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Introduction: Learning to self-regulate brain activity by neurofeedback has been

shown to lead to changes in the brain and behavior, with beneficial clinical

and non-clinical outcomes. Neurofeedback uses a brain-computer interface to

guide participants to change some feature of their brain activity. However, the

neural mechanism of self-regulation learning remains unclear, with only 50%

of the participants succeeding in achieving it. To bridge this knowledge gap,

our study delves into the neural mechanisms of self-regulation learning via

neurofeedback and investigates the brain processes associated with successful

brain self-regulation.

Methods: We study the neural underpinnings of self-regulation learning by

employing dynamical causal modeling (DCM) in conjunction with real-time

functional MRI data. The study involved a cohort of 18 participants undergoing

neurofeedback training targeting the supplementary motor area. A critical

focus was the comparison between top-down hierarchical connectivity models

proposed by Active Inference and alternative bottom-up connectivity models like

reinforcement learning.

Results: Our analysis revealed a crucial distinction in brain connectivity patterns

between successful and non-successful learners. Particularly, successful learners

evinced a significantly stronger top-down e�ective connectivity towards the

target area implicated in self-regulation. This heightened top-down network

engagement closely resembles the patterns observed in goal-oriented and

cognitive control studies, shedding light on the intricate cognitive processes

intertwined with self-regulation learning.

Discussion: The findings from our investigation underscore the significance

of cognitive mechanisms in the process of self-regulation learning through

neurofeedback. The observed stronger top-down e�ective connectivity in

successful learners indicates the involvement of hierarchical cognitive control,

which aligns with the tenets of Active Inference. This study contributes to a deeper

understanding of the neural dynamics behind successful self-regulation learning

and provides insights into the potential cognitive architecture underpinning this

process.
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1. Introduction: self-regulation
learning via neurofeedback

Neurofeedback (NF) is a technique within the field of brain-

computer interfaces (BCI) that involves providing individuals

with real-time information about their neural processes. Activity-

based NF aims to enable individuals to change and control their

brain activity (Sitaram et al., 2017). By self-regulation, subjects

can learn to exert control over their neural patterns, leading

to substantial clinical benefits for a wide range of neurological

and psychiatric disorders (Amano et al., 2016; Emmert et al.,

2016; Watanabe et al., 2017; Yamashita et al., 2017; Haugg et al.,

2020). NF has been shown to modify brain and behavioral

functions by selectively targeting brain areas and by repeatedly

training with contingent feedback and reward (Ramot and Martin,

2022). The technique involves presenting individuals with real-

time feedback of their own brain activity, allowing them to learn

how to regulate their brain function by associating changes in

their brain activity with specific self-regulatory actions, targeting

a broad range of brain regions (Thibault et al., 2018; Haugg et al.,

2020) (Figure 1A). However, the underlying brain mechanisms that

support self-regulation learning by NF are not yet fully understood.

Recent advances in neuroimaging and computational neuroscience

provide a unique opportunity to investigate the underlying neural

mechanisms of self-regulation learning by NF. Research progress

has shed light on the networks involved in brain regulation learning

(Emmert et al., 2016). Real-time functional MRI (rt-fMRI) has

shown that, along with changes in the target area, changes in brain

dynamics during self-regulatory training have also been reported

(Watanabe et al., 2017). These dynamic changes are closely linked

to associative reinforcement learning mechanisms (Sitaram et al.,

2017; Watanabe et al., 2017; Shibata et al., 2019; Skottnik et al.,

2019; Cortese et al., 2020). Neuroimaging studies have revealed

neural activity within the cortico-cortical and cortico-basal loops,

involving key areas such as the striatum, anterior cingulate cortex

(ACC), orbitofrontal cortex (OFC), anterior insula cortex (AIC),

and dorsolateral prefrontal cortex (dlPFC). These neural correlates

are consistent with activity patterns observed in reinforcement

learning (Rao and Ballard, 1999; Mnih et al., 2015; Huang

et al., 2020). Previous studies have investigated reinforcement

factors in NF training protocols. For instance, studies have shown

that protocols incorporating contingent feedback and implicit

instructions tend to result in more effective automatic learning

compared to protocols utilizing intermittent feedback (Oblak et al.,

2017). This observed effect may be attributed to the time required

for updating and processing the reward signal during the automatic

learning process. However, it is important to acknowledge that

there are varying findings regarding the effectiveness of feedback

types. While some studies suggest that intermittent feedback leads

to superior outcomes, others find no significant effect on the

success of NF interventions. The variability in these findings can

be attributed to the complexity of the self-regulation mechanism

involved in NF training, which encompasses not only automatic

learning processes but also the utilization of cognitive strategies.

Overall, NF shows a wide range of inter-subject variability during

training (Thibault et al., 2018; Haugg et al., 2020). Indeed, little is

known about the mechanisms of learning to self-regulate or why

learning rates are relatively low. It is worth noting the existence

of a phenomenon known as the “non-responder effect,” where a

significant portion of participants (as low as 25% in some studies)

are unable to effectively learn the task in the context of real-

time functional MRI (rt-fMRI) neurofeedback (Fede et al., 2020).

It remains a challenge to understand brain-based mechanisms

that underlie learning self-regulation and its associated aspects,

such as sustainability and transferability (Sitaram et al., 2017;

Alkoby et al., 2018; Thibault et al., 2018; Shibata et al., 2019;

Skottnik et al., 2019; Fede et al., 2020; Haugg et al., 2020). In

this context, we propose to employ the normative framework

of Active inference and the free energy principle (FEP) as a

general account of sentient behavior (Moran et al., 2014; Friston

et al., 2016, 2017; Pezzulo et al., 2018; Chen et al., 2020). Active

inference formalizes the brain as a statistical organ that makes

inferences about the environmental causes of its sensations. This

approach offers a theoretical framework to explain how the

brain learns to self-regulate its activity by minimizing prediction

errors and optimizing its internal representations of the external

environment (Friston et al., 2015, 2017). Both simulations and

neurophysiological data have demonstrated the model’s predictive

power (Moran et al., 2014; Friston et al., 2017; Parr et al., 2019;

Da Costa et al., 2020). Active inference thus provides a process

theory for various brain phenomena, including neural dynamics,

such as dopamine responses, and cognitive processes, such as

learning. Most relevantly, it includes mechanistic insights into

the brain and behavior, predicted in biophysical message-passing

schemes (Friston et al., 2015, 2016, 2017; Pezzulo et al., 2018; Chen

et al., 2020; Da Costa et al., 2020). Active inference proposes a

hierarchical computational anatomy as the neural substrate that

scaffolds the internal dynamics of the brain (Pezzulo et al., 2015,

2018; Friston et al., 2017; Chen et al., 2020; Da Costa et al., 2020;

Smith et al., 2020) (Figure 1B). For example, we would expect NF to

engage hierarchical brain networks with top-down connectivity; in

which case learners will exhibit stronger connections between the

frontal and target area. Figure 1C illustrates the main elements in

an NF experiment setup from the Active inference perspective. To

investigate NF’s neural mechanisms of self-regulation learning, we

use dynamic causal models (DCM) (Friston et al., 2003; Daunizeau

et al., 2011; Zeidman et al., 2019) to compare effective connectivity

between brain regions for two principal network structures: top-

down Active inference and bottom-up reinforcement learning

(RL) (Pezzulo et al., 2018; Huang et al., 2020). We hypothesized

that an Active inference network model is more consistent with

neurofeedback training than a RL model based on the reward

system and bottom-up connections. We use model comparison

(Stephan et al., 2009; Penny et al., 2010) to assess which network

structure is more likely to have generated the observed fMRI

data from a previously published NF study. We then test the

differences between participants with successful modulation of

brain activity that increased from the beginning to the end of the

intervention (learners) and non-learners of the NF self-regulation

task for the most probable network. We chose this dataset

(Sepulveda et al., 2016) because it aimed to compare the drivers

of brain self-regulation learning and explore neural substrates

of brain hemodynamic control. We summarize the experiment

in Section 2.
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FIGURE 1

(A) Central elements in a neurofeedback system. This figure illustrates the main components of a neurofeedback system, which involves capturing

brain signals from a target area (indicated by the black dot) and converting them in real-time into sensory feedback (e.g., visual feedback using a

thermometer), representing the feature of the brain activity to be regulated (e.g., amplitude of the BOLD response). The participant then uses the

sensory signal to regulate their brain activity in the target area. The color code used is followed for the di�erent elements depicted in (B). (B) This

figure illustrates the hierarchical organization of brain areas based on the Active Inference framework, using color coding to map brain nodes. The

ventromedial prefrontal cortex is labeled as “F” in fuchsia pink, the striatum as “S” in blue, and the anterior cingulate cortex as “ACC” in purple. Higher

levels of the hierarchy are highlighted in darker fuchsia, while lower levels are highlighted in lighter blue. The black node represents the target region,

which is the supplementary motor area (SMA). (C) Brain self-regulation from the perspective of Active Inference. This figure illustrates the brain

self-regulatory network as a directed graph based on the computational anatomy of Active Inference. The nodes in the network correspond to brain

regions, and are color-coded according to their hierarchical level: ventromedial prefrontal cortex (F) in fuchsia pink, anterior cingulate cortex (ACC)

in purple, striatum (S) in blue, and the target region (SMA) in black (B). The edges in the graph denote directed connections between brain regions.

The hierarchical structure of the graph allows for inference and learning of how to control the activity of the target area through sensory input from

the thermometer. To control thermometer movement, it is necessary to have low-level control of the striatum, mid-level control of the ACC, and

high-level control of the F node. This self-regulation network is adapted from Emmert et al. (2016) and the Active inference anatomy based on

Pezzulo et al. (2015).

2. Materials and methods

Details about the data acquisition, the participants, and the

neurofeedback training can be found in Sepulveda et al. (2016). For

completeness, the participant characteristics and neurofeedback

training are repeated here.

2.1. Participants

Twenty naive human male volunteers, right-handed, aged 18–

35 years, without any history of previous psychiatric or neurological

disorders, took part in the study. Before the experiment,

participants were instructed to regulate their supplementary motor

area (SMA) activity with the help of visual neurofeedback.

The instruction includes an explanation of the neurofeedback

thermometer display and the objective to up-regulate by increasing

the bars of the thermometer. Participants were randomly

distributed in four groups of equal size (n = 5), matched by age.

The following were the four groups of participants: Group “GF”,

the participants of this group received only contingent feedback (F)

from SMA. Group “GF,I”, the participants of this group received

contingent feedback (F) from SMA and were instructed that

feedback was proportional to the activity of a movement-related

area of the brain; hence were encouraged to use motor imagery.

Group “GF,R”: Participants were given contingent feedback and

monetary reward (R) proportional to the increase in the BOLD

signal in the SMA at the end of each up-regulation block. Group

“GF,I,R”: Participants were given contingent feedback, monetary

reward and instructions formotor imagery. Out of the initial cohort

of twenty recruited participants, two subjects from the GF,I group

were excluded from our analysis due to incomplete data.
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2.2. Neurofeedback training

Participants took part in a 2-day neurofeedback training

sessions. Previous to each session, SMA (ROI) was delineated using

both a functional localizer and anatomical references. The protocol

included four training runs and one transfer run in each training

session. Each training run alternated between 4 baselines (rest)

and 3 up-regulation blocks in a block design. The transfer session

was included at the end of the training runs to assess the changes

due to NF as a post-training test. Transfer sessions consisted of

self-regulation run without feedback. During the baseline blocks,

the target level indicator of the thermometer display remained

static, which indicated to the participants that they should remain

at rest. During the up-regulation blocks, contingent feedback

was provided. The bars level indicator showed increment or

decrement in correspondence with the feedback calculation, which

indicated to the participants BOLD signal changes compared to

the immediately preceding baseline block. Groups with monetary

rewards have visually presented the value of their monetary reward

in the last 3 s (2 volumes) of the block, using an image indicating

the amount of money earned corresponding to the increase in the

BOLD signal in the previous up-regulation block.

2.3. Dynamic causal modeling

For our analysis, we used SPM 12.5 version as implemented in

SPM 12 in Matlab. We employed the one-state bilinear DCM as

our neuronal model due to its simplicity which enables efficient

inference about (changes in) coupling parameters (Friston et al.,

2003; Daunizeau et al., 2011). Based on the experimental design and

first-level analysis conducted in Sepulveda et al. (2016), the visual

feedback information was modeled as the driving input (matrix C)

as it was the onset of all runs. In addition, the up-regulation effect

was modeled as modulation of effective connectivity in the runs,

due to that alters the connection between regions (Daunizeau et al.,

2011; Friston et al., 2019; Zeidman et al., 2019).We used Variational

Laplace to invert and estimate the model evidence and connectivity

parameters of each model given fMRI data for each subject and

run by concatenating all eight runs. Due to the inter-participant

variability in our study and in order to generalize the results to

the population, we used a random effect (RFX) Bayesian model

selection (BMS) approach for our DCM analysis (Stephan et al.,

2009; Penny et al., 2010; Friston et al., 2016; Chen et al., 2020). BMS-

RFX involves studying inter-individual differences with multiple

models to differentiate between subjects, which allows group-

level model inference. Model evidence is approximated with an

evidence lower bound, a.k.a. variational Free Energy (Friston et al.,

2007; Daunizeau et al., 2011). Using Bayesian model selection

(BMS), information over models in each model family was pooled

and compared collectively. Results were reported as protected

exceedance family probabilities index (pxp) separately for each

experimental group. A probability higher than 0.80 indicated the

dominance of one particular model family compared to the other

model families (Stephan et al., 2009; Penny et al., 2010). We

employed a two-step hierarchical approach to identify the general

model structure that underlies successful brain self-regulation. In

FIGURE 2

Network architecture used for the first family-level inference. This

figure shows the base schema upon which we tested 14 network

models. Correlation matrices in Figures 4A, B illustrate variations in

e�ective connectivity (Ae matrix) and conduction input (C matrix)

and indicate which parameters were estimated from the data. The

network follows a simplified Ae architecture proposed by Emmert

et al. (2016), characterized by the F-ACC-S axis, which is

color-coded based on their hierarchical level according to Pezzulo

et al. (2015). The type of driving input (matrix C) determines the

family type, either frontal family (F) (Figure 4A) or striatal family (S)

(Figure 4B). The nodes of the network include: F, frontal: Superior

and middle frontal gyrus, AAL3 numbers 3,4,5,6; SMA,

supplementary motor area: right supplementary motor area, AAL3

number 16; ACC, anterior cingulate cortex: subgenual, pregenual,

and supracallosal parts, AAL3 numbers 151, 152, 153, 154, 155, 156;

S, striatum: Putamen and nucleus accumbens, AAL3 numbers 78, 80,

157, 158. The e�ective connectivity is represented by a continuous

black arrow, and the input is represented by a dotted black arrow.

The DCM matrix representation is based on Zeidman et al. (2019).

the first step, we conducted family-level inference procedures to

investigate the optimal baseline effective connectivity architecture

(matrix A), particularly the between-region connections, which are

defined as the “Ae” matrix, and the region that received the driving

input of feedback (matrix C) (Figure 2 for a graphical description).

We held all regions with self-inhibitory within-region connections

fixed during the analysis. In the second step, we conducted family-

level inference procedures to investigate the optimal modulation

of effective connectivity by experimental conditions architecture

(matrix B), specifically the between-region connections, defined as

the “Be” matrix (Figure 3). Subsequently, we used parameter-level

inference procedures to investigate which changes in connectivity

strength mediated learning to up-regulate the SMA. The analysis

was carried out for the two groups, i.e., the learners (N = 9) and the

non-learners (N = 9).

We selected the four regions for analysis based on consistent

activation observed in all study groups and trials in the

Sepulveda et al. (2016) study. These regions included the bilateral

supplementary motor area (SMA) and superior frontal gyrus

(SFG) as the frontal lobe (F), the anterior cingulate cortex (ACC)

comprising subgenual, pregenual, and supracallosal parts, and the
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FIGURE 3

Network architecture used for the second family-level inference.

This figure illustrates the base schema on which we tested 13

network models to compare possible e�ective connectivity

architecture. Variations in the modulation of extrinsic connectivity

(matrix Be) are shown as correlation matrices in Figures 5A–C,

indicating which parameters were estimated from the data.

Depending on the source node that the modulation points to, we

determine the family type; F frontal family (matrix definition on

Figure 5B), ACC family (matrix definition on Figure 5A), and S Striatal

family (matrix definition on Figure 5C). The modulatory connectivity

is indicated by the black dot arrow. Color-coded based on their

hierarchical level according to Pezzulo et al. (2015). DCM matrix

representation based on Zeidman et al. (2019).

striatum (S). To extract the BOLD time series from these regions,

we used the principal eigenvariate within an anatomical mask of

each area as defined by the Automated Anatomical Labeling 3

(AAL3) (Rolls et al., 2020). The up-regulation and baseline contrast

maps obtained from the fMRI study were also used to identify

activity in these regions.

2.3.1. Model specification: family-level inference
To investigate which general model structure underlay

successful brain up-regulation, we categorized the models into two

types: Active inference (Friston et al., 2016; Pezzulo et al., 2018) and

RL (bottom-up) (Huang et al., 2020). Based on previously identified

brain areas in the selected study (Sepulveda et al., 2016), we aimed

to identify a network consisting of F, ACC, and S cortices, which

are known to play a role in self-regulation (Emmert et al., 2016;

Sitaram et al., 2017; Watanabe et al., 2017; Cortese et al., 2020)

and are supported by RL studies (Huang et al., 2020) and Active

inference anatomy (Pezzulo et al., 2015). For each subject, the

models estimated each training run. The first family-level inference

procedures involved testing fourteen (14) models, including seven

(7) baseline effective connectivity architecture models (matrix Ae)

with different driving inputs (matrix C) (Figures 4B, 5A), defining

the partition of the model space. Regarding the Ae, we focused

on the Frontal-Anterior cingulate-striatum axis (F-ACC-S axis)

configuration, which has been proposed in the Active inference

(Pezzulo et al., 2015), RL (Huang et al., 2020), and self-regulation

(Emmert et al., 2016; Sitaram et al., 2017; Watanabe et al., 2017;

Cortese et al., 2020) literature. The Ae models varied in the

connection along the axis and with the target areas, and we also

included an additional Ae model with a direct S-F connectivity

configuration to test the hypothesis that a relay area (ACC) is

required. To explore the effects of driving inputs (matrix C) on

the models, we partitioned the model space into two subsets.

The first subset included the Active inference models with the

input on the frontal region (Figure 4A), while the second subset

included the models with the bottom input on the striatal region

(Figure 4B). Using the optimal model from the first step, we build

the second family-level inference procedures (Figure 3). Thismodel

space comprised a total of thirteen (13) models of modulation of

effective connectivity (matrix Be). In order to identify the learning-

related changes in the modulation of effective connectivity, we test

our main research question: whether the effect of self-regulation

was manifest in the connection from higher levels—i.e., from F

nodes (Figure 5A)—or lower levels via the ACC (Figure 5B) or from

striatal nodes (Figure 5C).

2.3.2. Group comparison: parameter-level
inference

We use Bayesian model average (BMA) within the

second family-level inference to produce a representative

summary of the most likely connectivity architecture and

the effect of self-regulation. In order to compare parametric

differences at the group level, a two-sample t-test (p < 0.05)

was applied to the modulatory effects of self-regulation. We

report Bonferroni corrected significant differences, comparing

learners and non-learners.

2.4. Learning ranking

To ensure methodological rigor and prevent double-dipping,

we employed the Wasserstein distance (WD) (Panaretos and

Zemel, 2019) as a measure of learning in line with recent research

(Yan et al., 2019). This distance metric allowed us to quantify the

relationship between target area activity and cognitive performance

by comparing the baseline run and the transfer run (Fede et al.,

2020). Specifically, we computed the sample mean of the SMA

BOLD activity for each subject’s initial baseline and the final post-

training trial. Using a Gaussian kernel, we estimated the probability

density distributions of these two trials, and then calculated theWD

between the two resulting one-dimensional distributions. The WD

analysis was conducted using a Python implementation (Virtanen

et al., 2020).

3. Results

In order to report how the best model was selected, we

present the evidence obtained for the baseline effective connectivity

architecture (matrix Ae) and the region that received the driving

input of feedback (matrix C). We then report the modulation

of effective connectivity by the effects of self-regulation (matrix

Be). Finally, we present the parameter-level inference differences

between groups and learning ranking results.
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FIGURE 4

(A) The figure displays the correlation matrices corresponding to the “Top-down” sub-set of models from the first family-level inference. The left side

of the figure shows the matrix C driving input, with the “Frontal node” as the parameter to be estimated, indicated in light blue, while the rest of the

nodes are fixed at zero (switched o�, black). The x-axis represents the experimental input, and the y-axis represents the input node. The right side of

the figure shows the seven sets of Ae models. The x-axis represents the source node, and the y-axis represents the target node. (B) The figure

displays the correlation matrices corresponding to the “Bottom-up” sub-set of models from the first family-level inference. The left side of the figure

shows the matrix C driving input, with the “Striatal node” as the parameter to be estimated, indicated in light blue, while the rest of the nodes are fixed

at zero (switched o�, black). The x-axis represents the experimental input, and the y-axis represents the input node. The right side of the figure shows

the seven sets of Ae models. The x-axis represents the source node, and the y-axis represents the target node.

3.1. Family-level inference: within-subject
analysis

An analysis of the evidence reveals that the optimal baseline

effective connectivity architecture (matrix Ae) is the one with

bilateral links across the F-ACC-S axis (Figure 6A) and the region

that received the driving input of feedback (matrix C) is the

Frontal node as the most likely (pxp ≈ 1; Figure 6A) (Figure 6B

for a graphical description of the model). However, in the second

family-level inference, which concerns the modulatory effect of

self-regulation, any family and model exhibit a posterior model

density with a pronounced peak. In the thirteen DCM, there is

a pxp ≈ 0.5 at the level of the best family (Figure 7), and the

best models of each family have a limited range of evidence (pxp

[0.0005–0.2952]; Figure 7); hence, there is no clear dominantmodel

identified. In order to perform a comprehensive identification of

the self-regulatory network, we include the set of 13 DCMs and

three families in the between-group analysis (Section 3.2).

3.2. Parameter-level inference:
between-group analysis

Having identified the best model up until the matrix Ae and

matrix C, we subsequently analyzed the model parameters resulting

from the BMA within a fully modulatory effect model (matrix

Be). In terms of group difference, averaged posterior estimate

comparison indicated that self-regulation effects on F-SMA

target connectivity in learners were significantly higher than in

non-learner. Figure 8 reports the results of mean modulatory

connection changes during self-regulation and the significant

difference between groups.

3.3. Learning: di�erence in self-regulation
performance

The learning ranking analysis for each subject is depicted in

Figure 9. We employed the Wasserstein distance (WD) between

the mean BOLD-SMA activity during baseline and post-training

to assess learning. The distribution of WD values revealed a

balanced split, with approximately 50% of participants classified

as learners and the remaining 50% as non-learners. In Figure 9,

larger positiveWD values are indicative of significant modifications

in brain activity, reflecting successful up-regulation in response

to the task goal. These instances are represented by the green

color bars. Conversely, greater negativeWD values suggest reduced

activation of brain activity in relation to the training objective,

representing down-regulation. These instances are visualized by the

orange color bars.
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FIGURE 5

(A) The figure displays the correlation matrices corresponding to the “Frontal” sub-set of models from the second family-level inference. The figure

shows three Be matrices, each of which has the “Frontal node” as the source node for modulation to other nodes. The parameter to be estimated is

indicated in light blue, while the rest of the nodes are fixed at zero (switched o�, black).The x-axis represents the source node, and the y-axis

represents the target node. (B) The figure displays the correlation matrices corresponding to the “ACC” sub-set of models from the second

family-level inference. The figure shows five Be matrices, each of which has the “ACC node” as the source node for modulation to other nodes. The

parameter to be estimated is indicated in light blue, while the rest of the nodes are fixed at zero (switched o�, black).The x-axis represents the source

node, and the y-axis represents the target node. (C) The figure displays the correlation matrices corresponding to the “Striatal” sub-set of models

from the second family-level inference. The figure shows three Be matrices, each of which has the “Striatum node” as the source node for

modulation to other nodes. The parameter to be estimated is indicated in light blue, while the rest of the nodes are fixed at zero (switched o�, black).

The x-axis represents the source node, and the y-axis represents the target node.

4. Discussion

In this study, we used DCM to analyze a human real-time

neurofeedback fMRI dataset by testing hypotheses about effective

connectivity differences between neurofeedback learners and non-

learners. To identify these differences, we compared neuronal

architectures implied by RL with Active inference, where the

brain learns an internal representation of the causes of the
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FIGURE 6

(A) First family-level inference. The figure shows the results of the first family-level inference. On the left side, the plot displays the family exceedance

probability for the two families at the first family-level inference. The y-axis represents the probability, ranging from 0 to 1, and the x-axis represents

the family indices, with family “Frontal” on the left and family “Striatal” on the right. On the right side, the plot shows the exceedance probability for

the fourteen models. The probability values are presented on the y-axis, ranging from 0 to 1, and the x-axis shows the model indices. The “top-down

models” are numbered 1–7, and the “bottom-up” models are numbered 8–14. The plot demonstrates the evidence of the first family-level inference

at the family and model level by showing the exceedance probability (pxp). (B) First family-level winning model architecture. The architecture of the

winning model at the family level is depicted, which includes bilateral e�ective connectivity in the F-ACC-S axis and bilateral connectivity from brain

nodes to the target area. This model was identified as the winner through Bayesian Model Selection (BMS) with a high probability of 0.98 (pxp ≈ 1).

Additionally, the family with the frontal lobe (F) driving input was identified as the winning model in all trials for all subjects with the probability of 0.99.

sensation, i.e., the sensory feedback signal that derives from its own

activity. The self-regulation learning task was best modeled by a

hierarchical (i.e., Active Inference) architecture, with the effects of

feedback and self-regulation mediated by top-down connections

from the F-ACC-S axis and the SMA. This contrasts with the

alternative (i.e., RL) architecture, with the striatum as the central

hub. The findings indicate different network modulation weights

between neurofeedback learners and non-learners. Neurofeedback

is increasingly being used as a tool for self-regulating brain

activity and connectivity for neuropsychological rehabilitation
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FIGURE 7

Second family-level inference. The figure shows the results of the second family-level inference. On the top the plot displays the family exceedance

probability for the three families at the second family-level inference. The y-axis represents the probability, ranging from 0 to 1. The x-axis represents

the family indices, with family “Frontal” on the left, family “ACC” in the center, and family “Striatal” on the right. On the bottom the plot displays the

results of the second family-level inference by showing the exceedance probability (pxp) for the thirteen models considered. The probability values

are presented on the y-axis, ranging from 0 to 1. The x-axis shows the model indices, with the “Frontal” models numbered 1–3, the “ACC” models

numbered 4–8, and the “Striatal” models numbered 9–13.

FIGURE 8

This figure provides a schematic illustration of the most probable model and parameter configuration of brain self-regulation learning. The right side

of the figure shows the network connectivity during self-regulation and the significant di�erence between learners and non-learners. The input

connection (C matrix) is indicated by a black arrow, while the e�ective connectivity architecture (Ae matrix) is represented by gray arrows. The

modulation of extrinsic connectivity values (matrix Be) is depicted as red for excitatory and yellow for inhibitory. The star (⋆) indicates the modulatory

connectivity that exhibits a significant di�erence (p < 0.05) between learners and non-learners. The left side of the figure shows the same network

represented as brain regions, with nodes indicating the di�erent brain regions and their hierarchical identification shown as color labels. Higher

hierarchical levels are represented by darker fuchsia pink, while lower hierarchical levels are indicated by lighter blue (Pezzulo et al., 2015). The

frontal lobe is labeled as F, the anterior cingulate cortex as ACC, the striatum as S, and the supplementary motor area as SMA.

(Sitaram et al., 2017). Little is known about the mechanisms of

learning to self-regulate or why learning rates are relatively low,

with “non-responder effect” quantified in rt-fMRI neurofeedback

from 25% up to 75% of neurofeedback participants unable to learn

the task (Fede et al., 2020). On the other hand, without prior

information, the chance of encountering the causal link between

some internal brain state and the sensory feedback presented to the

participant is very low, given the size of the search space (Watanabe

et al., 2017). The fact that at least 25% of participants succeeded in

the task in the relatively short duration of the experiment should be
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FIGURE 9

Learning ranking analysis. The histogram presents the SMA-BOLD performance for each subject, representing the change in performance (positive

values for increase, negative values for decrease) measured using the Wasserstein distance. The distribution illustrates an equal split of 50% between

learners and non-learners. The bar plot displays the subjects’ performance categorized into di�erent training groups, as defined by Sepulveda et al.

(2016). Each bar is labeled at its edge to indicate the specific type of training: F (feedback), F+I (feedback and motor imagery), F+I+R (feedback,

motor imagery, and reward), and F+R (feedback and reward).

seen to be well above the odds. The question becomes what strategy

those participants apply to identify and then control the target brain

state. The optimal design of self-regulation protocols also remains

unclear. By understanding the characteristic changes in effective

connectivity in learners and non-learners, future implementation

of self-regulation can be optimized while finessing theoretical

accounts of cognitive action and control. Our analysis shows that

the self-regulation learning task of Sepulveda et al. (2016) was

best modeled by a hierarchical (i.e., Active Inference) architecture,

with the effects of feedback and self-regulation mediated by top-

down connections from the F-ACC-S axis and the SMA—the target

area for self-regulation learning. This contrasts with the alternative

(i.e., RL) architecture, with the striatum as the central hub. The

winning model structure calls for a reinterpretation of learning and

neurofeedback studies, where it has been suggested that reward-

related processes account for the neurofeedback changes in the

pattern of brain activations (Sepulveda et al., 2016; Sitaram et al.,

2017). Indeed, Active inference offers a reinterpretation (Pezzulo

et al., 2015; Friston et al., 2017), where a shift from striatal bottom-

up to Frontal top-down processing has been proposed as a better

explanation of learning (Smith et al., 2020). It is worth noting

that Active inference and RL models are not mutually exclusive.

Active inference considers learning not only at the trial-error-

reward (Mnih et al., 2015) level of learning but also in relation

to configurations of hierarchical prior structures of the internal

model (Parr et al., 2019; Smith et al., 2020). Consequently, the

generative model is updated by bottom-up signals, increasing

predictive validity of internal (i.e., generative) models. This enables

better predictions and the resolution of (e.g., striatal) prediction

errors. In other words, top-down predictions underwrite optimal

inference and learning. In particular, it is the difference between

top-down predictions in the form of Frontal prior beliefs—

coupled with an initial stage of unreported actions—that appear

to differentiate learners and non-learners. We argue that relying

only on bottom-up signals during self-regulatory learning would

be an untenable learning strategy due to the dimensionality of

the search space and time constraints. For self-regulation learning

to succeed, top-down control is mandatory. The neural substrate

for the dynamics of the internal generative model (Pezzulo et al.,

2015) is consistent with the network involved in learning (Huang

et al., 2020), in which the F-ACC-S axis is present; also observed

in previous studies in abstract construction (Collins and Frank,

2013) and cognitive control (Bassett et al., 2015). Previous studies

have demonstrated the role of the frontal cortex as an encoder

of new hidden states during inference (Cortese et al., 2020) and

modulator of learning in its connections with lower areas (Bassett

et al., 2015), such as primary motor cortex and supplementary

motor cortex. It is important to acknowledge the limitations of

the current study. Firstly, here we identified the learner and non-

learner based on distance metric over the level in mean BOLD-

SMA ROI values between baseline and post-training. This way

of separating the subgroups may not be the only one, nor is it

the most optimal, as the literature has suggested using sustained

transfer effects as amethod (Fede et al., 2020).We also acknowledge
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that pre-post training tests can be influenced by confounding

factors such as fatigue, motivation, and habituation. It is essential

for future protocols to address and track potential confounders

such as habituation and motivation, such as analyzing habituation

patterns (Gruzelier, 2014), as well as incorporating surveys to

assess attention, motivation, and fatigue levels (Diaz-Garcia et al.,

2021). By monitoring these variables, a more comprehensive

understanding of the factors influencing learning outcomes can

be obtained, thus enhancing the validity and reliability of the

results. The cognitive strategies that participants used to approach

the task vary considerably (Sepulveda et al., 2016). Here, we

reported the results at the group level: i.e., learners vs. non-learners.

Ideally, one would want to identify the individual models that

participants use. However, the design of the original study and

the sample size do not permit this level of analysis. Secondly, it

is known that there is also variability in cognitive strategy (The

cognitive strategies during training as described in Sepulveda et al.,

2016), but due to data design, we were unable to identify at the

subject level. Our results can only be compared to the transfer

results presented in Figure 2 of Sepulveda et al. (2016) paper,

which demonstrates sustained activity in the groups that received

feedback (F) and feedback plus imagery (F+I). It is important to

note that this differs from the findings in Figure 1, which illustrate

the dynamics of learning and show increased activity in the reward

conditions. This contrast is intriguing from the perspective of active

inference, as it suggests that while rewards may enhance activity,

they may not be sustainable for effective control, as proposed by

the active inference hierarchical model. Based on the main results

demonstrating top-down modulation of prefrontal cortical (PFC)

regions on the target area, it is reasonable to consider that the

presence of anatomical connections between the PFC and the

target region may indicate a greater potential for self-regulation

in the target area. However, it is important to note that while

anatomical connectivity is a necessary condition, it alone does

not guarantee successful self-regulation. Other factors related to

the anatomical connections, such as the directness or indirectness

of the connections, the strength of the connections (e.g., the

number of fibers), and the presence of redundant connections,

may also be important anatomical considerations. In addition to

anatomical connections, other factors related to the functional and

behavioral relevance of the target region to the individual could play

a significant role in self-regulation. For example, specific cortical

regions may be more amenable to self-regulation in individuals

with expertise or experience in related domains. For instance,

auditory cortical regions may be more easily modulated by singers,

somatosensory areas by instrumentalists, and gustatory areas by

cooks. Similarly, motor cortical regions may be more responsive

to self-regulation in athletes. Conversely, certain populations, such

as stroke patients, individuals with autism or schizophrenia, or

those with tinnitus, may encounter challenges in regulating motor

cortical regions, emotional brain regions, or auditory cortical

regions, respectively. It is important to note that many of these

hypotheses are yet to be tested and validated. Further research

is needed to explore the complex interplay between anatomical

connections, functional relevance, and self-regulation ability in

various contexts and populations. From our results, it could be

suggested that techniques that increase top-down connectivity that

will enhance NF effectiveness. Further, studies should test the

prediction by experimental manipulation of the frontal regions,

i.e., Transcranial Direct Current Stimulation (tDCS), and by agent-

environment simulations of prior configurations. We recommend

that follow-up studies include more training trials and subjects

for that allow greater statistical power for personalized analyses.

Further studies could include behavioral tests and self-reports to

evaluate task generalization relating to target region functionality

to quantify the effectiveness of the NF. Finally, as with all dynamic

causal modeling studies, we can only generalize our conclusions

within the space of the models considered.

5. Conclusion

The results of this study provide new insights into the neural

mechanisms underlying self-regulation learning. Specifically, we

confirm the Active Inference model’s prediction that the brain

engages in top-down connectivity during learning rather than a

bottom-up fashion as predicted by RL. In addition, we provide

evidence that brain self-regulation is gated by the F-ACC-S axis;

a pathway implicated in cognitive action control. Our findings

also highlight the importance of the frontal-SMA target region

connection on the effects of self-regulation. Furthermore, the

present study showcases the Active Inference approach—coupled

with modeling using the DCM—for testing hypotheses in NF-

training fMRI at the group level. Here we extended the framework

of AI to brain self-regulation learning, where self-regulation is a

form of cognitive action similar to conscious access models, in

which the neural target responses are controlled by one’s own

brain activity (Pezzulo et al., 2015; Chen et al., 2020). Taken

together, the results deepen our knowledge about the mechanism

of action of self-regulation learning. This may be particularly

relevant for experimental setups and the development of new

clinical therapeutics, which in turn, contribute to expanding

our understanding of the mechanisms that underwrite cognitive

action tasks.
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