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Single-molecule FRET (smFRET) is a powerful imaging platform capable of
revealing dynamic changes in the conformation and proximity of biological
molecules. The expansion of smFRET imaging into living cells creates both
numerous new research opportunities and new challenges. Automating dataset
curation processes is critical to providing consistent, repeatable analysis in an
efficient manner, freeing experimentalists to advance the technical boundaries
and throughput of what is possible in imaging living cells. Here, we devise an
automated solution to the problem of multiple particles entering a region of
interest, an otherwise labor-intensive and subjective process that had been
performed manually in our previous work. The resolution of these two issues
increases the quantity of FRET data and improves the accuracy with which FRET
distributions are generated, increasing knowledge about the biological functions
of the molecules under study. Our automated approach is straightforward,
interpretable, and requires only localization and intensity values for donor and
acceptor channel signals, which we compute through our previously published
smCellFRET pipeline. The development of our automated approach is informed by
the insights of expert experimentalists with extensive experience inspecting
smFRET trajectories (displacement and intensity traces) from live cells. We test
our automated approach against our recently published research on the
metabotropic glutamate receptor 2 (mGluR2) and reveal substantial similarities,
as well as potential shortcomings in the manual curation process that are
addressable using the algorithms we developed here.
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1 Introduction

Over the years, researchers have developed various analysis methods for the automated
processing of single-molecule fluorescence resonance energy transfer (smFRET) data to
generate insights into the structure and function of mostly purified and reconstituted
biomolecules in surface-immobilized preparations (Greenfeld et al., 2012; van de Meent
et al., 2014; Juette et al., 2016; Thomsen et al., 2020). At the same time, tremendous strides
have beenmade within the single-particle tracking (SPT) field to develop analysis methods to
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improve the localization of diffusing single- or multi-color labeled
particles within living cells (Jaqaman et al., 2008; Chenouard et al.,
2013; Chenouard et al., 2014; Tinevez et al., 2017; McQuin et al.,
2018; Roudot et al., 2020; Ershov et al., 2022). While these methods
and their applications have been indispensable for analysis of data
from smFRET or SPT experiments, there had been no publicly
available, automated analysis that combines these methods for
tracking smFRET in live cells, likely a contributing factor as to
why the use of in-cell smFRET is infrequently reported in the
literature. To overcome this challenge of tracking smFRET in live
cells, we recently developed an analysis platform, smCellFRET,
which generates large numbers of smFRET trajectories and also
produces smFRET intensity over time traces for each trajectory as
well as smFRET population histograms (Asher et al., 2021).

Using technical advances we developed for smFRET imaging,
including the smCellFRET software, we recently successfully carried
out smFRET experiments in living Chinese Hamster Ovary (CHO)
cells in order to study G protein-coupled receptor (GPCR)
dimerization, in addition to structural changes within
metabotropic glutamate receptor 2 (mGluR2) (Asher et al., 2021).
With this approach, we were able to show agonist-dependent
conformational changes within ligand binding domains of
mGluR2 dimers as they diffused in the native plasma membrane,
which prior to our work had only been studied in the context of
detergent-solubilized receptors (Olofsson et al., 2014; Vafabakhsh
et al., 2015). Our analysis and technical advances for smFRET data
in cells opens up the possibility of studying how the complex cellular
environment might influence receptors toward certain
conformations or facilitate associations between noncovalently
linked receptors such as the Family B secretin receptor (Asher
et al., 2021).

smCellFRET is an open-source software package for use in the
MATLAB environment that processes smFRET data of labeled
donor and acceptor molecules diffusing in the cell plasma
membrane. Data processing in smCellFRET utilizes tracking and
motion classification data generated with the SPT software u-track
and the DC-MSS analysis method (Jaqaman et al., 2008; Vega et al.,
2018; Asher et al., 2021). We used smCellFRET to generate smFRET
trajectories, which contain time series data, or time traces, for the
location of the acceptor, the inferred location of the donor, and the
intensity values computed for each. These smFRET trajectories are
computed for FRET events originating from mGluR2 dimers freely
diffusing in the cell membrane (Figure 1A). Briefly, smCellFRET will
combine outputs from u-track and DC-MSS carried out on image
data from sensitized acceptor particles, to obtain tracking and
motion state analysis, respectively (Figure 1B). Next, a custom
transformation function fit to the optical specifications of the
imaging system was used to map acceptor particle locations onto
a position in the donor channel. The donor-acceptor trajectory’s
twin trajectories are then computed, as the acceptor signal’s location
can be used in conjunction with the transformation function to
estimate the location and intensity of a region corresponding to the
acceptor, only in the donor channel. The intensity values for both
the acceptor and donor are computed as the sum of intensities
within a 5 × 5 pixel (800 nm × 800 nm) square region of interest
centered on the location of the respective particle (Figure 1B).
Additionally, when diffusion states are determined for smFRET
trajectories, smCellFRET imposes a minimum track length

requirement of 20 frames as a requirement of motion state
analysis by DC-MSS.

In our early experiments, once we had generated smFRET
trajectories, we recognized that multiple particles would
occasionally cross into a given donor or acceptor’s path. During
such crossing-over events, fluctuations in the donor and acceptor
channel ROIs influence the calculation of the FRET value and lead to
distortions in the FRET value distributions generated from
trajectories where such crossings occurred. To guarantee that
crossing-over events were not contributing to the FRET value
distributions, a trained specialist would manually inspect both
the fluorescence emission in the donor channel and sensitized
acceptor emission in the acceptor channel, for every smFRET
trajectory used to generate smFRET histograms. This process
required watching a video of every smFRET trajectory over its
entire trajectory, and we quickly realized that excising individual
frames would be unfeasible for hundreds of trajectories per cell, each
several hundred frames long. As a compromise, the experimentalist
would inspect the video frames of each donor-acceptor trajectory,
checking for any crossing-over events, and only preserve those
trajectories for further analysis that were entirely free of crossing-
over. Given that an experimenter can make a determination at a rate
of one frame per second, 8 h is a conservative estimate for the time it
would take to hand-curate all of the trajectories from only a single
cell. In our previously published dataset, 69% of all traces were
rejected, representing 77% of all FRET events. Importantly, much of
the excluded data consists of trajectories where interference by other
particles happens only in a small subset of frames during that
trajectory’s lifetime.

As noted, in our previous work, because of the complexity
associated with manually removing these crossings, the entire
trajectory would be removed from inclusion in the computation
of the FRET distribution, as frame-by-frame analysis and labeling
for crossing-over would have been too time-consuming.
Background autofluorescence in the cell and heterogeneities
across the cell surface made the observation and
discrimination of crossing-over events by a human both time-
consuming and subjective, leading to potential biases and
reduced reproducibility. To overcome these obstacles, we have
now developed the necessary analysis for automating the removal
of frames with crossing-over events. This allows us to generate an
accurate FRET distribution from the data. We additionally
provide an intensity-thresholding operation that selects
trajectories based on a template-matching approach, using a
small subset of trajectories where acceptor photobleaching
coincides with a simultaneous rise in donor intensity. The
automation we have developed here provides two basic
enhancements: (Juette et al., 2016) at the frame level,
computing the number of signals detected in the vicinity of
each ROI, which could be used to classify an ROI as crowded,
and (Thomsen et al., 2020) at the particle level, an unbiased
classifier on the intensity levels of an smFRET acceptor and
donor to remove those donor-acceptor trajectories where
either the acceptor or donor intensities lie outside of a range
justified by smFRET principles and our data. These automation
steps represent a first foray into uncovering additional, general
principles that may be integrated into a more comprehensive,
rigorous framework.
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FIGURE 1
The overview of an smFRET algorithm to remove cross-over in both acceptor ROI and amapped donor channel ROI. (A) Images are collected in the
donor and acceptor channel for 4,000 consecutive timepoints at a frequency of 25 Hz (diagram reproduced from Asher et al., (2021). (B) A complete
smFRET trajectory is shown within the acceptor (red track, left) and donor (green track, right) channels. The sensitized acceptor trajectory is obtained
using single-particle tracking and a donor ROI is mapped from the computed acceptor localizations A cartoon diagram beneath the tracks illustrates
how an acceptor particle’s track is computed (crosshair, left) and then used to delineate a boundary in the donor channel (hashed box, right) in the bottom
row. an illustration of how multiple donors may appear within the boundary and thereby contaminate the estimation of the donor ROI intensity. (C) A
schematic to describe the steps of the analysis pipeline with the previously published processing steps shown (black text, left) alongside the newly
automated steps (blue text, right). (D) A representative smFRET trajectory, spanning 1,888 frames from start to end split into segments to illustrate
crossing-over events the start of each new segment is labeled with a square and the end of a segment is a circle segments are arbitrarily displaced with
respect to each other for ease of visualization for each segment a zoom-in shows the acceptor trajectory’s displacement (gray) along with the most the
most likely donor molecule (green) and interfering particles and signals (shades of blue). (E) For the smFRET trajectory shown, time traces reveal the
progression of the acceptor intensity, donor intensity and FRET, as well as the number of particles within the donor channel search area, as detected by
our algorithm on a frame-by-frame basis. the corruption of the intensity and FRET traces is evident in and around frames where the number of donor
particles exceeds 1 (segments S2 and S3).
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2 Methods

To develop methods for the automation of crossing-over event
removal, we sought to replicate the performance of a manually-
curated analysis approach on a dataset obtained using total internal
reflection fluorescence microscopy (TIRF) imaging of the SNAPf-
tagged membrane-embedded protein, mGluR2, controllably
expressed at low levels (Asher et al., 2021). The proteins were
stochastically labeled with a mixture of Lumidyne 555p (LD555p)
and 655 (LD655), the donor and acceptor fluorophores, respectively
(Zheng et al., 2017; Pati et al., 2020). As described in Table 1, data
were collected under three conditions of ligand availability (0 µM,
15 µM, and 100 µM glutamate) and processed through smCellFRET.
For each cell, smCellFRET generated all of the smFRET trajectories
that persisted for 20 frames or more (Table 1, column 2). In each
condition, multiple cells expressing mGluR2 covalent dimers
stochastically labeled with both acceptor and donor were imaged
for 160 s at 25 Hz, which produced mGluR2 FRET events in the
acceptor channel. Each smFRET trajectory consists of the number of
frames during which the acceptor signal was detectable without
interruption by our pipeline (Table 1, column 3). Given that each
movie was 4,000 frames, this places an upper limit on the number of
frames within a trajectory, which were near 100 frames on average
(Table 1, column 4). As a negative control, we also collected data
using the single-pass transmembrane domain of the low-density
lipoprotein receptor (LDL-TM), which is known to be a monomer
that will produce negligible smFRET trajectories (Suzuki et al., 2012;
Asher et al., 2021).

2.1 Removal of crossing-over events from
smFRET trajectories

For the dataset we used in this study to automate the removal of
crossing-over frames, we studied mGluR2 dimers with an acceptor
and donor fluorophore on each protomer (Figure 1A). When dimers
or long-lived complexes form, these complexes can be tracked for
multiple frames (Figure 1B). In our experiments, we track the
acceptor particle, and infer the location of the donor from that
acceptor’s location at each timepoint (Asher et al., 2021). A region of
interest (ROI) centered on the acceptor fluorophore’s point spread
function can be used as a bounding box to calculate the total number
of photons emitted in either the acceptor or donor channel
(Figure 1B). As the sensitized acceptor diffuses within the plasma
membrane, the donor and acceptor ROIs will be translated in space

from one frame to the next (Figure 1B). Unlike conventional single-
particle tracking methods, which are primarily concerned with
localizing particles and their motion states, we not only require
the localization but must also efficiently collect as many photons
emitted as possible from the donor and acceptor particles for
generating donor and acceptor intensity time traces with
sufficient signal-to-noise. These ROIs are then used to calculate
corresponding FRET intensity over time traces that can contain
important information related to dynamical changes in structural
states. For high FRET states the donor may emit too few photons for
detection, which would complicate an alternative approach that
seeks to localize the exact donor at all timepoints. Rather, we expect
donor photons to be emitted at any pixels within the ROI
(Figure 1B). Likewise, we attempt to attain an estimate of the
total number of photons emitted by the acceptor. For these
reasons, the best approach we have found involves creating ROIs
for the acceptor and the donor and computing intensities therein
(Figure 1C). With this approach, multiple donors or acceptors
may appear within the same ROI, leading to erroneous
computations of intensities. To solve this problem, we propose
a method whereby all information about donor and acceptor
localizations is combined with ROI intensity calculations in order
to detect frames in which multiple particles may have contributed
to the ROI (Figure 1C).

Due to the nature of stochastically labeled particles, signals in the
donor channel can come from receptor dimers labeled with one
donor and one acceptor, which represents the population of
receptors with smFRET signal, but also from dimers containing
two donors or only one donor and no acceptor. Thus, there are far
more signals in the donor channel compared to the acceptor
channel, which only contains sensitized acceptor particles in an
smFRET experiment, leading to relatively uncomplicated tracking in
the acceptor channel. Because of the relatively high particle density
in the donor channel, there is a potential for overestimating the
intensity within the ROI if multiple signals contaminate the donor
ROI. Whenever another molecule or aberrant fluorescent signal
appears in the proximity of the donor ROI, the computation of the
total photons emitted from the original acceptor molecule and
donor molecule is compromised. Thus, the accurate calculation
of the intensity of the donor and acceptor requires knowledge of
every fluorescent signal within a region near the ROI. We calculate
the FRET efficiency value, E(t), at each frame in time based on the
intensity of the donor and acceptor, with the appropriate corrections
α, δ, and γ, for donor-to-acceptor bleed-through, acceptor direct
excitation at our imaging wavelength, and the relative detection

TABLE 1 The total number of smFRET trajectories extracted from the data collected along with the total number of frames for each trajectory.

Number of
cells

Number of smFRET
trajectories

Number of total frames across all
trajectories

Average length of a trajectory
(frames)

mGluR2 (Apo) 6 2796 371522 132

+15 μM
glutamate

6 2002 201932 100

+100 μM
glutamate

6 2841 296079 104

LDL receptor 12 71 7770 109
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efficiencies and quantum yields of the fluorophores, respectively
(Hellenkamp et al., 2018; Asher et al., 2021):

E t( ) � Iacceptor t( ) − αIdonor t( ) − δItotal t( )
γΙdonor t( ) + Iacceptor t( ) − αIdonor t( ) − δItotal t( )( ) (1)

In a manual-curation approach, one must verify the integrity of
the photon calculation for a given acceptor fluorophore and donor
fluorophore by scanning every frame of an smFRET trajectory to
determine whether the search area around the ROI has been
breached by another molecule or signal (Figure 1B). Multiple
particles in the donor channel ROI would diminish the FRET
value, while multiple particles in the acceptor channel ROI would
increase it (Eq. 1). In our previous work, we would verify for every
smFRET trajectory that contributed to the calculation of FRET
distribution histograms that donor and acceptor ROIs were
uncrossed by any other bright signal throughout the entire
trajectory.

Here, we have developed an automated approach that can be
easily implemented to compute the total number of potentially
interfering signals within a user-defined search area around the
ROI. Our algorithm is enabled by the u-track platform’s ability to
faithfully provide subpixel localizations for any fluorescent signal
in an image frame. We rely on u-track to provide localizations for
every such signal in both the donor and acceptor channels.
However, in many frames, multiple particles will be present in
the vicinity of the donor-acceptor trajectory’s displacement, but
not entirely overlap either donor or acceptor so as to disrupt
detection. To our benefit, u-track outputs all particle trajectories,
regardless of size and even for low intensity particles unlikely to
be sensitized acceptors or donors. We therefore leverage this
information in order to calculate the density of total particles in
the vicinity of the donor-acceptor trajectory (counting the
original donor and acceptor, plus any interfering particles). To
accomplish this, we first compute two time-varying trajectory-
wise distance matrices Dtrajectory→acceptor and Dtrajectory→donor which
contain, for each frame at all times t when a donor-acceptor
trajectory is tracked, the distance between the acceptor in the
trajectory and the entire set of signals detected in either the
acceptor channel or donor channel (Eq. 2). In our experiments,
the donor channel is directly excited whereas the acceptor
channel signals are due to sensitized acceptor emission,
leading to far more signals in the donor channel, and
therefore the number of columns in Dtrajectory→acceptor will be
much less than the number of columns in Dtrajectory→donor.

Dpair→acceptor
ij t( ) �

�������������������
�xpair
i t( ) − �xacceptor

j t( )( )2√
Dpair→donor

ij t( ) �
������������������
�xpair
i t( ) − �xdonor

j t( )( )2√ (2)

Once the trajectory-wise distance matrices D are computed, a
density can be computed at each timepoint, ρi(t) for the ith donor-
acceptor trajectory, as the count of all signals in either the acceptor
or donor channel located at a distance less than dmin:

ρacceptori t( ) � ∑N
j�1
1 Dpair→acceptor

ij t( )< dmin( )
ρdonori t( ) � ∑M

j�1
1 Dpair→donor

ij t( )<dmin( )
(3)

In this equation, the values M and N represent the total number
of located particles (all localizations detected by u-track) that may
cause interference at a given timepoint t, in the acceptor or donor
channel, respectively. The density function is a sum at each
timepoint over all of that timepoint’s potential interfering
particles, and the identification function (script 1 in Eq. 3)
returns a 1 when the condition inside is met (a particle is
localized at a distance < dmin). We use the notation
pair→acceptor and pair→donor to describe the distance between
the acceptor/donor pair under examination and any other particles
in the ROI of either the acceptor or donor, respectively. Note that the
density must return 1 at a timepoint where the original donor and
acceptor of the donor-acceptor trajectory have been successfully
located by u-track. At some timepoints, when the smFRET efficiency
is very high and approaches 100%, the donor may be nearly
completely quenched with little to no detectable fluorescence,
leading to no donor track, and ρdonor would be zero for the
donor-acceptor at those timepoints. With regard to the choice of
dmin, to reduce the possibility of introducing photons from another
signal’s Airy disk, we chose 6 pixels for our value of dmin, as the ROI
we used to calculate intensity around the acceptor and donor is
5 pixels x 5 pixels. In the ideal situation where no crossing-over is
ever present in the data, there would be N functions for ρ(t), which
would be equal to 1 for all timepoints, and the number of acceptor
signals N would be equal to the number of donor signals M. In our
data, M >> N and ρ(t) would exceed 1 at many timepoints. For the
ith donor-acceptor trajectory, we preserve the subset of FRET values
where for a given timepoint, both ⍴i

acceptor(t) and ⍴i
donor(t) remained

less than or equal to 1 (Eq. 4).

Ei � Ei t( )∣∣∣∣ρacceptori t( )< � 1 and ρdonori t( )< � 1{ } (4)

This inclusion condition leads to a FRET trajectory where FRET
values are discarded when either the acceptor or donor channel
contains multiple detected particles at a given t. The remainder of
the frames are stitched together to create a subset of the FRET values
attained by that acceptor-donor pair. Crossing-over events appear as
an smFRET trajectory’s donor or acceptor is crossed by another
signal in either the donor or acceptor channel, respectively
(Figure 1D). Because FRET is inversely proportional to the donor
intensity, the elevation in the donor channel leads to an artifactual
diminution in the FRET value at the corresponding timepoint in the
trace (Figure 1E).

2.2 Eliminating smFRET trajectories with
excessive donor intensity or insufficient
acceptor intensity

The identification of frames with crossing-over events is an
important step that provides us with a temporal filter on each
smFRET trajectory. As mentioned above, the automated method
differs from manual exclusion because it allows for the exclusion of
individual frames instead of elimination of entire smFRET
trajectories. Thus, many donor-acceptor trajectories would be
spared using the automated approach that would have been
excluded through manual inspection. To compare the two
approaches at the level of donor and acceptor intensities, we
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created a reduced dimensionality representation of the entire dataset
of acceptor and donor trajectories (Figure 2A). To do this, we first
used our algorithm to exclude frames in the donor and acceptor
channel with crossing-over, then for the remaining frames, we
computed an adjusted mean intensity value for both the donor
and acceptor ROIs throughout a trajectory. The adjusted mean
intensity value captures the value of the mean photon count within
an ROI once cross-over frames have been removed.We plotted these
adjusted mean values against each other in intensity space to

visualize the populations of donor-acceptor trajectories that
produced our entire dataset (Figure 2A). To guarantee that this
reduced representation accurately captures information about each
of the donors and acceptors, we used Divisive Segmentation and
Clustering (DISC), a MATLAB package, to first idealize the intensity
traces of all donors and acceptors and calculated the most likely
value of the donor or acceptor intensity (White et al., 2020).
Idealization maps noisy time traces to continuous sequences of
discrete states, allowing for the computation of dwell times within a

FIGURE 2
Filtering smFRET trajectories through the assessment of exemplary smFRET donor-acceptor trajectories. (A) Scatterplot showing the two-
dimensional distribution of mean acceptor and mean donor intensities for each smFRET trajectory, revealing potential clusters of complexes. (B) A table
of auROC values is computed over all donor and acceptor fluorescence intensity traces to reveal correlation and anti-correlation in the period following
acceptor fluorophore bleaching (purple box in the bottom left corner captures trajectories with acceptor bleaching and donor intensity increase).
(C) Examples of correlated (top) and anti-correlated (bottom) intensity traces. (D) Scatterplot with all data in gray with exemplary donor acceptor pairs
highlighted in purple. Using these exemplary pairs as a guide to lines can be drawn to select a region containing template smFRET trajectories (purple
dots).
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given state, and the assessment of a mode intensity (the most highly
occupied state for a given trace). For each donor and each acceptor,
the mode of the intensity was compared against the mean, to check
for correspondence on a per-particle basis. In our dataset, the mode
and the means corresponded with R > 0.9 for both the donor and
acceptor (Supplemental Figure S1) indicating that the mean of the
donor and acceptor is a valid approximation of each particle’s most
likely contribution to the overall intensity distributions. This two-
dimensional visualization reduces each donor and acceptor to its
mean intensity over its entire trajectory. In this reduced
representation, it becomes possible to localize populations of
acceptors and donors based on their intensity, identify high or
unresolvable, low intensity particles, and compare the results from
our automated algorithm to the manual approach.

Using this reduced representation of the data, we were surprised
to find that the specialist’s manual-selection process not only
removed many of the donor-acceptor trajectories with crossing-
over that our algorithm detected, but that it also removed nearly all
trajectories with high-intensity donor particles, as well as many with
donors and acceptors of very low intensities. Thus, the specialist’s
process, though it was focused exclusively on removing donor-
acceptor trajectories with crossing-over events, effectively served
as a highly efficient and specific intensity filter. High levels of
fluorescence can be detected in the donor channel when two
donor particles colocalize, which would be detected as one
particle in many frames using our automated approach, and a
specialist would rightly exclude the entire trajectory if the donors
revealed themselves as multiple colocalizing particles. For low
intensity particles, a specialist may interpret fluctuations in the
background of the image as crossing-over events, leading to
exclusion of those particles. Thus, the specialist’s exclusion of
trajectories with perceived crossing-over, while a limitation in
one respect, was also a strength in that it rightly discarded
particles with intensity values either too dim to be accurately
measured or too bright to be generated by a single donor
molecule. In contrast, the algorithm developed here, in focusing
entirely on crossing-over, placed these spurious signals back into
consideration.

To remedy this undesired consequence of performing
crossing-over exclusion at the frame, and not donor-acceptor
trajectory level as we had previously done, we devised an
additional method to remove aberrant donor-acceptor
trajectories from our analysis based on intensity. To do this, we
considered that in an smFRET experiment, whenever a tracked
acceptor molecule bleaches in one step, it reveals a reliable estimate
of the donor and acceptor intensities in a bona fide smFRET donor-
acceptor trajectory. The donor molecule is released from FRET
energy transfer and attains its intrinsic fluorescence intensity, an
upper limit set by the photophysics of the fluorescent dye and the
imaging conditions. This anti-correlated intensity shift at the time
of acceptor bleaching is widely understood to be a reliable
signature of smFRET (Juette et al., 2016; Thomsen et al., 2020).
However, such donor-acceptor trajectories were rare in our
dataset, as this would only occur when donor-acceptor
trajectory tracking lifetimes were longer than bleaching
lifetimes. In our data, the opposite was true as tracking was
typically lost prior to photobleaching (Asher et al., 2021). Thus,
only rarely will we capture frames for an acceptor that bleaches.

While photobleaching events are indeed rare, we have found
that the number of acceptors present in our experiments provide an
adequate sample to use as templates for delineating the boundaries
of single-molecule donor and acceptor intensities. Such events are a
clear indicator that an observed sensitized acceptor particle occurs
via FRET. We thus take advantage of the acceptor molecules that
show photobleaching in order to assess the most likely upper and
lower limits on the acceptor and donor intensity values possible
within our data. Because an smFRET trajectory is defined by the
initial appearance of an acceptor particle, the ability to resolve an
acceptor as distinct from noise necessitates the choice of a lower
limit on the acceptor intensity. We thus took a template-matching
approach and extracted trajectories for which we have very high
confidence that smFRET was observed. These crossing-over free
trajectories that showed anti-correlated bleaching a small subset of
the 7,149 total donor-acceptor trajectories (Figure 2A). To extract
trajectories that showed an anti-correlated bleaching response, we
started by first selecting only trajectories free of crossing-over events
(~10% of all trajectories). For these trajectories, we next computed
an area under the receiver operating characteristic (auROC) values
as has previously been done in other contexts for reliably and
efficiently measuring step-like features in time series data
(Stephenson-Jones et al., 2016; Bloem et al., 2017; Li et al., 2017).
For each donor and acceptor intensity trace, an auROC compares a
window of donor or acceptor intensity frames prior to acceptor
bleaching and a window of donor or acceptor intensity frames after
acceptor bleaching. The auROC value tends toward 0 in the case
where a particle’s intensity level post-bleaching is below the pre-
bleaching level at a majority of frames within a window following the
bleaching-event; on the other hand, the auROC value will tend
toward 1 when more of the intensity values after bleaching are
greater than the intensity values prior to bleaching. Anything less
than a complete step in the intensity profile of a particle after
acceptor bleaching will tend to draw auROC values near 0.5. Thus, to
discover donor-acceptor trajectories showing anti-correlated
bleaching, an acceptor’s auROC value should be close to 0 and a
donor’s auROC value should be close to 1. The results of this analysis
can be easily confirmed visually to separate correlated and anti-
correlated trajectories (Figure 2C). While the smFRET donor-
acceptor trajectories that show anti-correlated bleaching
consistent with the well-accepted signature of smFRET
(Figure 2B, cluster of data in the bottom-left corner) are rare,
can be used as a reliable reporter of the most likely values for the
minimum acceptor fluorescence and the maximum donor
fluorescence (Figure 2D, lower panel). These donor-acceptor
trajectories define a tight cluster of acceptor and donor mean
intensity values (Figure 2D). The donor maximum threshold is
set as the maximum intensity value attained in the window of frames
following acceptor bleaching for this smFRET population. The
acceptor minimum is set as the lowest-value mean intensity of
the smFRET population.

We examined the output of our algorithm capable of
combining smFRET trajectory locations with all of the signals
detected in either the donor or acceptor channel by u-track. The
results of this analysis gave us an insight into where the most
crossing-over contamination occurs, either the donor or acceptor
channel, and whether such crossing-over leads to tracking loss in
the acceptor channel. First, we quantified the number of frames in
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which multiple particles appear in either the donor or acceptor
channel and found that crossing-over events are three times as
likely in the donor channel than the acceptor channel (Table 2).
This is expected for an smFRET experiment, as the donors,
unlike the acceptors, are directly excited by laser light, whereas
acceptors must be sensitized by donors to emit photons. Thus,
donor signals are present throughout the imaging session and

are in far greater abundance. Thus, the greatest contributor to
crossing-over errors originates from within the donor channel,
creating a potentially significant source of noise that would bias
FRET calculations toward lower values. Notably, of the acceptor
channel frames containing crossing-over events, only 722 acceptors
had any within five frames of the trajectory’s termination, which
represents only 16% of the 7,149 donor-acceptor trajectories

TABLE 2 A summary of counts for the donor-acceptor trajectories analyzed and the frames which contained crossing-over events.

Total number of donor-acceptor trajectories (prior to thresholding) 7,149

Total frames for analysis 519,635

Total frames with more than one particle in search region (donor channel) 100,862

Total frames with more than one particle in search region (acceptor channel) 30,565

Total number of donor-acceptor trajectories where acceptor has more than one particle in search region immediately prior to the end of the acceptor
trajectory

722

FIGURE 3
Selection of mGluR2 donor-acceptor pairs using automatically calculated thresholds. (A) Visualization of FRET values as they would be calculated
within intensity space (donor intensity versus acceptor intensity). Black lines indicate boundaries for the lower bound on the acceptor intensity and the
upper bound on the sumof the donor and acceptor intensities. (B) Scatterplot showing all donor-acceptor pairs within intensity space (blue) overlaid with
those donor-acceptor pairs that passed an experimentalist’s hand-selection criteria (black). (C) Scatterplot showing all manually accepted donor-
acceptor pairs within intensity space partitioned into three FRET regions. Pie chart insets show the percentage of donor-acceptor pairs that were
retained(lighter intensity slice) and those donor-acceptor pairs that were excluded (darker slice). (D) Scatterplot showing all-hand selected donor-
acceptor pairs as in (C), as well as hand-excluded donor-acceptor pairs that contained non-eclipsing crossing-over events.
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that we assessed, suggesting that crossing-over in the acceptor
channel typically did not lead to the termination of a trajectory.

As described above, our previous approach focused on removing
trajectories where a specialist perceived any crossing-over to be
visible in either the donor or acceptor channel, which ostensibly
included nearly all of the trajectories with very high donor intensity
or very low acceptor intensity (Figure 2A). Without this aspect of
hand-selection to narrow our set of donor-acceptor particles with
realistic intensity values, we used the adjusted mean intensity values
for each donor and acceptor to classify a donor-acceptor trajectory
as real signal or noise. As described above, the choice of intensity
thresholds was guided by our method of inference based on the
intensity values possible for donor-acceptor trajectories showing
anti-correlated photobleaching (Figure 2C). To visualize how the
operation of either a method of automated thresholding or hand-
curation could impact our downstream calculation of FRET
distributions, we plotted each donor-acceptor trajectory in
intensity space (Figure 3A). We used the acceptor minimum we
obtained to place boundaries on the overall distribution of smFRET
trajectories. A vertical boundary delineates the ability to resolve an
acceptor molecule from noise. Additionally, we computed a donor
maximum value. Moreover, we reasoned that the total intensity of
the donor-acceptor trajectory should be limited to the sum of the
donor maximum value and the acceptor minimum. To denote this
maximum total intensity, a diagonal boundary is placed to constrain
the sum of the donor and acceptor (total intensity) to an amount
equivalent to the sum of the maximum donor mean intensity and
the minimum acceptor mean intensity. To calculate the boundaries
of the high, intermediate, and low FRET states (Figure 3A), we
solved three systems of linear equalities for the respective boundary
lines (Eq. 5):

EFRET ≈
Iacceptor

Iacceptor + Idonor

Iacceptor
Iacceptor + Idonor

> 0.7

Iacceptor + Idonor < Itotal,max

Iacceptor > Iacceptor, min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0.3< Iacceptor

Iacceptor + Idonor
< 0.7

Iacceptor + Idonor < Itotal,max

Iacceptor > Iacceptor, min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Iacceptor + Idonor

Idonor
< � 0.3

Iacceptor + Idonor < Itotal,max

Iacceptor > Iacceptor, min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(5)

For visualization purposes, so that we may approximate the
boundaries of FRET domains in this intensity space
representation, we estimated the FRET efficiency as the
theoretical FRET equation, without corrections. The three
bracketed systems of equations allow us to place boundary lines
around (in order from first to last) the high FRET, medium FRET,

and low FRET regions. In our analysis, we accepted for analysis
those donor-acceptor trajectories with acceptor and donor
intensities falling within one of the three regions delimited by
our inferred Iacceptor,min and Itotal,max. Once we set discriminative
boundaries for the inclusion of viable donor-acceptor trajectories
according to the solutions (Juette et al., 2016), we used our
intensity space representation to examine where hand-selection
produced the exclusion of the greatest number of FRET values. For
all donor-acceptor trajectories, we excised any timepoints with
detected crossing-over in either the acceptor or donor channel and
computed the time-averaged intensity value. During the manual
inspection process, a trained specialist was tasked with excluding
any donor-acceptor trajectories if they perceived crossing-over
events at any time during the trajectory. Based on a visual appraisal
of the results of hand-selection in intensity space, we observed that
donor-acceptor trajectories containing high-FRET data may have
been disproportionately removed for crossing-over events
(Figure 3B). Thus, we examined how the specialist’s hand-
selected set could have been enlarged if such donor-acceptor
trajectories had been reintegrated following our crossing-over
detection removal (Figures 3C, D). Indeed, we saw that by
reintegrating trajectories with cross-over, we could increase the
proportion of donor-acceptor trajectories selected in all clusters,
with the greatest increase in the high FRET cluster (bottom,
yellow), which had only 19% of the donor-acceptor trajectories
included in the hand-selected set to 88% in the adjusted set
(Figures 3C, D). The remainder of the trajectories that were
excluded by hand curation may have been removed due to
human bias or reasons discussed above. When applying our
approach, we would include these trajectories as well, given the
lack of any objective criteria for excluding them. In our subsequent
analysis, we thus relied on the full set of automatically selected
trajectories that met our intensity-based criteria, with the removal
of frames where crossing-over events were detected by our
algorithm.

3 Results

Starting with this full set of automatically selected trajectories
that met our intensity-based thresholding criteria, with the removal
of frames where crossing-over events were detected by our
algorithm, we computed the total FRET distributions for all
donor-acceptor trajectories within frames with at most one
acceptor and one donor present (Figure 4). The results were
extracted from tracking N = 6 cells for each of the three
conditions (Apo, 15 μM, and 100 μM glutamate) (Asher et al.,
2021). In comparing the automatically selected FRET dataset to
the manually selected set, we notice a doubling in the number of
frames (175,223 frames versus 351,006 frames, title of panel A and
B), leading to a higher density of data to bolster the overall FRET
state distribution. Interestingly, we see the emergence of a high
FRET state (~0.8) within the frames where selection was automated,
which is largely obscured in the hand-selected dataset. In that
dataset, however, as we previously reported, high-FRET was in
fact observed in a small fraction of FRET traces where donor and
acceptor showed anticorrelation (Asher et al., 2021). Notably this
high FRET state was also observed in smFRET studies with an
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FIGURE 4
Comparison of FRET distributions obtained from a manually assisted analysis and the automated approach. Gaussian fits to FRET values obtained
under three conditions: 0 µM (Apo), 15 µm, and 100 µM glutamate. Three states are obtained (low FRET blue; medium FRET red; high FRET yellow). The
pie charts over each histogram reflect the proportion of frames clustered into each state as indicated by the corresponding color. (A)Histograms overlaid
with Gaussian fits for the FRET values obtained through hand-curation of the data, with pie charts for visualizing the contribution of each state to the
histogram. (B) Histogram and pie charts to summarize the distribution of FRET values obtained through automatic extraction of FRET values. (C) A
histogram computed (only Apo state) from ten additional cells. (D) Boxplot to depict the contribution of individual cells to the proportion ofmedium FRET
values over the various approaches and datasets, for either the original dataset from Asher, 2020 (Manual 1 and Automated 1) or the automated analysis of
the newly-added dataset (Automated 2). Asterisks indicate p < 0.05 (independent samples t-test). No significant differences are measured for the
proportion of medium FRET state values across the three approaches. (E) Boxplot showing an enhanced proportion of high FRET state is measured when
using an automated, but not the manual, approach to analysis (independent samples t-test).
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engineered mGluR2 extracellular domain dimer (Olofsson et al.,
2014). To ensure the reproducibility of our method, we repeated all
the steps described above on an additional dataset of N = 10 cells
imaged in the Apo condition (referred to as “Automated 2” in
Figures 4D, E). Remarkably, we found near perfect agreement
between the FRET distributions in the two Apo condition data
sets (Figure 4C). A comparison of the proportion of frames in the
intermediate FRET state showed no significant differences between
the cells from either the manually selected original set (Manual
1, Figure 4D), the automated original set (Automated 1), or the
automated replication set (Automated 1, Figure 4D). When
examining the high FRET state, however, the proportion of
frames per cell that the manually selected approach clustered
were significantly less than the proportion of frames per cell than
that in either the analysis of Automated 1 or Automated 2
(Figure 4E). Speaking to the reproducibility of this method,
the results from Automated 1 and Automated 2 were not
significantly different for either the intermediate FRET state
or the high FRET state (Figure 4).

We also applied our new method to a negative control dataset
acquired in the same experiment. For the Low Density Lipoprotein
transmembrane domain (LDL-TM), a known monomer (Suzuki
et al., 2012), our algorithm extracted fewer than 100 frames of
smFRET over 6 cells, effectively no FRET events when compared to
the mGluR2 data. This result is expected from previous studies
(Doumazane et al., 2013; Olofsson et al., 2014; Vafabakhsh et al.,
2015) and confirms the ability of our automated method to
minimize false positive detections of smFRET.

4 Discussion

In our previous work tracking smFRET in live cells, we optimized
smFRET particle tracking by expressing low levels of labeled molecules,
tracking sensitized acceptor molecules and using these locations to
create ROIs for the acceptor channel, as well as for the donor channel
via a mapping function, and tuning u-track to provide highly reliable
tracking at subpixel resolution (Asher et al., 2021). Nevertheless, we
occasionally saw multiple particles within the acceptor ROI, or more
often, the donor ROI. In this work, we have primarily concerned
ourselves with non-colocalizing crossing-over events, where the point
spread function of a nearby donor can dramatically reduce the
computed FRET value. In arriving at an automated solution to this
problem, we showed that a reduced dimensionality representation of all
particles in intensity space could be a useful approach for comparing the
results of automation with manual selection. With the aid of the
intensity space representation, we discovered that our previous
manual selection process that excluded particles containing crossing-
over frames also beneficially filtered out spurious low and high-intensity
donor-acceptor trajectories. This surprising result required us to
develop an additional automated step to filter the output of our
smCellFRET pipeline using a template-based approach based on
principles of smFRET.

Our intensity thresholding approach here does not rely on
visual inspection of images or intensity histograms over the
dataset but rather a template-matching approach. We use
smFRET donor-acceptor trajectories with a known signature
of FRET, anti-correlated bleaching, to justify the selection of a lower

boundary on the acceptor and the upper boundary on the donor. It is
clear that this logic will apply best in experimental systemswhere a large
amount of data is collected for a given fluorophore, where one donor is
expected to meet one acceptor, and where at least some acceptor
photobleaching is observed. In some future smFRET experiments,
photobleaching may not be observed or expected, in which case
another basis for discriminating reliable trajectories would need to
be used. For example, a trajectory may reveal a high level of anti-
correlation, increasing our confidence that the trajectory is generated by
a donor-acceptor pair undergoing smFRET. Such anti-correlated
trajectories could be collected to create templates, as we have done
here, for estimating the range of intensity values for single acceptor and
donor molecules. Alternatively, given a large enough dataset, a spectral
clustering approach on the intensity space values could be attempted for
sequestering the cloud of template trajectories from background noise.
In either case, it is crucial to examine the underlying assumptions of any
clustering approach and ensure their validity for the system under
investigation.

Our automated approach remedies the manual trajectory
selection process’ bias away from high FRET values, introduced
by the complete exclusion of donor-acceptor trajectories with any
crossing-over frames required by the hand-selection process. By
mapping our data in intensity space onto FRET space, we observe
that trajectories with high acceptor fluorescence, and therefore
higher FRET, invariably persisted for more frames in our
experimental pipeline, because we tracked sensitized acceptors
and only infer donor locations. The higher intensity of an
acceptor leads to tracking over a longer time frame, leading to
more opportunities for a manual observer to perceive a crossing-
over event. This slight bias toward shorter trajectories and therefore
away from high acceptor particles diminished the observation of the
high FRET state for mGluR2. The finding of an enhanced
proportion of high FRET values is reflected in our previous
publication (Asher et al., 2021), where we also observed a high
FRET state that was most prevalent in the highest quality traces in
which we observed anticorrelated changes in fluorescence. Here our
automated methods indicate that this state is more common than we
previously estimated.

Ultimately, the enhancements we pursued here led to a nearly two-
fold increase in the total data spared after automated curation. While it
is possible that by reintroducing donor-acceptor trajectories and
smFRET traces that had been rejected by a specialist, we have
injected some other type of error. For instance, the minority fraction
of trajectories that were rejected by the specialist but contained no
detectable crossing-over eventsmay reflect a lack of detection by u-track
based on the settings we used. These crossing-over events may have
been due to particles that were too dim or not well-fit to a Gaussian and
therefore were not tracked by the software. Were it important to
consider these low-intensity interferences, one could turn to
intermediate data structures within the u-track pipeline, which
contain all the local maxima present in an image even before fitting
with a Gaussian kernel and could be the basis for a more conservative
detector of crossing-overs. Here, we chose to only focus on those tracks
which u-track accepted as sufficiently Gaussian and having an adequate
signal-to-noise ratio. A track originating from a spot that does not meet
these basic requirements would not have sufficient intensity to
materially alter FRET, unless the donor and acceptor both had low
intensities themselves, a situation that we mitigate against using our
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thresholding step. For the tracks in the donor and acceptor channels
that are identified as potentially interfering with our smFRET donor-
acceptor trajectories, our automated approach outputs all the track
identities and intensity information. This could enable future studies in
which interactions between smFRET donor-acceptor trajectories are
studied, or the density of donor-acceptor trajectories in defined
membrane areas are related to the FRET values computed. Indeed,
our crossing-over detection algorithm can easily be used as amethod for
obtaining the local density of smFRET donor-acceptor trajectories
along an individual trajectory’s trajectory.

We showed that the results of our analysis could be replicated in a
different dataset collected at a different time from a different set of cells.
Namely, the presence of a high-FRET state we detected through
automated analysis of our original, published work can be
recaptured in this distinct dataset, at remarkably similar proportions.
This bolsters the claim that the glutamate receptor, in living cells, visits
at least two distinct conformations even in a condition with no ligand
added. The persistence of this state even in increasing levels of ligand
provides an interesting insight into the nature of this conformation.

Through our intensity space representations, we sought to develop
an intuitive approach for scrutinizing donor-acceptor trajectories and
viewing results of selection routines imposed on them. This
representation of each donor-acceptor trajectory in intensity space
allows us to infer reasonable values for thresholds from mapping
template particles, those which had the signature FRET anti-
correlated bleaching behavior, onto the overall distribution of
particles. Looking within intensity space also provides hints as to
where hand-curation may have introduced biases. Moreover, it could
help tune tracking, as the donor-acceptor trajectory in the intensity space
could be color-coded by its lifetime, revealing potential variability due to
particle intensity. Further implementations of this view could be used to
examine the diffusion states ofmolecules spanning intensity space, which
would allow probing of the relationship between FRET and diffusion. In
another embodiment, points in the intensity space could be color-coded
based on their proximity to a biologically relevant landmark in the cell.
These relationships could motivate various discriminative classifiers that
would give experimentalists novel insights into decoding the relationships
between FRET and the cellular milieu in which molecules diffuse.

Ultimately, we believe the optimal approach to scrutinizing
smFRET values will integrate a small amount of manual inspection
by a trained specialist, especially for populations of donor-acceptor
trajectories that are dissimilar from their neighbors in terms of track
length, mobility, signal-to-noise, or other features accessible through
upstream tracking software such as u-track. The insights of such a
specialist can be used to guide and coordinate the automated
approaches that can be developed by a data analyst working in
conjunction with the experimental team. As imaging experiments
become increasingly ambitious and more particle features are used
to analyze tracking accuracy and biological variables of interest
(Chenouard et al., 2014), the amount of data required will scale
exponentially with the dimensionality. By automating aspects of the
data curation through meticulous inspection of the various aspects of
the donor-acceptor trajectory and the features it generates, the field will
increase the throughput of individual experiments and improve the
unbiased estimation of particle features as well as the inference of
structural and pharmacological parameters of interest.
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