., objects that are able
to receive other objects, such as ‘table,’ ‘drawer,’ or ‘sink.’ Each object
has (household-specific) properties (affordances) associated with it
that define whether it can be picked up, cleaned, heated, cooled, cut,
etc. These properties can change, meaning that the objects have a
state. The agent can pick up only one object at a time, meaning the
agent also has a state, e.g., ‘object in hand.’ Given the fact that the state
is preserved over time and future actions depend on past actions,
the environment can be characterized as sequential. Therefore, a
series of actions has to be reasoned upon for an agent to be able to
execute a series of actions for solving a long-horizon task, i.e., a task
that requires the completion of several subtasks and potentially the
manipulation of various objects to achieve the end-goal.

3.2 The ALFRED benchmark

The ALFRED benchmark (Shridhar et al., 2020) contains
human-annotated training samples and image-based recordings of
everyday household tasks; this is “25,743 English language directives
describing 8,055 expert demonstrations averaging 50 steps each,
resulting in 428,322 image-action pair”. In addition to that, the
dataset provides a PDDL domain of the overall task and a PDDL
problem for each sample (Aeronautiques et al., 1998). ALFRED
heavily depends on AI2-THOR (Kolve et al., 2017), which acts as
the underlying controller and simulation environment (based on
the Unity game engine): trajectories for each sample of the ALFRED
dataset were generated with AI2-THOR, and the validation of user-
generated actions requires theAI2-THOR controller. Figure 1 shows

a sample scene loaded into theAI2-THOR simulator. Each sample in
the dataset consists of a high-level plan in PDDL and the trajectory
of the agent’s actions which lead to successful task completion,
together with a description of the task goal and each plan step in
Natural Language (NL).

3.3 State and action space

The state space defines the feedback provided by the
environment, while the action space defines the available actions
to interact with the environment.

State space. The environments we consider in this work
are fully observable, having access to the complete simulator
state representing the domain, as commonly considered for task
planning tasks. AI2-THOR, the underlying simulator, eliminates
most physics-related aspects (e.g., objects are automatically picked
up and placed by a single action), which makes the highly
dynamic and stochastic household environment almost static
and deterministic—almost because some physics still exists. This
simplifies the core TAMP problem along with the discrete agent
actions defined in the ALFRED dataset. Therefore, the ALFRED
benchmark represents an appropriate choice for studying the
problem of learning for robotic task planning, wheremotion failures
are minimized by the underlying AI2-THOR controllers. Hence, we
can focus on the reasoning aspects of the problem, which is the focus
of this study. In the following, the state of the domain is transformed
to NL context (§3.6) and not used directly as model input.

Action space. ALFRED has an action space of eight
discrete high-level actions: GotoLocation, PickupObject, PutObject,
CoolObject, HeatObject, CleanObject, SliceObject and ToggleObject.
The underlying AI2-THOR navigation controller also has a discrete
action space; the agent can move forward, backward, left or right
and rotate clockwise or counter-clockwise in fixed steps.

3.4 Task categories

The ALFRED dataset encompasses seven categories of
household tasks: “Look at object,” “Pick and place,” “Pick two
and place,” “Pick and place with movable receptacle,” “Pick, clean
then place,” “Pick, cool then place,” “Pick, heat then place.” Because
objects can be placed in different corners of a room, each of these
tasks includes the sub-problem of navigation. For the ‘pick’ or ‘place’
subtasks executing the respective PickupObject or PutObject action
is sufficient. But, the subtasks “clean”, “cool” and “heat” must be
seen as planning problems on their own, because the corresponding
actions are a composition of high-level state-dependent actions.
Regarding the household environment, the subtask “cool” requires
a fridge, “heat” requires a microwave (or oven), and “clean” requires
a sink as an receptacle. The ALFRED simulator tracks the state of
each object, and the subtask is only considered successful when the
final object state is correct. For example, if the task category is ‘Pick,
clean then place’, the task goal is only completed when the placed
object is marked as ‘clean.’ The implementation aspects of these task
categories are discussed in Section 4.
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FIGURE 1
AI2-THOR simulator rendering a sample rollout from the ALFRED (Shridhar et al., 2020). The scenes show a room with household objects and the
robot executing a task. Note that the robot does not have an arm, and the object automatically floats in front of the camera; it interacts with the
environment through discrete actions. The discrete actions are shown underneath each frame in the form of PDDL commands.

3.5 RobLM: robot language model for task
plan generation

Just like images can be represented by discretizing color space,
NL can be expressed as a sequence of tokens x = [x1,x2,… ,xn],
where each token is mapped to an embedding (lookup table). The
LanguageModel (LM) places a probability distribution p(x) over the
output token sequence. p(x) can be decomposed into a conditional
probability distribution p (xi+1|xi), where the probability of each
token depends on all previous tokens. This results in the following
joint distribution p(x) for a sequence of tokens x:

p (x) =∏
i
p(xi|x0,x1,…,xi−1) (1)

In regards toNeural Network (NN), p(x) is commonly estimated
with the Softmax function (Bengio et al., 2000)2

p (x) = So ftmax(WhT + b) =
exp(WhT + b)

∑exp(WhT + b)
, (2)

where W is the learned weight matrix, b the bias and hT the
output vector of the NN. For text generation, the joint probability

2 The Softmax function applies the exponential function to each element of
the input vector and normalizes the values, by dividing by the sum of the
exponentials.

distribution p(x) (see Eq. 1) can be formulated as a maximum-
likelihood objective, where the objective is to maximize the
likelihood of the next token occurrence for the given data.

Our goal is to finetune a LM to get a Robot Language Model
(RobLM) that can generate a complete high-level task plan in one
shot, given the domain information and a task goal. Because LMs
are unsupervised learners, a single training sample contains both
given and desired information as NL text. A restriction to the text
format (a string of characters) comes with challenges: structural
information needs to be condensed into a single linear dimension,
and conceptually different aspects of the input need to be annotated
in the text. This text format, including the syntax, has to be designed
in such a way that information can be fed to and extracted from the
LM reliably.

In RobLM, the format definition for a NL task description
must comply with the following syntactic rule (spaces added for
readability):

Goal [<SEP> Context] <BOS> Plan <EOS>

[...] := optional

<SEP> := separator token

<BOS> := begin-of-sequence token

<EOS> := end-of-sequence token

Goal is the task goal in NL. Context is any additional, yet
optional information provided to the LM. The task might have
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ambiguous solutions, and the inherent assumption is that the LM
will better “understand” the task if given a context. Examples of a
context are the name of the room, the name of the target object, or a
NL description of the environment (see 3.6).

Plan is the sequence of high-level task actions and their
respective arguments, such as objective name or location. Because
PLM have been trained on a diverse corpus of NL, including
program code, the format for plans follows syntactical rules similar
to that of a generic programming language:

Action0(arg0[,arg1]); Action1(arg0[,arg1]);

...

The sequence between the special tokens <BOS > and <EOS >
can be extracted to retrieve the plan from the LM-generated output.

3.5.1 Data augmentation
Each sample in the ALFRED dataset can be replayed in the AI2-

THOR simulator to collect additional information not contained
in the original dataset. ALFRED provides a script that has been
modified for that purpose. Data augmentation is necessary for
Graph2NL (c.f. §3.6) to generate a graph representation from the
environment state. For each replayed sample, the complete list of
objects in the scene, with their respective name, position, and
rotation, and the agent position is saved to a separate file next to the
trajectory data. This file is later loaded and turned into a processable
graph.

3.6 Mapping scene graphs to natural
language: Graph2NL

PLMs are trained on NL. Because of this, NL is a natural
modality for finetuning a PLM. When a context is provided to
the LM, this context must be presented in NL just like the input
sequence. If the context should encapsulate the environment state,
this means that the state has to be transformed into NL before being
supplied to the PLM.

Graph2NL is a novel method that “translates” the object-
centric scene graph representation of the environment state to
NL. Optionally, domain knowledge about the environment3 can
be infused into this graph. The following steps describe the core
Graph2NL process.

1) Generate an object-scene graph G with a node for the agent
and nodes corresponding to objects, node attributes being the
position and rotation of the object in Euclidean space and their
respective distance and orientation vectors as edge attributes.

2) (Optional) Infuse domain knowledge about the environment by
connecting all dependent nodes and all nodes reachable by the
agent.

3) Connect the agent (node) to all reachable nodes, if given domain
knowledge, or to all nodes, if not given domain knowledge.

3 Domain knowledge entails every possible room, object, and receptacle name
and their allowed relations, as described in the respective documentation:
https://ai2thor.allenai.org/ithor/documentation/objects/object-types.

TABLE 1 Graph2NLmapping table. Distances aremapped to NL vocabulary
(or a symbol) in a one-to-one relation. Yaw describes the orientation along
the surface normal when viewed from a top-down perspective, and Pitch
describes the z-planar offset (altitude) in relation to the origin.

Distance [m]

Value NL Symbol

>5 distant a

>4 far b

>3 reachable c

>2 near d

>1 close e

>0.5 closer f

>0.1 next g

<0.1 in h

Yaw [°]

Value NL Symbol

45 to 135 right i

135 to 225 back j

225 to 315 left k

315 to 45 front l

Pitch [°]

Value NL Symbol

≥0 above m

<0 below n

4) Given a task and the identified target object, find all paths in the
graphs leading from the agent (node) to the target object (node).

5) Use edge attributes in the found paths to describe the task-
centric environment state, by mapping geometric relations to NL
tokens.

3.6.1 NL mapping
To translate geometric relations attributed by the graph edges

into a NL description, a mapping function is designed. In human
speech, distances are expressed by a vocabulary of words such as
“close” or “far” and orientations are expressed by words such as “in
front” or “behind”. Graph2NL adapts this vocabulary to describe
the (numeric) distance and orientation from one node relative to
another in NL.

Table 1 summarizes the mapping used in Graph2NL. The
distance between nodes is expressed in Cartesian space and
orientation in polar coordinates, where Yaw is the azimuth angle
(rotation along the surface normal) and Pitch is the zenith angle
(altitude). With this mapping, the geometric relation between
two nodes can be explained by three words (one for each:
distance, pitch, and yaw). The vocabulary contains 8 words
to express the distance, 4 words to express the vertical, and
2 words to express the horizontal orientation. Combinatorially,
this gives 64 possible geometric configurations. The geometric
relationship is expressed in a condensed form by treating each
of these configurations as a relation and assigning a special
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FIGURE 2
Graph2NL example graph. After locating the root (“agent”) and target node (“soapbar”), the shortest paths connecting those nodes are found and
summarized in NL by mapping all edge attributes along the path.

symbol (token) for each relation. A simple approach, referring
to the Symbol column in Table 1, is by assigning a symbol to
each word. Combining the symbols for distance, pitch, and yaw
creates the condensed (three-letter) representation of the geometric
relationship. These symbolic representations can optionally be
added to the LM tokenizer as special tokens. Shorter token
sequences generally decrease both the training and inference
time.

Example Let the task be: “Put the soap into the
drawer”. The input query to Graph2NL consists of the
target object “soap”. Figure 2 shows the graph constructed by
Graph2NL from augmented data (§3.5.1), including domain-
specific knowledge.After finding the shortest paths between
the root (‘agent’) and target node (‘soapbar’), Graph2NL
produces an output in the following form (cut-off at search
depth 2):

[Bathroom=

- closer below left sink near below back

soapbar

- closer below left cabinet near above

back soapbar

- closer above left countertop next above

back soapbar

- close below back toilet closer below

back soapbar

- closer below back garbagecan close below

back soapbar]

The NL context by Graph2NL starts with the name of the
room extracted from the scene graph, followed by the geometric
description of each node connected to the target node on the path
from the agent. “-” indicates the root note, i.e., the agent. For the
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previous example, Graph2NL produces the following condensed
form:

[Bathroom=

- fnk sink dnj soapbar

- fnj cabinet dmj soapbar

- fmk countertop gmj soapbar

- enj toilet fnj soapbar

- fnj garbagecan enj soapbar]

This form of state representation is unique for each problem
configuration and forms the context that grounds RobLM.

3.7 Training

RobLM generates a plan as text given the goal and the context,
which involves causal language modeling for text generation.
Decoder-only autoregressive language models (Figure 3) are
frequently used for the problem of text generation; we chose
GPT-2 as the base model for RobLM. RobLM uses the base
version of the GPT-2 PLM (‘gpt-2’) (Radford et al., 2021), loaded
and initialized with pre-trained weights from the Huggingface
(Wolf et al., 2019) Transformer library. Finetuning GPT-2 for causal
language generation has a self-supervised setup, where the labels
are the inputs shifted to the right, which entitles learning to predict
the next token in a sequence.We finetune the GPT-2 model using
the pre-processed training data of the ALFRED dataset, which
has around 20.000 samples, with three sets of NL descriptions

for each sample. The ADAM (Kingma and Ba, 2014) optimizer
is used with a learning rate of 5e−5, and the LM is trained for
two epochs. Finetuning a GPT-2 LM to the ALFRED training data
with a single GPU-accelerated computer takes around 30 min (27
iterations/s - measurement not representative due to hardware
dependence).

3.8 Generation pipeline

For inference, RobLM takes only the NL task goal together with
an optional context and outputs the complete step-by-step plan for
completing the goal.This plan is composed of high-level instructions
rather than low-level controller commands.

Example.Given the task “Put the soap into the drawer:”, RobLM
(no context) generates the plan:

Put the soap into the drawer:

0.GotoLocation(countertop)

1.PickupObject(soap)

2.GotoLocation(drawer)

3.PutObject(soap,drawer)

The plan is generated by consecutive forward passes through
the Transformer model. For a vocabulary size of k and a token
sequence of length l (with l ≤ 1,024 for GPT-2), the forward pass
of the Transformer yields an output vector of size k× l with values
in the interval [0,1]. The Transformer outputs scores, i.e., logits, for
each token in the input sequence. These scores are converted to

FIGURE 3
Decoder-only Transformer architecture. The input to the decoder is tokenized text, and the output is probabilities over the tokens in the tokenizer
vocabulary. The positional encoding is added to the embedded input to account for the order. Transformer’s decoder can have multiple transformer
blocks, each of which contains multi-head attention with linear layers and layer normalization.
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FIGURE 4
Illustration of a forward pass through RobLM for text generation with a greedy next-token selection strategy. The forward passes are repeated in a
recursive manner until an end-of-text token is encountered or the defined sequence limit is reached.

a probability distribution p(x) by using the Softmax function, as
described in Eq. 2.

Two possible generation strategies for selecting the next
token from p(x) are: greedy search and top-k/top-p sampling
(Holtzman et al., 2020). In the greedy strategy, the token xsel
with the highest likelihood is picked with xsel = argmaxp(x). In
the top-k sampling strategy, as the name suggests, the scores
are sorted, and one of the first k candidate tokens is randomly
sampled. By extending the top-k sampling with an additional top-
p strategy, the sum of the k candidates must be equal to or
greater than p ∈ [0,1]. Simply put, top-k widens the choice over the
next tokens and top-p filters out low-probability tokens. Figure 4
illustrates, on the basis of an example, a forward pass through
the Transformer with a greedy selection strategy. These steps are
repeated recursively until an end-of-text token is encountered
or the defined sequence limit is reached to generate the full
plan.

This LM model was finetuned to generate a structured output,
omitting special tokens, characterized by numbered actions and
their arguments in parenthesis. The input is always part of the
output, due to the generation function utilized by RobLM. Note
that it is not guaranteed that the ‘soap’ can be found inside
the ‘drawer’ on the ‘countertop’. In fact, it could be at any
possible location permitted by the environment. However, given
a greedy search strategy, for the given task goal, the likelihood
for the ‘soap’ being on the ‘countertop’ is the highest in this
case.

3.8.1 Hardware setup
For finetuning LMs and evaluating each model, we used the

Lichtenberg Cluster of TU Darmstadt, which contains stacks of
NVIDIA R© A100 and V100 GPUs. Internal tests have shown that
a single GPU can decrease the training time by a factor of 10
(these tests are not representative because performance depends on
every hardware component). To run experiments in the AI2-THOR
simulation, we used a PC with an NVIDIA R© RTX 3080Ti GPU.

4 Experiments

4.1 Preliminary analysis for task plan
generation with GPT-2 and GPT-3

LLMs can represent knowledge from the data they have been
trained on. However, the question remains, whether this knowledge
can be leveraged to solve planning tasks, i.e., can LLMs reason? This
is investigated by comparing the text-generation results of GPT-2
(Zero-Shot Learning (ZSL)) and GPT-3 (Few-Shot Learning (FSL))
for a planning task.

Given an instruction to a household robot,

formulate the steps to complete the

instruction.

The instruction is: ‘‘Put a washed slice

of apple on the table.’’
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The results for this task vary greatly between the two LLMs.
GPT-2 (‘gpt-2’model, 1.5B parameters) completely fails this task

and produces an output that resembles a repetition of phrases in the
input sentence:

Put a washed slice of apple on the table.

Put a washed slice of apple on the table.

Put a washed slice of apple on the table.

...

Similar behavior has been observed for other LMs falling into
the ZSL category. The input sentence is not an open-ended question
and requires reasoning.

GPT-3 (‘text-davinci-002’model, 175B parameters), when given
the same instruction as input, is able to make assumptions and
formulate a whole plan based on these assumptions:

Assuming the apple is not cut and not

washed.

1. Pick up the apple from the counter.

2. Cut the apple into a slice.

3. Wash the apple slice.

4. Place the apple slice on the table.

The FSL paradigm allows GPT-3 to be very sensitive to context
changes and seemingly understand the request at hand. However,
smaller GPT-3 PLMs (GPT-3 curie, GPT-3 babbage, GPT3-ada)
show a degraded quality in the produced plan (Floridi and Chiriatti,
2020). have shown that GPT-3 would not pass the Turing test, as
to having “no understanding of the semantics and contexts of the
request, but only a syntactic (statistical) capacity to associate words
[…]”.

These tests have shown that plan generation capabilities of LLMs
vary dramatically depending on the underlying learning paradigm,
model architecture, and parameter size. GPT-2, out of the box,
is completely unsuited for solving planning tasks that require a
minimum level of text understanding. However, as later (§3.5)
shown, GPT-2 can successfully generate plans when finetuned to a
training dataset (§3.2). The question of whether a finetuned GPT-
2 model can leverage knowledge for planning is addressed in the
following section. GPT-3, unfortunately, is only accessible through
a paid service by OpenAI, and finetuning of own GPT-3 models
is possible through the provided service. Practical applications,
however, are limited because each query has to be sent to and
processed by the OpenAI service. Even if a PLMwasmade available,
the hardware requirements for runningGPT-3models are immense,
even for today’s standards, due to the sheer parameter count. It is for
these reasons that GPT-3 and its newest versions are not considered
as a basis for finetuning to RobLM.

4.2 Evaluation of RobLM

This section presents the main experiments conducted for
evaluation of RobLM. We first define the appropriate metrics and
a baseline method required to make the evaluations measurable and
comparable.The grounding problem is explained in accordance with
the practical aspects of integrating the available methods into the
simulator. For the experimentation part, a set of finetuned LLMss is
compared with the baseline performance.

4.2.1 Metrics
To validate a finetuned LM, only the NL task goal of each

validation sample and optionally, the context is fed to the RobLM
generation pipeline (see Figure 4). Validation is performed over
each task category rather than all the validation data. This enables
the analysis of a task-dependent performance: some task categories
are more complex than others leading to a longer trajectory of
actions and hence an increased difficulty. Two metrics are defined
for validation: LM accuracy and plan success rate.

Definition—Accuracy. Accuracy measures how accurately the
LM is able to predict the following parts of the plan.

• the correct count and names of all actions in the plan (action
accuracy)
• the correct count and names of all arguments in the plan

(argument accuracy)
• the correct count and names of all actions and arguments in the

plan (“full plan” accuracy)

For a found plan, the accuracy of actions and arguments counts if
all actions or arguments are correct. With this metric, it is possible
to anchor the cause of plan failure to either the actions or the
arguments, or both.

Having an accurate LM does not necessarily mean that the
generated plan leads to success—at least, as long the “full plan”
accuracy is below 1.0, i.e., the trajectory is not replicated perfectly. A
second metric is required that measures the actual success rate of the
finetuned LM in simulation. There are two possible scenarios that
justify this additional metric. First, the plan could fail in simulation,
even if it seems accurate. And second, the plan could succeed in
simulation, even if the plan is not completely accurate.

Definition—Success rate. The success rate is a measure of
the successful completion of individual sub-tasks of a validation
task. After loading the trajectory, environment state, and goal from
the validation sample into the AI2-THOR simulator, the actions
predicted by the LM are translated into low-level controller actions
via task and geometric grounding (§4.2.3), which are then passed
to the AI2-THOR controller and executed in the simulator. After
every simulator step, a check is performed to determine whether the
target conditions for sub-task completion have beenmet. If the target
conditions are kept unsatisfied after execution of the last low-level
action, it counts as a success towards the sub-task, or otherwise, as a
failure.

4.2.2 Baseline
A baseline is an oracle, or upper bound, that serves as a

measurement reference. Fast Downward (FD) (Helmert, 2006) is
used as the baseline for evaluation. We consider a classical task
planner like FD appropriate since it also has access to the full domain
and is a complete algorithm (Helmert, 2006). Therefore, the ability
of a RobLM to match or outperform FD (for a given time budget)
would reveal whether LMs can be helpful towards learning task
planning. Every ALFRED validation sample comes with a PDDL
problem file, while the PDDL domain is shared by all tasks; this
allows the PDDL planner to generate a plan for each sample. To
generate a plan using FD, the PDDL problem files provided by
ALFRED have to be pre-processed. FD is able to handle Action
Description Language (ADL) instructions, as found in the PDDL
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FIGURE 5
Prediction accuracy of actions and arguments for previously unseen data across a set of tasks. Neither RobLM model is able to outperform the baseline
(blue) but shows high accuracy in the prediction of plan actions. Context-driven models (green, red, and purple) perform better than the model
without any scene-related context (orange).

problem, but is not able to process optimization-related additional
information present in the files.

4.2.3 Instruction grounding
Grounding can be defined as mapping a high-level, abstract,

or symbolic representation to a low-level grounded representation.
Grounding of an abstract plan to objects is called object or geometric
grounding (or “world grounding”), and grounding of NL to robot
tasks is called task grounding. In this case, instructions generated by
the LM are made up of actions that require a task grounding, and
arguments, which require a geometric grounding.

4.2.4 Task grounding
Plans generated by RobLM consist of high-level actions and are

not directly executable by the AI2-THOR controller. Each possible
action predicted by the LM has to be grounded to a task, which
then translates to a sequence of low-level controller actions. For
task grounding, three possible types of tasks are defined: navigation,
manipulation and composite. In a navigation task, the agent is
required to move from one to another location. In a manipulation
task, the agent performs an action affecting the environment state.
Composite tasks are a composition of manipulation tasks that need
to be completed in a specific order.

Task grounding is performed as follows.

• The actionGotoLocation is grounded to the navigation task and
delegated to a trajectory planner for navigation (see below).
• The actions PickupObject, PutObject, ToggleObject and
SliceObject are grounded to the manipulation task, the actions
can be directly executed by the low-level controller.
• The actions HeatObject, CoolObject and CleanObject are

grounded to the composite task, which is translated to

this sequence of low-level actions: ToggleObject →PutObject
→ToggleObject →ToggleObject →PickupObject →ToggleObject
(example given below).

4.2.5 Geometric grounding
An argument can be either a location or an object name. An

argument produced by the LM might be ambiguous or non-existing
in the environment. In order to be understood by the controller,
these arguments have to be grounded on a geometric level. For
grounding arguments, first, all available objects are retrieved from
the simulation. Then, the world coordinates of all objects matching
the predicted symbol (target object) are gathered. E.g., if the
predicted target object is ‘soap’, the position of all ‘soap’-type objects
can be queried and retrieved from the simulator. The low-level
control commands are finally generated with the help of the ground-
truth navigation graph of the scene.

4.2.6 Navigation
By overlaying the world with a grid, every position in the

world is given a discrete coordinate. A navigation graph (not to be
confused with a scene graph or Graph2NL graph) creates a node
for each coordinate and connects all the nodes that are accessible
one from another. Similar to the procedure of Graph2NL (§3.6),
the navigation graph is traversed after locating the agent and target
node by the object name. A search algorithm is used to find the
shortest path in the graph from the agent to the target object - in
this case, it is the A* algorithm (Duchoň et al., 2014). The search
returns a sequence of nodes, which corresponds to a sequence
of coordinates (a trajectory). Lastly, a motion planner takes the
trajectory as an input and outputs a sequence of low-level controller
actions (AI2-THOR conveniently provides a motion planner for
navigation).
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4.2.7 Experimental results
A set of finetuned RobLM models are evaluated against the

baseline. The finetuned models differ in the amount of context
provided during training time.

1) ‘No context’ — Only task goal
2) ‘Scene knowledge’ — List of all available objects in the

environment, found in the PDDL problem
3) ‘Scene graph’ — Description of geometric relations to the target

object, generated by Graph2NL
4) ‘Full context’ — Description of geometric relations of all objects,

generated by Graph2NL

Given a PDDL problem file, Graph2NL automatically generates the
context in the specified text format. This context is provided to the
LM for training and inference.

Accuracy. Figure 5 summarizes the evaluation of the finetuned
RobLM models compared to the FD baseline for previously unseen
(validation) data. It can be observed that none of the finetuned
RobLM models is able to outperform the baseline. Going through
each of the models and starting with the ‘No context’ model
it is surprising that this model, even without any contextual
information, is able to generate the correct plan actions with high
accuracy. The ‘Scene knowledge’ and ‘Scene graph’ models have a
similar performance, the ‘Scene graph’ generally being slightly more
accurate in both actions and argument prediction. Both of these
models overall outperform the ‘No context’ model, with a significant
improvement of the context models in the arguments prediction.

Given these results, the following conclusions about the
examined models can be made.

1) Failed plans are mostly caused by wrong arguments (objects or
locations) and only in some cases by wrong actions.

2) The LM is able to learn the structure of tasks, but not scene-
dependent components.

RobLM is able to distinguish between the task categories and
provide a correct task action plan. However, where this model fails
is in finding all correct action arguments, i.e., locations and object
names. This can be explained by the fact that the task goal alone
does not reveal the actual location of the target object. Because the
target can be in any accessible location in the environment, or in any
accessible receptacle, the produced argument is the result of the LM
imitating the most-likely cases observed in the training data.

Overall, these results are consistent with the point made on
contextual information and prediction accuracy: giving to themodel
information about the environment, i.e., finetuning a model to be
grounded to the scene, does improve performance.

Success rate. A plan is successful if each of the sub-tasks for
a stated task is completed. Table 2 summarizes the success rate of
RobLM compared to the baseline for actions of the navigation task
(GotoLocation) and manipulation task (PickupObject, PutObject,
etc.). Composite tasks have been omitted from this evaluation
because of high failure rates caused by their task grounding
complexity.

Regarding geometric grounding, arguments predicted by
RobLM are grounded to all matching objects in the world, and
RobLM is allowed to “try” all possibilities. E.g., when the objective
is to “Get soap”, multiple ‘soap’-type objects could exist in the scene.
Each possibility given by the geometric grounding is simulated

TABLE 2 Success rates of sub-task completion in simulation—RobLM (‘No
context’) compared to the baseline on seen and unseen validation data.

Success rate Baseline RobLM (‘no context’)

Task seen unseen seen unseen

GotoLocation 0.318 0.393 0.422 0.499

PickupObject 0.466 0.474 0.776 0.749

PutObject 0.385 0.331 0.116 0.092

SliceObject 0.629 0.5 0.94 0.98

ToggleObject 0 0 0.84 0.864

Bold represent maximum values.

TABLE 3 Top-k and top-p sampling (k =10 and p = 0.9)— tokens are sampled
three times for the ‘Pick Simple’ task, giving only slight deviations in the final
accuracy.

RobLM‘no context’model, ‘pick simple’ task

Accuracy of 1st sample 2nd sample 3rd sample

Actions 0.7746 0.8169 0.7817

Arguments 0.3803 0.4085 0.3944

GotoLocation 0.8772 0.9123 0.8904

PickupObject 0.8380 0.8662 0.8451

PutObject 0.7971 0.8227 0.7986

GotoLocation_Args 0.5658 0.5877 0.5833

PickupObject_Args 0.7535 0.8028 0.7746

PutObject_Args 0.6449 0.6667 0.6331

by storing and restoring the simulator state. While this is a clear
advantage for RobLM over the baseline, the evaluation still holds
because the LM is required to predict the correct location or
object names. Based on the presented results, the LM-based system
performs well on sub-tasks requiring the action PickupObject, while
the action PutObject does not succeed equally well, being far from
the baseline performance.

Overall, the success rate of the baseline method is not
nearly as high as expected, hinting at potential implementation-
specific failures in the task grounding and in the low-level
controller interaction with objects. In the low-level controller,
visual information is not included. This means that the robot is
controlled in a “blind flight” mode. The AI2-THOR simulation
requires the target object to be in view. If the object is not visible,
e.g., because the agent is looking in the wrong direction, the
interaction fails and with it, the sub-task. Because of the fact that
both systems have been evaluated within the same framework,
these results do not dismiss a potential use-case for LM in
planning.

4.2.8 Additional results
We provide additional experiments for a deeper analysis of

potential points of failure of RobLM. These experiments entail a
different sampling strategy and context refinement.
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FIGURE 6
Prediction accuracy of actions and arguments for unseen tasks of RobLM with a refined context. This experiment compares a model finetuned to the
task goal and a context consisting of a NL description of the first plan instruction (green) with the baseline (blue) and a RobLM with ‘No context’ model
(orange).

4.2.8.1 Top-k/top-p sampling
So far, every experiment conducted has used a greedy next-

token selection strategy. In order to be able to tell with certainty
that a found plan is the “best possible” plan, a comparison with
another sampling strategy is required. This additional experiment
repeats the previous one, but this time with a top-k and top-p
sampling strategy. The comparison is done with the ‘No context’
RobLM model for all tasks with k = 10 and p = 0.9, i.e., tokens are
sampled from the top-10 predictions and sum up to a probability
≥0.9. Since a similar pattern was observed in the individual task
evaluations, Table 3 reports the results for the ‘Pick Simple’ task only.
Each token is sampled three times, giving three possible solutions
to be evaluated. Slight—uniform and hence dismissable—variations
in the prediction accuracy exist between these three runs. The
sampling-based method performs slightly worse than the greedy
strategy.

4.2.8.2 Refined context
In a deeper analysis of RobLM failure cases, it has been

found that the first argument in the generated plan is the
hardest to predict correctly by the LM. The LM is not able to
draw enough conclusions about the first instruction from the
supplied context of any form. This causality becomes obvious
after the following experiment: Given the task goal and a NL
description of the first instruction as context, how does the overall
accuracy of the LM change? The following text is an example
of an instruction description in NL, as found in the ALFRED
dataset:

Turn left and walk across the room towards

the shelves on the wall.

The results in Figure 6 show that, given this extra information,
RobLM is almost able to reach the performance levels of the baseline
measurement across all tasks; it shows very high accuracy on “full
plan” actions and arguments. The conclusion of this experiment is
that the more precisely the supplied context is tailored towards the
key issue of LM generation task, the more accurate the generated
plan becomes. For this specific problem, finding the correct first
argument is key to a successful plan, andwith aNL description of the
first instruction, the LM is able to draw the necessary connections
from context to plan.

The overall conclusion of this observation is that the LM are
adaptive; the LM is able to adapt new information into the plan
generation, towards a more accurate sequence of instructions.

4.3 Run-time analysis

Inference frequency is an important factor when it comes to
real-life applications. This is especially true for industrial robotics,
where cycle times are important. But not every robotic application
is time-critical, e.g., a household robot is not expected to respond
in a sub-second time. However, if task planning is seen as a
programming problem, a fast execution time greatly enhances the
operator experience Table 4 shows a comparison of the inference
speeds of RobLM against the baseline (FD). RobLM, in all cases,
is slower compared to the baseline, which is likely due to the
reliance on the full GPT-2 vocabulary size for the LM tokenizer
and the usage of a LM-internal, implementation-specific generation
function4. Such an issue can be mitigated by training a new

4 Huggingface generation function: ‘transformers/src/transformers/generation_
utils.py’.
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TABLE 4 Comparison of inference speeds—RobLM against baseline. GPU
acceleration used for LM (NVIDIA R© GeForce RTX 2080 SUPER). The timer
starts only after the program ormodel has been loaded intomemory, i.e.,
only computation (inference) time is measured.“No context”has amaximum
token sequence length of 200 and“Full context”has amaximum length of
1,024 tokens for generation.

Iterations per second (average over 800 samples)

Baseline RobLM‘No context’ RobLM ‘Full context’

2.9 1.0 0.2

tokenizer on the task-specific vocabulary, but this comes at the
cost of not utilizing the stored knowledge in the PLM. However,
current progress in language models allows faster inferences
in more advanced hardware than the one used in this work;
therefore, we believe that the frequency limitations can be easily
overcome.

Remarks. Overall, our analysis has shown that finetuning
PLMs toward robotic task planning is possible when providing
an appropriate grounding context. However, we have shown that
such models cannot yet reach the planning abilities of classical
task planners. A combination of finetuning with proper scene
representation and a more elaborate sampling strategy, as well
as the addition of more sophisticated prompts, can boost the
performance of RobLM, leading them to performances that are
closer to the oracle task planners. Still, the benefit of providing goal
specifications as natural language commands alleviate the burden
of engineering, while advances in scene graph generation can make
the extraction of domain specifications autonomous. Therefore, we
believe that using RobLMs at a higher level of abstraction for
neuro-symbolic task planning is valuable but is still in its infancy.
Additional challenges have been recently summarized by Weng
(2023), where some of the listed points are in accordance with our
findings.

5 Conclusion

We presented a framework for finetuning grounded Large
Language Models (LLMs) and investigated the applicability of
such models combined with planning in solving ling-horizon
robot reasoning tasks. This paper has shown that LLMs can
extract commonsense knowledge through precise queries and
adjust their behavior based on available information or context.
Among our contributions are the development of RobLM, a
grounded finetuned LLM that generates plans directly from
natural language commands, and Graph2NL, which creates natural
language text describing graph-based data, to represent scene graphs
as inputs into RobLM. Our extensive experimental results have
revealed, nevertheless, the challenges in representing structured
and geometric data in natural language. However, LLMs still
need to demonstrate a consistent ability to perform long-horizon
planning tasks and cannot yet replace classical planners. Despite
their limitations, LLMs possess powerful features such as efficient
storage and retrieval of commonsense knowledge, which can be
useful in planning tasks when presented with partially observable
environments.

For future work, exploring larger models like GPT-3 or GPT-
NeoX could increase the accuracy and success rate of RobLM.
Providing structured context to the Transformer model and
exploring multi-modal inputs, such as visual information, may
also improve the planning capabilities of LLMs. Further research
in the field of applied natural language processing in robotics
could help unlock the full potential of LLMs and contribute
to the development of more advanced neuro-symbolic planning
systems.
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