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Object detection has a wide range of applications in forestry pest control.

However, forest pest detection faces the challenges of a lack of datasets and

low accuracy of small target detection. DETR is an end-to-end object detection

model based on the transformer, which has the advantages of simple structure

and easy migration. However, the object query initialization of DETR is random,

and random initialization will cause the model convergence to be slow and

unstable. At the same time, the correlation between different network layers is

not strong, resulting in DETR is not very ideal in small object training,

optimization, and performance. In order to alleviate these problems, we

propose Skip DETR, which improves the feature fusion between different

network layers through skip connection and the introduction of spatial

pyramid pooling layers so as to improve the detection results of small objects.

We performed experiments on Forestry Pest Datasets, and the experimental

results showed significant AP improvements in our method. When the value of

IoU is 0.5, our method is 7.7% higher than the baseline and 6.1% higher than the

detection result of small objects. Experimental results show that the application

of skip connection and spatial pyramid pooling layer in the detection framework

can effectively improve the effect of small-sample obiect detection.

KEYWORDS

object detection, forestry pest detection, DETR, Skip connection, small object detection
1 Introduction

Object detection is one of the more important branches in the field of computer vision

Zaidi et al. (2022), and it has been widely used in agricultural pest detection, crop condition

detection, crop yield prediction, and other fields. In recent years, with the vigorous

development of deep convolutional neural networks, the accuracy and performance of

object detection tasks have been greatly improved. The identification and detection of

forest pests provide a strong guarantee for crop yield growth and the agricultural economy
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Ngugi et al. (2021). However, compared with tasks such as

autonomous driving and intelligent monitoring, forestry pest

detection still has the following challenges: (1) There are fewer

publicly available datasets for forest pests; (2) The detection targets

are mostly small targets Huang et al. (2022).

At present, there are few studies on forest pest detection, and

forestry pest datasets are relatively lacking. Most of the proposed

solutions rely on traditional CNN structures, such as ResNet,

GoogleNet, VGG, etc. The root cause of this problem is the lack

of a large enough dataset of forestry pests to train specific CNN

structures Ngugi et al. (2021). These traditional architectures have

high computational requirements for pest identification tasks and

require high-resolution image features in processing small target

images, which will bring high computational complexity. Therefore,

Carion et al. (2020) proposed an end-to-end object detection model

(DETR) based on Transformers and achieved competitive results.

The main hurdle in forestry pest datasets is that the only large, freely

available datasets are the PlantVillage dataset and the Plant Disease

Symptom Image Database (PDDB). The recently published forestry

pest dataset solves the above problems well. The dataset contains

7163 images and 31 species of forestry pests Liu et al. (2022a).

Current mainstream non-end-to-end object detection

frameworks include one-stage and two-stage detectors. They may

face a huge amount of computation, which can greatly improve

model training time and performance Sun et al. (2021a). The DETR

architecture Carion et al. (2020), as an end-to-end object detection

framework, has a simple structure and does not require specialized

libraries. This means faster setup of deployments or downstream

tasks on other computers. At the same time, experiments show that

DETR also has high performance when migrating to other tasks,

such as panoramic segmentation.

However, DETR, a method that uses object queries matching,

usually requires high costs when performing intensive detection.

There are many ways to improve DETR, such as the way

Deformable DETR uses Deformable’s structure and Multi-Scale

Zhu et al. (2020). It greatly reduces the training cost of the model

while improving the performance of the model. At the same time,

due to the lack of image priori and multi-scale fusion mechanisms

of DETR Liu et al. (2022b), although recent DETR-based models

have achieved significant performance, DETR lacks multi-scale

features compared to classical object detection models, which are

critical for small object detection.

As a classical method to improve the structure of deep neural

networks, skip connection He et al. (2016) has been applied in

classical network structures such as U-Net, ResNet, and DenseNet,

which plays a role in improving the accuracy of image segmentation

and improving the utilization rate of feature information in each

layer of the network. Therefore, this paper introduces skip

connection and spatial pyramid pooling layers He et al. (2015) to

enhance the extraction and fusion of image features by the model

and enhance the model’s learning of small object objects. First, we

link the backbone network output and encoder output with skip

connection. Then, in the DETR decoder input, 100 randomly

initialized object queries are included, but random initialization

also makes image feature learning slow Chen et al. (2022). So we use

a three-layer spatial pyramid pooling layer to transform the output
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of the backbone network into features of the same size as the object

queries, and finally perform skip connection to improve the

initialization process of the object queries.

With our improved method, we have improved the accuracy of

small target detection. At the same time, compared with the initial

DETR model, our model has achieved competitive results. On

Forestry Pest Datasets, at IoU=0.5 and IoU=0.75, our method

achieves an absolute gain of 7.7% AP and 6.0% AP on the DETR

baseline. For small object detection results, our method achieves a

gain of 6.1% AP over the DETR baseline.

The contribution of this work are summarized as follows:
1) We propose a model called Skip DETR, which uses skip

connection to enhance the extraction of features of small

sample images by the DETR model.

2) We introduce the spatial pyramid pooling layer, improve the

object queries initialization method, and make the model

converge faster.

3) We conduct extensive experiments on forestry pest datasets.

Experimental results show that the application of skip

connection and spatial pyramid pooling layer in the

detection framework can effectively improve the effect of

small-sample object detection.
2 Related works

In this section, we will introduce the relevant solutions for

insufficient multi-scale feature fusion and the research status of

small target detection, identify and review existing forest pest

datasets and related detection methods.
2.1 A solution to insufficient multi-scale
feature fusion

The DETR architecture, as an end-to-end object detection

framework, has a simple structure and does not require

specialized libraries. However, the DETR model does not contain

FPN, resulting in high computational complexity and insufficient

feature fusion when processing high-resolution image features.

However, DETR requires high-resolution image features when

processing small target images, which brings high computational

complexity. Therefore, it is not suitable to introduce FPN inside the

DETR model, which ultimately leads to insufficient feature fusion.

Without reintroducing multiscale feature fusion in the encoder, the

accuracy of DETR cannot be further improved. Therefore, six

Transformer encoder layers are included in the DETR encoder,

which are stacked on top of the backbone network to improve the

feature representation of its model.

At present, many improved models of DETR are trying to solve

this problem. Deformable DETR combines DCN sparse sampling

capabilities with transformer global relationship modeling capabilities

by using the Deformable Attention module Zhu et al. (2020). Sun et al.

(2021b) solved the cross-attention problem in DETR by proposing two
frontiersin.org
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schemes, TSP-FCOS and TSP-RCNN. The ViT-FRCNN model

improves the structure of DETR by replacing the transformer with

the backbone portion of FasterRCNN Beal et al. (2020). Since the

introduction of FPN is not suitable inside DETR, the work in this

paper is mainly to add skip connections and SPP networks outside

DETR to enhance the fusion of its multi-scale features.
2.2 Public datasets of forest pests and
pest object detection

The identification and detection of pests and diseases provide a

strong guarantee for crop yield growth and agricultural economy in

forestry pest control. Current forestry pest datasets can provide a

wide variety of training samples for target detectors. Sun et al.

(2018), as well as Hong et al. (2021), used pheromone traps to

collect datasets that created forestry pests, but the datasets they

created were only able to handle specific species of forestry pests.

Chen et al. (2019) also created a dataset of forestry pests, but their

main purpose was to study the classification of pests. Baidu has also

published a dataset of forestry pests, but it was collected in a lab-

built environment. Therefore, finding a public and suitable forestry

pest dataset is difficult. However, the forestry pest dataset recently

published by Liu et al. (2022a), which contains 31 pests and more

than 7,000 images, lays a good foundation for the training of target

detectors in this field.

Early pest and disease object detection was largely based on

machine learning techniques. Le-Qing and Zhen (2012) tested 10

pests on a dataset of 579 samples using local average color features

and SVMs.

Zhang et al. (2013) proposed a field pest identification system,

and the dataset they used included about 270 training samples.

Ebrahimi et al. (2017) used an SVM method with differential kernel

functions for parasite classification and thrips detection. These early

pest detection methods have yielded good results. However, their

detection performance depends on the performance of the manual

feature extractor and the chosen classifier.

With the development of image technology, convolutional

neural networks have achieved obvious advantages in complex

object detection, segmentation and classification by virtue of their

strong image feature learning ability. Selvaraj et al. (2019)

constructed an AI-based banana pest detection system based on

deep convolutional neural network (DCNN). Liu and Wang (2020)

constructed a tomato pest dataset and improved the YOLOV3model

to detect tomato pests and diseases based on this dataset. Zhu et al.

(2021) improved the YOLOV3 model for the detection of black rot

in grape leaves using super-resolution image enhancement.

In summary, although convolutional neural network (CNN)-

based pest detection can improve the performance of pest detection,

it has the advantage of avoiding the early limitations of the model.

However, the fly in the ointment is that the vast majority of object

detection architectures have manually designed components that

have an impact on the performance of the model. Recently, the end-

to-end object detection model (DETR) based on Transformers

proposed by Carion et al. (2020) can avoid the above problems

well and achieve competitive results.
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2.3 Status of small target detection

Small target detection plays an important role in forestry pest

detection, crop status detection, crop yield prediction and other

scenarios Du et al. (2022). Small target detection has the

characteristics of small coverage image area, few effective features

for object detection, and commonly used object detectors are

insensitive to small targets. At present, for small target detection,

MR-CNN adopts multi-scale feature fusion Gidaris and Komodakis

(2015), ContextNet uses context information to improve R-CNN

Han et al. (2020), JCS-Net adopts image super-resolution and other

methods Pang et al. (2019), which has been improved in the

detection results of small targets.

However, most studies did not work on forest pest datasets, and

there are still some gaps in the detection of small targets in the field

of forest pest identification.
3 Framework of Skip DETR model

In this section, we will introduce the model structure of Skip

DETR and elaborate on the structure of the improved components

and how they provide gain to the model.
3.1 The structure of Skip DETR

Skip DETR is an improved end-to-end object detection

framework based on DETR, which mainly includes three parts:

backbone, transformer-based encoder-decoder structure, and

sequence prediction architecture. At the same time, we add a

spatial pyramid pooling layer and a deep separable convolutional

layer outside the DETRmodel, and enhance the fusion of contextual

feature information through skip connections.

When the image is input to the model, it will first be processed

by the CNN to obtain the feature matrix of the current image. Then

the feature matrix will be straightened and added to the position

encoding, and passed into the encoder to learn the global

information of the image, and the straightened feature matrix will

be further extracted by deep separable convolutional layers. The

results of the subsequent deep separable convolutional layer

processing will be residually connected to the Encoder output on

the one hand, and a three-layer spatial pyramid pooling layer and

connected to the object query as the input of the Decoder on the

other hand. Finally, it is decoded by Decoder and passed to FFN for

image prediction. We will show the structure of our Skip DETR

in Figure 1.
3.2 Applying skip connections between
different layers of DETR

The basic idea of skip connection is to express the output as a

linear superposition of a nonlinear transformation of the input and

output He et al. (2016). After the skip connection, the amount of

information describing the characteristics of the image increases,
frontiersin.org
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but the feature dimension describing the image does not change.

Because the amount of information increases in each dimension, it

is beneficial for the final image prediction.

When we use a non-linear change function to describe the input

and output of a network, that is, the input is x and the output is F(x),

F usually includes operations such as convolution and activation.

When we add an input to the output of a function, although we can

still use G(x) to describe the relationship between input and output,

G(x) can be explicitly split into linear overlays of F(x) and X.

Srivastava et al. (2015) proposed the residual structure for the

first time, which is derived from the control gate idea of LSTM. The

initial residual formula is shown in formula 1.

y = H(x;WH ) · T(x,WT) + x · (1 − T(x,WT)) (1)

However, because Formula 1 is too complex, He et al. (2016)

simplified the formula, which is shown in formula 2.

y = H(x,WH) + X (2)

Inspired by the residual structure, this paper applies the residual

structure to the DETR network. On the one hand, we link the

backbone network output with the encoder output to enhance the

learning of small objects by fusing image features. In order to reduce

the number of model parameters and operation costs,

we introduce a depthwise separable convolutional layer after the

output of the backbone network. We set the convolution kernel size

to 1, the stride to 1, the depthwise part group to 256, and the

pointwise part group to 1. We will show the structure of this part of

the component in Figure 2.
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On the other hand, the decoder input of DETR contains 100

randomly initialized object queries, but random initialization also

makes the model converge slowly. So we want to link the backbone

network output with the object query to speed up the convergence

of the model by improving the initialization of the object query.

However, since the backbone network output feature map size is

variable, it is not possible to unify the output feature map size using

a common convolution layer. This paper solves this problem by

introducing a spatial pyramid pooling layer, which will be described

in the next section.
3.3 Add a spatial pyramid pooling layer

The essence of the pooling layer of the spatial pyramid is the

multi-layer maximum pooling layer, which generates a fixed-size

output for feature maps (n × n) of different sizes (a × a). The spatial
pyramid pooling layer automatically adjusts the size of the sliding

window win and the step size str according to different input sizes,

using Equation 3 and Equation 4. In this paper, the output results of

deeply separable convolutional layers are processed by spatial

pyramid pooling layers and residually connected with object

queries in the DETR model. This component changes the initial

state of the object queries, providing the model with a priori

information that can learn the key features of the image, thereby

shortening the convergence process of the model. We will show the

structure of this component in Figure 3.

win = ceil(a=n) (3)
FIGURE 1

The structure of Skip DETR. Our work is mainly carried out outside the DETR model. We introduce a deep separable convolutional layer and a spatial
pyramid pooling layer, and skip connection with the encoder output and object queries.
frontiersin.org
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str = f loor(a=n) (4)

Many CNN models have certain requirements on the size of the

input image Long et al. (2015), but the feature extraction network

(such as convolution layer, activation function layer, pooling layer)

part of the model head has no requirements on the input image,

which can be simply understood as the feature extraction network

knowledge reduces the image by a fixed multiple. However, the full

connection layer at the end of the model has strict requirements on

the input dimension. Therefore, limiting the image size of the input

CNNmodel is to meet the requirements of the full connection layer.

In the decoder input of the DETR, 100 randomly initialized

object queries are included, and the size of each object query is 100
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× 256. However, the size of the feature map output by the backbone

network cannot be guaranteed to be the same as the size of object

query. Therefore, we first pass the output of the backbone network

through a Depthwise Separable Convolutional layer (the

convolutional layer is described in Section 3.1), and then pass

through a three-layer spatial pyramid pooling layer, so that the

final output can meet the skip connection condition with the

object query.

In the process of using the pooling layer of the spatial pyramid,

we also hope to integrate the outputs of different pooling layers.

Therefore, we integrate the output of the second pooling layer with

the output of the third pooling layer, hoping to further enhance the

model’s ability to extract features.
FIGURE 3

Spatial pyramid pooling layer structure diagram. We design a three-layer spatial pyramid pooling layer, decompose the feature map into 2×2, 4×4,
8×8 sizes, and at the same time stitch the output of the second layer twice when unfolding and stitching. Finally, we connect the output with the
object queries.
FIGURE 2

Depthwise Separable Convolution and residual structure diagram. Depthwise Separable Convolution is divided into two parts: Depthwise
Convolution and Pointwise Convolution. We set the relevant parameters according to the input image features. It is worth noting that the
convolution kernel size of both parts is 1×1.
frontiersin.org
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4 Experiment

We show that in the quantitative assessment of Forestry Pest

Datasets, our improved DETR has achieved competitive results

compared with the baseline of the DETR. Then we carried out a

detailed ablation study and gave qualitative results.
4.1 Parameters of model training

The experiments used in this paper is Python 3.9, Torch 1.11,

CUDA 11.4. Other hardware information used in the experiment is

shown in Table 1. The main parameters of the Skip DETR model

are shown in Table 2. DETR requires about 500 epochs on the

COCO dataset to converge, considering the detection accuracy and

training time on the Forestry Pest dataset, we choose 300 epochs. At

the same time, in order to ensure the consistency of the training

cycle of the control experiment, we designed the same epoch for

other experiments. If there is no special declaration, all other

parameters are consistent with the DETR.
4.2 Dataset

At present, there are many datasets related to the Forestry Pest

identification task (such as Hong et al. (2021); Chen et al. (2019);

Sun et al. (2018)), but they have problems such as few pest species,

being unable to apply to the actual scene, and the data set is not

open to the public. However, the recently published Forestry Pest

dataset has solved the above problems well Liu et al. (2022a). The

dataset contains 7163 images and 31 forest pests. The dataset is

derived from Liu et al. (2022a), and the types and quantities of forest

pests in the dataset are shown in Table 3.

Therefore, we use the dataset of Liu et al. (2022a) for training. In

order to ensure the training results, the Forestry Pest dataset is

randomly divided according to the following proportion: (Train:

Val=9:1): Test=9:1. That is, 5801 training images, 645 verification

images and 717 test images for target detection tasks are included

after division.
4.3 Evaluation metrics

In this paper, we use mAP and AR as experimental evaluation

indicators, which are widely used in the field of object detection. We

will give the calculation method of mAP and AR.
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Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

mAPa =
1
N o

N

n=1
APn

a (7)

where TP for positive samples is predicted as positive class, FP is

negative samples are predicted as positive class, and FN is positive

samples are predicted as negative class. AP is the average accuracy,

which is simply the average of the Precision value on the PR curve,

and mAPa represents the AP measurement at different

IoU thresholds.

In the COCO dataset, objects with a pixel area less than 32 × 32

are regarded as small objects, pixel faces and objects larger than 96 ×

96 are regarded as large objects, and pixel faces and objects between

32 × 32 and 96 × 96 are regarded as medium objects.
4.4 Experimental results

Skip DETR is an improvement based on the DETRmodel and is

mainly designed for small target detection.

We try to improve the performance improvement of DETR on

small target detection with our method. The average accuracy of the

Skip DETR model at different IoU Rezatofighi et al. (2019)

thresholds, the results are shown in Table 4.

From the experimental results in Table 4, it can be seen that

after training with 300 epochs, the Skip DETR model has better

accuracy than the DETR model on the forest pest dataset. When

IoU=0.5, The 200th epoch result of Skip DETR is even higher than

the 300th epoch result of the DETR model. At the same time, the

results on other evaluation indicators are also due to the DETR

model. This shows that the improvement method we use helps to

improve the accuracy of the model.

Another drawback of DETR is its poor performance in

detecting small objects. To verify whether our model helps

improve the accuracy of small object detection, we compare the

detection accuracy of Skip DETR and DETR at different scales. The

results are shown in Table 5.

As can be seen from the results in Table 4, our model is a

significant improvement in the detection of small objects. After 300

epochs, compared with DETR, the accuracy of skip DETR in small

object detection is improved by 6.1% AP, the medium object

detection accuracy is improved by 11.3% AP, and the detection

accuracy of large objects is improved by 8.8% AP.
TABLE 1 Configuration of experimental environment.

Hardware Model

CPU Silver 4110

Memory 64GB

GPU Quadro P2000 5GB

Hard disk 2.5TB
TABLE 2 Model parameter settings of Skip DETR.

Name Value

Batch size 1

Epoch 300

Learn rate 0.00001
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iersin.org
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Recall is often used to assess detector coverage of all objects to

be inspected Buckland and Gey (1994).Therefore, we compared the

recall of Skip DETR and DETR at different training stages and scales

in Table 6. We selected 100 subjects to test the average recall, and

the final result showed that Skip DETR can predict positive samples

more accurately.
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Our improved DETR model has obtained good results,

especially greatly improved APS, APMand APL.

Finally, we used the original DETR model and the improved

DETR model to measure GFLOPS Goldberg (1991) and params.

Through experiments we find that the improvement method

proposed in this paper is completely negligible in terms of

consumption of computing resources.

During model training, training loss Ru et al. (2020), box loss,

and classification error rate Kim (2009) are common metrics to

measure model performance. In Figure 4 we show the comparison

results of the Skip DETR and DETRmodels on the above evaluation

indicators. From Figure 4, it can be seen that the loss error of Skip

DETR in the initial training phase is lower than that of the DETR

model. As training progresses, Skip DETR’s loss and classification

error rate decreases faster than DETR. This indicates the

effectiveness of adding skip connection and spatial pyramid

pooling layers. In addition, the training process of Skip DETR is

smoother, which is easier to train than the DETR model.

Furthermore, in Table 7, we compare our Skip DETR with

several different object detection models on Forestry Pest Datasets.

We report the detection results of each model at different IoU

thresholds and scales. For fair comparison, we used the same model

parameters and trained the same epochs. We show that Skip DETR

outperforms DETR and achieves competitive results compared with

other object detection models and improved models based

on DETR.
4.5 Ablation experiments

In this section, we conducted several ablation experiments to

help us understand the contribution of each improved method to

the final performance. As shown in Table 8, both improvement

methods improve the performance of DETR.

It is worth noting that we first introduced the spatial pyramid

pooling layer on the basis of DETR, and we found that although it

provides performance improvement for DETR in the recognition of

small objects, it will reduce the performance of other indicators.

Therefore, we introduced the skip connection on the basis of the

first improvement, and experimented with the skip connection and

the spatial pyramid pooling layer as a whole module, and finally

obtained the performance improvement on all indicators while the

number of model parameters remained basically unchanged.

In general, in the field of forestry pest detection and small target

detection, Skip DETR adds skip connections and spatial pyramid

pooling layer so that our model can make full use of the image

information in the feature map at various scales, and making the

model more sensitive to small targets. At the same time, the spatial

pyramid pooling layer can change the initialization mode of object

queries, making the convergence of Skip DETR models faster and

easier to train. Without changing the number of model parameters

too much, Skip DETR has achieved competitive results on multiple

evaluation indicators. And compared to several other different

object detection models, Skip DETR also achieves better results.
TABLE 3 Details of the types and quantities of forest pests in the
dataset.

Class index Pest Sample
size

0 Drosicha contrahens (female) 218

1 Drosicha contrahens (male) 210

2 Chalcophora japonica 158

3 Anoplophora chinensis 426

4 Psacothea hilaris(Pascoe) 218

5 Apriona germari(Hope) 342

6 Monochamus alternatus 184

7 Plagiodera versicolora(Laicharting) 306

8 Latoia consocia(Walker) 290

9 Hyphantria cunea 303

10 Cnidocampa flavescens(Walker) 290

11 Cnidocampa flavescens(Walker) (pupa) 176

12 Erthesina full 280

13 Erthesina fullo (nymph) 156

14 Erthesina fullo (nymph2) 192

15 Spilarctia subcarnea(Walker) 188

16 Psilogramma menephron 218

17 Sericinus montela 364

18 Sericinus montela (larvae) 200

19 Clostera anachoreta 294

20 Micromelalopha troglodyta(Graeser) 238

21 Latoia consocia(Walker) (larvae) 204

22 Plagiodera versicolora(Laicharting) (larvae) 196

23 Plagiodera versicolora(Laicharting) (ovum) 134

24 Spilarctia subcarnea(Walker) (larvae) 186

25 Spilarctia subcarnea(Walker) (larvae 2) 164

26 Psilogramma menephron (larvae) 208

27 Cerambycidae (larvae) 196

28 Micromelalopha troglodyta(Graeser)
(larvae)

226

29 Hyphantria cunea (larvae) 224

30 Hyphantria cunea (pupa) 174
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TABLE 5 The detection accuracy of Skip DETR and DETR at different scales.

Model Epoch APS APM APL

DETR 100 0.7 8.8 59.4

Ours 100 1.0 12.3 63.1

DETR 200 1.2 12.8 64.3

Ours 200 7.6 22.5 73.3

DETR 300 6.0 21.1 73.1

Ours 300 12.1 32.4 81.9
F
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TABLE 4 The average accuracy of the Skip DETR model at different IoU thresholds.

Model GFLOPS #params Epoch AP AP50 AP75

DETR 5.13 36.7M 100 52.3 67.7 59.1

Ours 5.14 36.8M 100 56.1 74.4 62.4

DETR 5.13 36.7M 200 57.5 73.3 62.4

Ours 5.14 36.8M 200 65.8 82.1 70.8

DETR 5.13 36.7M 300 65.7 79.1 71.0

Ours 5.14 36.8M 300 74.1 86.8 77.0
TABLE 6 The recall of Skip DETR and DETR at different training stages and scales.

Model Epoch MaxDets ARS ARM ARL

DETR 100 100 7.2 23.1 74.0

Ours 100 100 8.2 30.0 77.8

DETR 200 100 13.0 35.0 77.6

Ours 200 100 18.4 4.06 82.3

DETR 300 100 21.3 39.0 81.1

Ours 300 100 27.1 51.4 87.6
A B C

FIGURE 4

Comparison of common model evaluation indicators. (A) Training loss comparison; (B) Box loss comparison; (C) Class error comparison.
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5 Conclusion

In this work, we propose a model called Skip DETR, which uses

skip connection to enhance the extraction of image features from

small samples by the DETR model. At the same time, we introduce

the spatial pyramid pooling layer, improve the object query

initialization method, and make the model converge faster.

Finally, we conduct extensive experiments on forestry pest

datasets. Experimental results show that the application of skip

connection and spatial pyramid pooling layer in the detection

framework can effectively improve the effect of small-sample

object detection.

Although Skip DETR achieved good results, our study still faced

the problem of small data pools. At the same time, in order to

improve the detection accuracy, we will continue to improve the

Skip DETR model.
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