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Introduction:Datasets containing only few images are common in the biomedical

field. This poses a global challenge for the development of robust deep-learning

analysis tools, which require a large number of images. Generative Adversarial

Networks (GANs) are an increasingly used solution to expand small datasets,

specifically in the biomedical domain. However, the validation of synthetic images

by metrics is still controversial and psychovisual evaluations are time consuming.

Methods: We augment a small brain organoid bright-field database of 40

images using several GAN optimizations. We compare these synthetic images

to the original dataset using similitude metrcis and we perform an psychovisual

evaluation of the 240 images generated. Eight biological experts labeled the full

dataset (280 images) as syntetic or natural using a custom-built software. We

calculate the error rate per loss optimization as well as the hesitation time. We

then compare these results to those provided by the similarity metrics. We test the

psychovalidated images in a training step of a segmentation task.

Results and discussion: Generated images are considered as natural as the

original dataset, with no increase of the hesitation time by experts. Experts

are particularly misled by perceptual and Wasserstein loss optimization. These

optimizations render the most qualitative and similar images according to metrics

to the original dataset. We do not observe a strong correlation but links between

some metrics and psychovisual decision according to the kind of generation.

Particular Blur metric combinations could maybe replace the psychovisual

evaluation. Segmentation task which use the most psychovalidated images are

the most accurate.

KEYWORDS

psychovisual, metric, validation, brain organoid, AAE

1. Introduction

The scarcity of public datasets of annotated biomedical images remains an unresolved

bottleneck to develop specialized and robust analysis tools. Often, research groups do not

share experimental data for privacy reasons. The high costs of equipment, long acquisition

times, and necessary in-depth expertise can be a brake to acquisitions by other teams

(Chakradhar, 2016). To benefit from the advances in deep-learning (DL) for automated

image analysis, large training datasets are necessary. Moreover, original dataset constraints

create a problem of class imbalance with deep learning training procedures. These problems

are emphasized with small sets, reduced to a few images (Tajbakhsh et al., 2016).

Data augmentation is widely used in the biomedical domain to increase the size

of image datasets (Singh and Raza, 2021). While classical data augmentation, based on

transformations (flip-flops, rotation, whitening, etc.), does not increase the diversity of

the dataset, a solution widely provided in the biomedical field is the use of Generative

Adversarial Networks (GAN) which produce new synthetic images from natural ones (Yi

et al., 2019; Lan et al., 2020).
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GANs are unsupervised deep-based architectures composed

of generator and a discriminator. The generator aims at creating

visually realistic and natural images while the discriminator tries

to decipher whether the result is generated (Goodfellow et al.,

2014). Both networks are trained simultaneously with the same

loss function. Since its first creation, multiple GAN architecture

variations have been proposed to generate and extend biomedical

datasets (Lan et al., 2020; Fernandez et al., 2021; Chen et al.,

2022). However, the validation of these synthetic images remains

a challenge Alqahtani et al. (2019). Two main evaluating methods

are existing the non-automated based upon psychophysics methods

in perceptual psychology, and automated methods based upon

metrics (Salimans et al., 2016a; Zhou et al., 2019). Psychovisual

evaluation is a time consuming gold standard which requires many

subjects to reduce its’ intrinsic subjectivity. On the other hand,

there is no commonly approved specific metric to evaluate whether

GAN-generated synthetic images can be considered as natural. The

use of common metrics is also controversial (Borji, 2019).

We consider the case of brain organoids, three dimensional

cultures differentiated from pluripotent stem cells (Lancaster et al.,

2013). After a neural induction, brain organoids present cell

communications, organized tissues and an organization similar

to the brain with various regions such as neuro-epithelial zones

(Kelava and Lancaster, 2016). They complement in vivo brain

models to follow physiological and pathological brain development.

However, brain organoids suffer from batch syndrome: in the same

culture environment they do not innately develop comparable

morphologies (Lancaster et al., 2013).

There are no specific tools to study the development of brain

organoids. Though it may seem natural to implement machine

learning algorithms to aid this task, few brain organoid image

datasets are publicly available. Between january 2018 and june

2020 for instance only six over 457 articles in the brain organoid

field let the image datasets in openaccess and only one concerns

brain organoids in bright-field (Brémond Martin et al., 2021).

The emergence of brain organoids has created a new field, few

laboratories have the knowledge and experience necessary to grow

these cultures. Pandemic restrictions have further limited the

possibility for several teams to grow and image such culture over

the past few years.

The largest public brain-organoid image dataset we know of

contains 40 images (Gomez-Giro et al., 2019). Data augmentation

solutions have already been used to increase the size and diversity of

this brain organoid bright-field dataset. An adversarial autoencoder

(AAE) seems the architecture the most suited to augment images

of brain organoid bright-field acquisition (Brémond Martin et al.,

2022a). This AAE differs from the original GAN architecture

by the input given to the encoding part (original images)

and its generative network containing an auto-encoder-decoder

framework (Goodfellow et al., 2014; Makhzani et al., 2016). The

encoder learns to convert the data distribution to the prior

distribution, while the decoder learns a deep generative model that

maps the imposed prior to the data distribution thanks to a latent

space (Makhzani et al., 2016). As is typical with AAEs, the images

generated are visibly blurry.

To improve the sharpness during the generation, we test

various loss functions to improve the adversarial network

(Brémond Martin et al., 2022a). However, these results are based

upon metric calculation and a dimensional reduction to compare

all feature images (original and generated with each optimization)

in the same statistical space. Indeed some metrics may not been

suited to identify the naturality of an image as they are originally

created to test the similitude or the quality of images (Borji, 2019;

Brémond Martin et al., 2022a). In our previous contribution we

observe the data augmentation strategy based upon AAE loss

optimizations used during the training step of a DL segmentation

algorithm improve the quality of the shape extraction of brain

organoids (Brémond Martin et al., 2022a). The first raised question

is does these images seems as natural as the original images to

furnish a better segmentation quality compared to a result issue

from classic data augmentation strategies? Another fundamental

issue remains unresolved: do these synthetic images seem natural

to a biological expert point of views as for metric(s)? Psychovisual

evaluations have been already made on others bright-field cell

synthetic cell generation (Malm et al., 2015). This evaluation is an

important step for the validation of a particular generative model of

images. Thus the selected images as natural by Human Biological

experts could maybe help to train deep based segmentation

methods and characterize their development but with now a double

psychovisual-metric validation.

We propose to evaluate the synthetic images generated by an

AAE (Brémond Martin et al., 2022a) using both with similarity

metrics and biological experts. The purpose of this article is to give

the lacking non-automated psychovisual evaluation of the synthetic

images which is a new contribution compared to our previous

contribution which focus on automated metric based and statistical

strategies in order to understand if the naturality of these images

could explain the segmentation results (Brémond Martin et al.,

2022a). The second original part of the work is to find a metric

combination which may replace or complete the psychovisual non-

automated evaluation. Related work is presented in the following

section. Section 3 describes the generative network, the metric

evaluation and the psychovisual evaluation. Section 4 successively

shows the results for the metric evaluation and the pyschovisual

evaluation, followed by a cross-analysis of the two evaluation

methods. These results are analyzed in the Section 5. Section 6 sums

up the main contributions of this paper.

2. Related work

The first generative adversarial network, proposed by

Goodfellow et al. (2014), is constituted by two connected networks:

the generative model (GM) maps the images into the space (z)

by an objective function (F); the discriminative model (DM)

determines the probability for which a point from z belongs to

the original dataset (o) or to the generated dataset (g). Training F

increases the probability that the data synthesized is attributed to o.

The probability of correct sample labeling (belonging to generated

g or original o) is maximized by D. Simultaneously, GM is trained

to leverage the discriminator function expressed by:

min
GM

max
DM

F(DM,GM) = Eopdata[logDo]+ Egpg[log(1− D(Gz))].

(1)
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An overview of various GAN architectures used for medical

imaging is given by Yi et al. (2019). Previous work compares five

GAN architectures commonly used for biological datasets to find

the best suited network to increase a small database of bright-

field images of organoids (Brémond Martin et al., 2022a): the

original GAN implementation (Goodfellow et al., 2014); CGAN

gives to the generator input the correct label (physiological or

pathological) (Mahmood et al., 2018); DCGAN by Radford et al.

(2015) is constituted by a convolutional neural networks instead of

the generator; INFOGAN uses the generated images at an epoch

to train the subsequent (Hu et al., 2019); AAE by Makhzani et al.

(2016) uses an auto-encoder as a generator. This work evaluates the

generated images using metrics.

As already reported in the literature by Lan et al. (2020), GAN

and CGAN produce mode collapse with such a small dataset.

In addion, GAN produces a white imprint around the shape

of the organoid. DCGAN and INFOGAN generate a divergent

background which makes the images difficult to exploit. This

is probably due to the high variability of the small dataset, as

mentioned in Lan et al. (2020). Only AAE produces images of

similar quality to the orignal and seems the best architecture to

generate images with a few input. However, AAE generates blurry

images and the background differs from the light-to-black gradient

present in many bright-field images.

Noise-injection during the AAE generation was studied to

improve the background generation with satisfying results in

BrémondMartin et al. (2022b). In this paper, we further explore the

effect of loss optimization on the AAE architecture to improve the

sharpness of the generated images. The results are evaluated by an

automatic approach based on metrics and by a psychovisual study.

The last part aims at giving an application of such psychovalidated

images in a segmentation task.

3. Methods

In this section, we first present the generative methods and

optimizations used. We follow by a description of the metric

and psychovisual evaluations including the experimental setup,

datasets and experts. We present the analysis methodologies of

the neurobiologist decisions and the comparison of psychovisual

evaluations with metric calculations. We finish by giving an asset of

the importance of psychovalidated images in an augmented dataset

strategy for a segmentation task.

3.1. Generative adversarial networks

3.1.1. Original images
Our dataset is composed of 40 microscope acquisitions and 240

synthetic images created by a AAE loss optimizations. “Original”

images are the 40 bright-field brain organoid acquisitions provided

by Gomez-Giro et al. (2019). This dataset is made of image of 20

physiological and 20 pathological organoids acquired over three

days on the same apparatus. These input images (1, 088 × 1, 388

pixels) are cropped and scaled to 250×250 pixels, maintaining their

original proportions. A scale factor of 4 is chosen so the scripts can

run in a reasonable amount of time without downgrading the input

image quality too much.

3.1.2. Loss optimizations
The images generated by the AAE architecture we use are

somewhat blurry. To overcome this phenomenon we study how the

discriminator loss can influence the quality of the image generation.

We consider six losses: the Binary Cross Entropy (BCE) which is

most commonly used in GANs and five other losses which are

specifically known to improve the contrast or sharpness of the

generated images.

BCE is the most commonly used loss for GANs and the baseline

of this work. It is calculated by:

BCE = −
1

n

n
∑

i=1

(yi(log(y
′
i)))− ((1− yi)(log(1− y′i))) (2)

with y the real image tensor and y′ the predicted ones

(Makhzani et al., 2016) and n the number of training.

Summing the L1 norm to the BCE is reported to reduce over-

fitting (Wargnier-Dauchelle et al., 2019).We hypothesize this norm

could improve the quality of the generation as reported in image

restoration tasks which does not over-penalize large errors (Zhao

et al., 2017).

L1 =
1

n

n
∑

i=1

|yi − y′i|1 (3)

BCEL1 = BCE+ αL1. (4)

α is set to 10−4, as in the original paper.

The least square loss (LS) is reported by Mao et al. (2017) to

avoid gradient vanishing in the learning process step resulting in

better quality images:

LS =
1

n

n
∑

i=1

(yi − y′i)
2 (5)

A Poisson loss is used in Wargnier-Dauchelle et al. (2019) to

improve the sensitivity of a segmentation task:

LPoisson =
1

n

n
∑

i=1

(y′i − yi) log(y
′
i + ǫ) (6)

where ǫ is a regularization term set to 0.25.

The DeblurGAN was developed to unblur images using the

Wasserstein loss (Kupyn et al., 2018). Since we are also interested

in deblurring the output images, we have tested this loss with the

proposed AAE where (P(y, y′)) is the joint distributions of y and y′

for which the distributions are equal to Py and Py′, and p(y,y’) the

proportion of y or y’ to move to have Py = py′:

Wass(P(y, y′)) =

n
∑

i=1

inf
p(P(y,y′))

Eyi,yi′δp(||yi− yi′||) (7)

However, we do not apply a l2 content loss such as in Kupyn

et al. (2018) added to theWasserstein loss, or add a penalty gradient
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to theWasserstein loss such as in Gulrajani et al. (2017). Our dataset

containing various subclasses (physiological and pathological brain

organoid images acquired at three developmental stages), we aim

at creating a Normalized Wasserstein loss to avoid imbalanced

mixture proportions (Balaji et al., 2019). We apply the L2

normalization on theWasserstein loss, producing a new loss we call

the Perceptual Wasserstein loss for the first time to our knowledge,

applied on an AAE architecture:

P.Wass(P(y, y′)) =

n
∑

i=1

√

inf
p(P(yi,yi′))

Eyi,yi′δp(||yi− yi′||)2 (8)

3.1.3. Training
Figure 1 shows the global training setup. The 40 original images

are used to generate 40 ǎsynthetic images for each architecture

(each loss). Input and output images measure 250 × 250 pixels.

Training lasts 2,000 epochs for each optimization; this corresponds

to the plateau before over-fitting for all loss optimizations.

3.1.4. Resources
The GAN algorithms are developed in Python 3.6 with

an Anaconda framework containing the 2.3.1 Keras and 2.1

Tensorflow versions. All scripts are executed on an Intel Core i7-

9850HCPUwith 2.60 GHz and aNVIDIAQuadro RTX 3000s GPU

device.

3.2. Metric evaluation

Six metrics are used to compare the similitude of the synthetic

images generated by the AAE to the original dataset. A blur metric

is used to evaluate the quality of these synthetic images.

The Frechet InceptionDistance (FID) is calculated between two

groups of images (Heusel et al., 2017). This score tends toward low

values when the two groups (original O or generated G images)

are similar, with µ the average value of the pixels of all images of

a group, and 6 the covariance matrix of a group:

FID(O,G) = ‖µO − µG‖
2 +T (6O + 6G − 2(6O6G)

1
2 ) (9)

The Structural Similarity Index (SSIM) is calculated using

luminescence, contrast and structure byWang et al. (2004) between

two images o and g belonging respectively to O and G.

SSIM(o, g) =
(2µoµg + c1)(2σog + c2)

(µ2
o + µ2

g + c1)(σ 2
o + σ 2

g + c2)
(10)

where σ represents the standard deviation, c1 is a constant

that ensures the luminance ratio is always positive when the

denominator is equal to 0, and c2 is an other constant for the

contrast stability. The SSIM ranges between 0 (no similitude) and 1

(high similitude).

The Universal Quality Metric (UQM) is based on the

calculation of the same parameters as SSIM and was proposed by

Wang and Bovik (2002). UQM ranges between 0 and 1 (1 being the

highest quality):

UQM(o, g) =
4µoµgµog

(µ2
o + µ2

g)(σ
2
o + σ 2

g )
(11)

Entropy-based Mutual Information (MI) measures the

correlation between original and generated images and ranges

between 0 (no correlation) and 1 (high correlation) (Pluim et al.,

2003):

MI(o, g) =
∑

o∈O

∑

g∈G

P(o, g)log
P(o, g)

P(o)P(g)
(12)

where P(o, g) is the joint distribution of o belonging to O and g

from G.

The Mean Square Error (MSE) between an original image and

a synthetic image is calculated as:

MSE(o, g) =
1

mn

m
∑

i=1

n
∑

j=1

(o(i, j)− g(i, j))2 (13)

The Peak Signal to Noise Ratio (PSNR) indicates a high signal

power against noise, as used in Jiang et al. (2021). High values

correspond to qualitative images. Pixels in images are ranked

between 0 and 255, thus the maximum pixel value of an image is

notedmax(o) and equals at most 255.

PSNR(o, g) = 20 logmax(o)− 20 logMSE(o, g) (14)

where log denotes the common logarithm.

As a quality metric we calculate the blur index proposed by

Tsomko et al. (2008) based on local image variance. A low score

corresponds to a sharp image. In the following equation, the image

is of size (m,n), the predictive residues a given image pixel are p(i, j)

and their median p′(i, j):

Blur =
1

m(n− 1)

m
∑

i=1

n−1
∑

j=1

[p(i, j)− p′(i, j)]2 (15)

The FID is designed to compare groups of images. We thus

successively compare each group of synthetic images with the

original input images. The FID reference range is calculated on

the original image developmental stages. The SSIM, UQM, PSNR,

MI, and MSE are designed to compare two images. For each group

of synthetic images (all six losses) we successively compare every

image with each original image and then compute the average of

these 40 × 40 values. We also calculate these values on all pairs

of original images to compare the results to the original range.

The Blur index is calculated on individual images. We store the

minimum andmaximum value of this index for the original images

and the average value per loss for the synthetic images.

3.3. Psychovisual evaluation

3.3.1. Dataset of original and synthetic images
The dataset to evaluate contains two classes of images the

40 microscopic acquisitions mentionned in Section 3.1.1 and the
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FIGURE 1

Experimental scheme of AAE supporting data augmentation of cerebral organoids bright-field images. The generator tries to persuade the

discriminator that it has generated a true and slightly variable image of input dataset. The discriminator tries to find the true ones. They improve each

other by backpropagation, formulated by an objective function based on a loss. Losses variations implemented in this article are symbolized by 1.

Input image is from Gomez-Giro et al. (2019).

240 synthetic images created by the previous mentioned AAE loss

optimizations: binary cross entropy (BCE), binary cross entropy

with a L1 normalization (BCE + L1), least squares (LS), Poisson,

Wasserstein (Wass.), perceptual Wassertein (P. Wass). The size of

these 280 images is 250× 250 pixels.

3.3.2. Randomization
To perform a double blind test the images are not labeled

during the visualization so neither the experts or the team can be

biased by the images information (real, generated, nor its kind of

generation). Real and generated images are randomized at each

test run. Each biological expert evaluates the complete randomized

dataset (280 images). The randomization and corresponding labels

are stored in a .csv file which is only accessible for result analysis.

3.3.3. Experts
The experts who evaluated the database are biologists from

ERRMECe laboratory, EA1391, CY Cergy Paris University. The

group of eight experts is composed of three men and five

women who are either PhD students, research engineers or

researchers. They all have an expertise in neuronal culture and

microscopy acquisition. We do not allow duplicate evaluators

across evaluation procedure. During each evaluation session the

evaluator is physically isolated from the other participants, without

knowledge of other experts responses or images labels.

3.3.4. Evaluation software
To help experts in their evaluation and to ensure consistency

throughout the entire experiment, we built a dedicated software

using Python 3.6, as shown Figure 2. The interface consists

of an image displayed (250 × 250 pixels), a cursor with

three buttons: Real, Generated, Next and the number of

remaining images to classify. Keyboards shortcuts are available

for Real, Generated, and Next buttons (respectively A, P,

and Tab keys on an AZERTY keyboard) to facilitate the

process. Images on the screen are updated each time Next

is hit (or the corresponding keyboard shortcut). Clicks on

Next are counted as a pass if not preceded by a Real or

Generated click.

3.3.5. Experimental protocol
An operator enters the expert name and the date and hour

of the recording. All eight experts chose to use their own mouse

with the experiment laptop. The protocol, consisting of a single

session and including all 280 images (real and synthetic), is

described in Figure 2. A pass is consider as an answer. The

decision and answer time are saved at each click in a .csv file

only accessible to analyze the results. The operator is present

nearby to verify the smooth functioning of the experimental

process and to capture any comments made by the experts. The

list of questions the expert has to answer after the process is

listed below:
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FIGURE 2

Experimental procedure of psychovisual evaluation. Left image represents a sample from original dataset and right image represents a specific loss

optimized sample generated with an AAE. Screenshot of the software helping biological experts to decipher natural to non-natural content of brain

organoid culture images. Eight biological experts test this procedure.

• Why do you classify this generated image as a false?

The operator shows the generated image with the longest

hesitation.

• Why do you classify this original image as a false? The operator

shows the original image with the longest hesitation, if this

situation exists.

• What should we improve in future sessions?

We summarize the answers to these questions in the

results section.

Each evaluation run produces two .csv files: One stores the

randomization i.e. the order and label of each image presented.

The second stores the experts’ name and for each image present the

answer time and the decision.

3.4. Analysis

The first analysis step consists in associating the randomization

and the results files. We obtain, for each expert and for each image

the decision and the decision time. The decision is then labeled as

true positive (TP) or false negative (FN) for the original images and

false positive (FP) or true negative (TN) for the synthetic images.

3.4.1. Parameter calculation
It is then standard to calculate the error rate (ER), defined as the

number of false decisions divided by the total number of decisions.

ER =
FP+ FN

FP+ FN+ TP+ TN
(16)

For the original images, this becomes:

ERO =
FN

FN+ TP
(17)

and for the synthetic images:

ERG =
FP

FP+ TN
. (18)

However, we wish to compare the proportion of synthetic

images falsely labeled as true, with the proportion of original images

label as true.We thus calculate the Positive Rate (PR) of the original

images:

PRO = 1− ERO =
TP

FN+ TP
. (19)

For the synthetic images PRG = ERG.

As a second parameter, we calculate the decision occurrence for

each modality for each subgroup by a simple counting and render

it in a % according to the total effective of a group of images.

We also evaluate the number of positive answers given by each

expert as a count and the number of images given as a positive by

zero expert, one expert, two experts etc. or the eight experts. Time

decision and all these parameters are calculated between original

and generated images, or between original and each modality of

loss generation (BCE, BCE + L1, LS, Poisson, Wass., P. Wass.),

globally or by each decision subgroups (FP, FN, TP, TN). All results

are rendered as bargraphs representing variables (Time Decision in

seconds or occurrence in% or error rates) according to one ormany

factors (group and subgroups of decision).

3.4.2. Metrics vs. human decision
To verify if some metrics highlight the same loss as producing

the most natural images as experts, we plot each metric values for

each loss group by each decision factor modality (FP, FN, TP, TN).

In the dot representations for each loss group, eachmetric is plotted

according to the Normalized Error Rate NER with individuals

decision time t for the FP and for FN modality:

NER =
FP× tFP + FN× tFN

FP+ FN+ TP+ TN
(20)
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where tFP and tFN are the average decision time respectively for

FP and FN. In practice, this becomes, for the original images:

NERO =
FN× tFN

FN+ TP
(21)

and for the synthetic images:

NERG =
FP× tFP

FP+ TN
. (22)

To verify if a relation exists between a metric or a particular

combination of metrics (M) and the decision or the time decision

(DT), we calculate KL divergences on dimensional reduction results

(Joyce, 2011).

KL =
∑

x∈X

Mx × log

(

Mx

DTx

)

(23)

We only represent here kl-divergence corrplots for each

individual metric (and not metric combinations) for space

considerations. We consider all possible metric combinations C:

C =

{(

n

k

)

|k ∈ N∗, k ≤ n

}

(24)

where n = 6 is the total number of metrics. The total number

of metric combinations considered is thus 63.

We then calculate Pearson and Kendall correlations between

metric combinations and KL-div results (for error rate and

time decision) for original and synthetic groups. We show the

Pearson correlation for the ten best metric combinations. The best

representation of these results (error rate or time by KL divergence)

are represented as a scatter plot.

3.4.3. Statistical analysis
The normality is verified by a Shapiro and quantile to quantile

graphics. We verify the homocedasticity in normal cases by a

Bartlett test and in the case of non-normality by a Levene test. In

case of a normality and homocedasticity, arametric tests are used

(Anova), and non-parametrics tests otherwise (Kruskall–Wallis

with a Tuckey post hoc test). Regression models are implemented to

verify the interaction of factors (group and decision) on a specific

variable (time or error rate or occurrence for instance). We use a

post-hoc Holm test to compare two by two the effect of factors on

variables after the regression.

We take an alpha risk at 5%. Correlation matrices are based on

Pearson correlation tests.

3.5. Segmentation task

3.5.1. Dataset
We first build a training dataset composed the 40 images from

the original dataset and 40 images obtained by flip-flops, rotations,

whitenings, or crops of these original images. This “clasical” dataset

composes our baseline. We build five “psychovisual” training

datasets where we replace part of the classically augmented images

by synthetic images which are validated by 0, 2, 4, 6, or 8 experts.

All datasets are composed of 80 images of which 40 original but the

proportion of synthetic images decreases as the number of experts

required to validate an image increases. Ground truth has been

manually segmented with the ITK-SNAP software (Yushkevich

et al., 2006).

3.5.2. U-Net
Segmentation allows the extraction of an image content from

its background. Various segmentation procedures exist but we

have chosen U-Net which is widely used in the biomedical field

(Ronneberger et al., 2015). U-Net has the advantage of working well

for small training sets with data augmentation strategies, and has

already been used for the ventricle segmentation of cleared brain

organoids (Albanese et al., 2020).

3.5.3. Training
To robustly evaluate the performance of the segmentation a

these small datasets we use a leave-one-out strategy where we only

test on the original images. This results in 40 training sessions per

dataset. We stop the training at 1,000 epochs with an average time

of training of more than 1 h for each leave-one-out loop (six cases

of augmentations× 40 images = 240 h almost for the total training

step). The summary of the leave-one-out strategy for every tested

case is summarized in Figure 3.

3.5.4. Comparison of segmentations
To compare ground truth cerebral organoid content

segmentation (GT) and U-Net (u) ones in various conditions,

mean Dice scores are calculated as:

Dice(GT,u) =
2|GT ∩ u|

|GT| + |u|
(25)

Thanks to the TP, FP, TN, and FN we could calculate the

Accuracy, the Specificity, the Sensitivity, and the F1-score. The

Accuracy is the ratio of true on the positives labels:

Accuracy =
TP + TN

TP + FP + TN + FN
(26)

The Sensitivity is the ratio between how much were correctly

identified as positive to how much were actually positive:

Sensitivity =
TP

TP + FN
(27)

The Specificity is the ratio between how much were correctly

identified as negative to how much were actually negatives:

Specificity =
TN

TN + FP
(28)

The Precision is the ratio between how much were correctly

identified as positives to how much were actually labeled as

positives:

Precision =
TP

TP + FP
(29)
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FIGURE 3

Experimental scheme of the leave-one-out strategy to test the e�ect of various data augmentation on the segmentation quality. ∗∗∗If p-value ≤ 0.001.

TABLE 1 Samples of original images and synthetic images generated by the AAE.

Original BCE BCE + L1 LS Poisson Wasserstein P. Wass.

We show 3 of the 40 images for each group: original and per AAE loss variation.

The F1-Score allow to summarize the precision and the recall

(Sensitivity) in an unique metric:

F1− Score = 2 ∗
Precision ∗ Sensitivity

Precision+ Sensitivity
(30)

3.5.5. Visualization
To highlight real/false positive/negative segmentation

we create a superimposed image composed by the ground

truth and a sample of each segmentation resulting from the

various trainings. We update the pixels values in lightpink

the FP cerebral organoid segmentations and, in lightgreen

the FN.

4. Results

We first present the metric evaluation of the synthetic images,

then the results of the psychovisual evaluation of these synthetic

images, and finally the correlations between the metrics and the

psychovisual evaluation.

4.1. Qualitative evaluation

Table 1 shows three sample input images and three of the 40

synthetic images generated by each of the six AAE variations. Some

of the generated samples are blurry and present a white imprint

(BCE, BCE + L1, LS). Others show sharper edges and less visible
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TABLE 2 Metric evaluation of AAEGAN brain organoid bright-field generated images.

Metric Best Original BCE BCE + L1 LS Poisson Wass. P. Wass.

FID Low 0.47–0.80 1.20 1.41 1.33 1.41 1.10 0.82

SSIM High 0.65–0.71 0.63 0.62 0.60 0.63 0.62 0.50

UQM High 0.63–0.87 0,83 0,83 0.84 0.84 0,83 0,82

MI High 0.21–0.47 0.37 0.39 0.36 0.41 0.46 0.42

Blur low 0.10–86.28 135.93 116.30 135.01 106.71 59.84 59.00

PSNR Low 11.9–16.6 13.47 13.74 13.53 13.74 13.17 12.86

MSE Low 93.25–106.23 103.13 103.35 104.01 103.33 103.11 102.93

We have calculated metrics on generated images from each AAE loss variations, with the BCE loss as the baseline. Scores outside the original range are in gray, best values are displayed in bold.

imprints (Poisson, Wasserstein and P. Wass.). For this group of

three losses, only a few of the generated images seem to be identical

to a given input image. For example the Poisson loss produces three

images which are a blurred version of the original. These networks

do not suffer from mode collapse.

4.2. Metric evaluation

To quantitatively confirm the visual analysis of the generated

images, we calculate several metrics on both the original and

synthetic images. These results are summarized in Table 2. This

table presents the range of values given by the original images

and the average value of each group of synthetic images (per loss

optimization).

All six groups of synthetic images are within range of the

original for the UQM, MI, PSNR, and MSE metrics. Images

generated with a Poisson or LS loss have the highest UQM index.

MI and MSE reach the best scores for the generated images using

the Wasserstein losses. The FID and SSIM are out of range for all

six groups of synthetic images. The average FID for the Perceptual

Wasterstein loss is the closest to the original (0.82 vs. 0.80). Only

the Wasserstein and Perceptual Wasserstein produce images that

on average are within the range of the Blur metric for the original

images.

Images generated with a Wasserstein and Perceptual

Wasserstein loss are on average within the range of the original

images for five out of sevenmetrics. Quantitatively, theWasserstein

and Perceptual Wasserstein networks generate images of a quality

that most reassembles the original batch. In particular, the

Perceptual Wasserstein loss generates the best results for four

of the seven metrics. It appears to be the most appropriate loss

optimization to generate cerebral organoid images with this AAE.

4.3. Psychovisual evaluation of synthetic
images

In Figure 4, we compare the occurrence of each decision

in percentages for original and generated groups. There is less

misleading in original and generated group than right decisions.

However, 30% of misleading is observed in the generated group. A

misleading corresponds to a false positive answer.

FIGURE 4

Overall view of decision per original and generated group. Error bars

indicate the variability per expert. (Left) Error rate per original and

generated group. The baseline (original) corresponds to positive rate

PR. (Right) Occurrence of answers per original and generated

group. ∗If p-values ≤ 0.05, ∗∗ if p-value ≤ 0.01, and with ∗∗∗ if p-value

≤ 0.001.

Figure 5 focuses on the images that are labeled as “natural” by

the experts. We found the number of false positive selected images

by all the participants is small (<20), and 30 images are selected by

five participants. Almost 70 images are not selected at all by experts

as natural (first column). To observe the number of false positive

answer by each experts (see Figure 5). Three experts answer less

positive answers than the others (less than the half of the visualized

dataset). One expert considered over 150 images as natural.

We retrieve the decision time before the expert give an answer

whatever the kind of generation, as shown Figure 6. Biological

experts answer in the same time for generated and original images.

However, the hesitation time is longer for false answers that for

correct answers.

4.4. Feedback on the psychovisual
procedure

Experts in cultures consider images as natural when an ovoid

shape with neuroepithelial formation and some cell dispersion
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FIGURE 5

Study of positive answers. (Left) Number of images per number of positive answers. (Right) Number of positive answers by experts.

FIGURE 6

Mean decision time for all the experts. (Left) Per original and generated group. (Right) Per decision. ∗If p-values ≤ 0.05.

appears. When we ask experts why they classify a generated image

as a synthetic, they answer the background contains an imprint,

or superimposed contours or there is an artifact, or the image is

too noisy, but they hesitate longer due to the possible content.

They explain that they classify an original image as a synthetic

because of a microscopic acquisition artifact, learned by one of the

architectures, and reproduced on the worst synthetic images. They

would like to have less images in a session, and a larger image on

the screen.

4.5. Psychovisual evaluation of loss
optimization

The error rate is particularly higher in the Wass. and P. Wass

groups than for the original one (see Figure 7 left). In the P. Wass

case this high score is strengthen by the absence of statistical

differences. These particular loss optimizations drive the experts to

mislead and consider the images from these two groups as natural.

In Figure 7 right, there is a difference between false positives of

original and generated images from BCE, BCE+L1, Wass. and

P. Wass. loss optimization. However, if we consider the intra-factor

loss comparison, we can observe statistical differences between

FP and TN of each for the BCE, BCE + L1, LS and Poisson

loss rendering too small the proportion of misleading. There is

no differences between these two occurrences decision for images

generated by a Wass. or a P. Wass. loss showing 42% of FP and

almost 60% of FP.

To observe which group of images is the most selected as

positive, we observe the number of image selected by group in the

Figure 8 left, P. Wass. and Wass. images are selected as natural

by the most of experts (a few Poisson, and a few BCE by seven

experts and L1 + BCE). The same three experts as in Figure 5 only

answer positive in most of the case for P.Wass. images (see Figure 8
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FIGURE 7

Overall results of decision per loss optimization groups. (Left) E�ect of loss optimizations on the error rate. The baseline (original) corresponds to

Positive rate (PR). (Right) Occurrence of answer per loss optimizations. ∗If p-values ≤ 0.05, ∗∗ if p-value ≤ 0.01 and with ∗∗∗ if p-value ≤ 0.001.

right). Four experts answer more synthetic images but more even

for P. Wass. Only one expert seems to answer identically for all

synthetic group of images.

If we do not consider the kind of decision, there is no difference

of decision time per group of synthesis, (Figure 9 left). When we

study the decision time per group, the experts take more time

to answer only when they are confronted to synthetic images

generated with a least square optimization (Figure 9 right).

4.6. Concordance of metrics and
psychovisual evaluations

4.6.1. Comparisons
After observing the psychovisual decisions by generated

groups, we compare qualitative and similitude metrics to the

previous results in order to verify if the same groups are selected,

but also to verify if some metrics or combination of metrics can be

used as a proxy to human psychovisual evaluation.

An overview of these results is given in Table 3 shows

no differences between decision whatever the group of loss

optimization or the calculated metric. FID is the highest for Poisson

loss than for others groups whatever the kind of decision. BLUR

metric is the highest for the decision with LS generated images.

In term of SSIM, UQI indexes and PSNR, the decision reach the

highest score for original images and no improvement is visible

with generative methods. For MSE and MI the decision rate reach

the highest score similarly for original and P. Wass. generated

images. No differences are visible in term of decision with UQI.

4.6.2. Correlations
To identify the metrics which best correspond to the

psychovisual evaluation, we plot metrics against error rate in

Figure 10. We show the Blur scatterplot as an example of point

representations. In this graphic, we observe that the green color

points (Original) are near the darker-purple ones (P. Wass.).

Figure 10 also represents the KL divergence between the P. Wass

group and all other groups for all metrics. If we look at the first

column, P.Wass andOriginal images are closest according to SSIM,

MI and UQI. These metrics are good candidates to build a metric

that mimics psychovisual evaluations.

Figure 11 summarizes the correlations between the

psychovisual assertion and the hestitation time or error rate

according to each metric or chosen metric combinations. The

main result is the absence of correlation for single metrics,

however, combination with a Blur metric, FID (for the error

rate correlations) and SSIM-FID-MI (for the time correlation)

render the highest results in Figure 11 top left. The same result

is represented in Figure 11 top right. To observe the group

representation between the Error rate or the Time and the KL

divergence of points represented for these two combinations

(Blur-FID and Blur-SSIM-FID-MI) (see Figure 11 bottom right

and left). The LS and BCE group are far from the others point

representations. P. Wass. group is superimposing the original one

with Wass. Others groups are not distinguishable, however, there

are at the peripheral zone of the perceptual-original amount. The

KL divergence representation with respect to the error rate of these

two metric combinations is given in the bottom part of Figure 11.

4.7. Influence of psycho-validated images
on a segmentation task

Then the second task is to verify the interest of using synthetic

images which have been validated by 0, 2, 4, 6, or 8 biological

experts to train a segmentation task.

4.7.1. Qualitative results
To observe the quality of the segmentation, we show a ground

truth segmentation performed with the ITK-SNAP software, and
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FIGURE 8

Study of positive answers per loss optimization. (Left) Number of images per loss optimization per number of positive answer. (Right) Number of

positive per loss optimization for each expert.

FIGURE 9

Mean decision time for per loss optimizations compared to the original input images. (Left) Globally. (Right) Per decision. ∗If p-value ≤ 0.05, ∗∗ if

p-value ≤ 0.01 and with ∗∗∗ if p-value ≤ 0.001.

automatic segmentations performed with a U-Net architecture

with various data augmentation strategies, see vignettes in Table 4.

The “0 experts” group corresponds to training the segmentation

with images that have been selected by none of the experts.

In the others training images are previously selected by 2, 4,

6, and 8 experts. We observe less false positive regions (in

pink) and false negative regions(in green) if the segmentation is

performed after training on a dataset containing images validated

by 6 or 8 experts. If synthetic images selected by six or more

experts are used for training, we observe almost no errors on

the segmentation.

4.7.2. Quantitative results
Table 4 summarizes the metrics used to compare the ground

truth segmentation with the segmentation performed by U-net

trained on data augmented with classic strategies or on a varying

portion of synthetic images. The segmentation is better when the

network is trained with images validated by 8 experts, with higher

levels of Dice, Accuracy, Sensibility and F1-score. The highest

sensitivity is reach by the group trained on 41 synthetic images

validated by two experts and by the group trained on images

validated by no experts. However, the corresponding specificity is

very low.

5. Discussion

In this part we present to our knowledge the first psychovisual

and metric evaluation comparison of Loss optimized generative

adversarial network of brain organoid bright-field images. This

study helps at validating most natural images generated by various

AAE loss optimizations. We also contribute to strengthen metric

evaluation by highlighting some images from optimized generated

adversarial network to be perceived by Human biological expert

as natural microscopic images: with a P. Wass. loss perception
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TABLE 3 Average and standard deviation of five of metrics on original and synthetic images per psychovisual decision (true or false) and per loss

optimization.

Decision Count Blur SSIM PNSR MSE MI UQI

avg. σ avg. σ avg. σ avg. σ avg. σ avg. σ

Positive

Original TP 297 64.15 50.28 0.78 0.17 42 41.49 2973 3163 0.90 0.46 0.86 0.12

BCE FP 79 100.22 15.40 0.62 0.06 13.52 3.20 3713 2610 0.856 0.14 0.83 0.10

BCEL1 FP 77 104.16 38.89 0.61 0.07 13.54 2.94 3549 2320 0.82 0.13 0.83 0.09

LS FP 39 155 44.78 0.59 0.07 13.77 3.00 3403 2276 0.78 0.11 0.84 0.09

Poisson FP 74 93.17 22.76 0.63 0.06 13.86 2.84 3275 2139 0.86 0.14 0.84 0.09

Wass. FP 134 61.47 18.25 0.61 0.06 13.33 2.38 3499 1980 0.90 0.14 0.83 0.07

P. Wass. FP 197 47.19 17.13 0.63 0.07 12.48 2.44 4272 2389 0.95 0.17 0.80 0.07

Negative

Original FN 23 44.93 25.36 0.71 0.01 10.10 0.90 6418 1326 0.88 0.23 0.78 0.04

BCE TN 241 105.01 20.95 0.62 0.06 13.57 3.16 3647 2555 0.85 0.13 0.83 0.10

BCEL1 TN 243 110.43 39.30 0.60 0.07 13.60 2.87 3477 2248 0.81 0.13 0.83 0.09

LS TN 281 156 44.21 0.58 0.06 13.79 2.80 3307 2118 0.78 0.11 0.84 0.09

Poisson TN 246 106.12 25.34 0.62 0.06 13.86 2.77 3248 2090 0.84 0.13 0.84 0.09

Wass. TN 186 56.96 17.18 0.63 0.07 13.41 2.58 3510 2116 0.90 0.13 0.83 0.07

P. Wass. TN 123 41.22 14.04 0.63 0.07 12.69 2.55 4123 2414 0.95 0.16 0.80 0.075

Best values are displayed in bold.

neurobiologists are misled 60% of the time and 40% by Wass.

They take more time to answer when they are misled. We compare

human and metric evaluation and found mutual information to be

the most related to their decision metric, although no correlation

appeared in our experiment for single metrics, but only for

combinations including blur. Using synthetic images validated by

an increasing number of experts to train a segmentation network

increases the accuracy of the segmentation with respect to classic

augmentation strategies, even if the proportion of synthetic images

decreases.

Synthetic images generated with AAE are coherent with

original dataset and thus whatever the kind of loss optimization.

The generation of brain organoid images with others architectures

does not improve the synthesize in term of quality or similitude

according to Brémond Martin et al. (2022a), whereas it seems the

case with loss optimization. The P. Wass. loss optimization of AAE

performs best according to metrics. Other loss optimizations show

also high similitude, though with a lower quality. In this context, we

plan to explore what type of information each loss brings during

the image generation. We aim at trying others embedded losses

(already used for segmentation tasks) during the generative process

based upon high level prior like object shape, size topology or inter-

regions constraints (El Jurdi et al., 2021). These losses could be used

on condition that the morphological development of CO is better

characterized.

Biomedical experts select around 40% of synthetic images as

natural compared to the original dataset. Thus, the generation by

AAE networks generate a large part of realistic images such as

the background of bright-field acquisition or, their content. The

non-selected images where considered sometimes as non-natural

due to some artifacts reproduced in some of them, or by a

superposition of contours. Nevertheless, the selected images can

help train a DL segmentation network.

A first argument of the strong validation of the selected images

as natural is the time to take a decision (Shaffrey et al., 2002). If

the time to answer natural for a generated group corresponds to

the time to answer natural or original images, we could consider

these two groups are perceived as similar. We found no differences

between original and generated images and thus whatever the kind

of loss optimization used to produce them. So they are not doubting

when they classify an image as natural or generated. However

psychovisual evaluation shows an increase of decision time before

answering when they answer as false positive (depending of the

loss optimization) or false negative. This behavior is specifically

shown from a Least Square Loss Optimization generated images

considered as natural. When we ask participants why they have

doubt on a particular image, they answer that it was linked with

some acquisition artifact learned by the generated process and

found on a lot of images (a bunch of cells) or, by a blurry contour

which could be due to the acquisition in the case of original

images (Ali et al., 2022). For false negative answers, they only

said that the artifact acquisition is also present (and they thought

it was a generated). In the future, we think a pre-process image

treatment has to be done on images to correct the acquisition

artifact before the generative process, to avoid these false negative

in the psychovisual evaluation or, to add a component in the

generative network to avoid these artifacts (Galteri et al., 2017; Ali

et al., 2022).

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1220172
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Brémond-Martin et al. 10.3389/fnins.2023.1220172

FIGURE 10

Comparison of error rate per optimization losses and per metrics. (Left) Blur score with respect to the normalized error rate for all 280 images

grouped by optimization loss. (Right) KL divergence between the P. Wass group and all other groups for all metrics. Dark green represents a strong

divergence between. Groups with a small KL divergence groups with respect to P. Wass. are white.

FIGURE 11

Correlations between metrics and psychovisual assessment on all 240 synthetic images. (Left) Error rate. (Right) Hesitation time. (Top) Correlation

matrix of the ten best combinations. (Bottom) Example of error rate (resp. hesitation time) over KL divergence for a given metric combination: (Left)

Blur and FID. (Right) Blur SSIM MI and UQI.
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TABLE 4 Segmentation results after training on a varying number of synthetic images.

GT Classical No. of experts validating the synthetic images

0 2 4 6 8

No. of synthetic images – 0 33 41 22 16 14

Sample result

Dice 1.0 0.80 0.62 0.59 0.61 0.67 0.82

Accuracy 1.0 0.77 0.63 0.61 0.68 0.62 0.93

Sensitivity 1.0 0.94 0.96 0.97 0.87 0.83 0.91

Specificity 1.0 0.92 0.50 0.48 0.60 0.56 0.94

F1-score 1.0 0.84 0.64 0.61 0.64 0.59 0.87

Seventy-nine images are used for training of which 39 are from the original data set. The remaining 40 are a combination of classic transformations and synthetic images. Tests performed with

no synthetic images (classical) are compared to those performed with synthetic images validated with an increasing number of experts (0 to 8). Best values per metric are displayed in bold.

Only 15 images are selected by all the experts as natural. Five

experts select over 100 images as natural and three <80. This study

raises a question: could we use images considered by only five

experts as natural in a training step? Thus we thought we need

to increase the number of biological experts to overcome future

studies in order to be more precise on the number of images

considered as natural. We could also analyze the answers by the

field of expertise of biological experts too (separate those whomade

only culture or only microscopic acquisition from those working in

both fields).

Nonetheless, human Psychovisual experts choose in majority

images from generative adversarial network as natural if they

are from Wass. and P. Wass. loss and, a few BCE, BCE-

L1. These two first kinds of generation are also highlighted

by most of the metrics in an other study to have the

better quality and to be the most similar to original images

(Brémond Martin et al., 2022a). Thus, the psychovisual evaluation

strengthen the choice of the use of these two and particularly

the perceptual one in generative process. We can now confirm

the idea that the regulation term of the Wass. distance

between two images (Kupyn et al., 2018) could improve the

learning of the pattern or characteristics of brain organoids

in images and contribute to generate more natural images

in term of content and aspects. In future studies we will

remove the images that did not dupe the experts to only

train on human-validated images. We would like to see if this

increases the segmentation accuracy and study the impact on the

morphological characterization.

However, the few BCE and BCE-L1 images selected as natural

by psychovisual experts could maybe have also a great interest

whereas the metric are not pointing them as natural images

(Brémond Martin et al., 2022a). As we know the use of metric is

still controversial for the GAN evaluation as they are measuring

similitude and quality (Borji, 2019). Here, we could not highlight

a strong correlation between the use of certain metrics and the

decision to reject or not a generated image as natural. To correlate

a metric and psychovisual evaluation instead of a binary answer

“natural” or “not natural,” some authors use a graduation scale

(Pedersen and Hardeberg, 2012; Pedersen, 2015). This approach

could be tested in future studies.

No metric used in this study could replace a human perceptual

evaluation to decipher the naturality of an image generated. There

is a certain link with FID, BLUR or MI and the group and MI

with the mean decision but it remains weak. We could only say

that similitude and referenced-bases metrics are more linked to the

decision than qualitative metrics and non-reference-based metrics.

And when we compare metrics with decisions some patterns

appear according to the kind of loss optimization. The use or

not of a measure to decipher natural generated examples is an

issue recently discussed (Borji, 2019). To compare fairly images

generated by various optimized models, there is no consensus for

a use of a particular metric. In other fields such metric comparisons

highlight a wavelet structural similitude indexWSSI, ametric which

based upon SSIM but less complex and more accurate in term

of quality assessment (Rezazadeh and Coulombe, 2009; Pedersen,

2015). However, we do not want an identical image but one just

resembling as a natural one. This could explain these metrics are

not well designed for the GAN specific evaluation when they are

considered alone. This study comparing the overall psycho-visual

evaluation and seven metrics is one of the pioneer work which

could contribute to help at pointing a metric of “natural,” and it

failed partially.

Based upon our KL divergence maps, we suggest that a

combination of metrics which best represents the psychovisual

evaluation decision (BLUR, SSIM, MI, UQI) could be used

as a substitue for a human psychovisual evaluation which is

time consuming. Nevertheless, this work on metric combinations

replacing a psychovisual evaluations need to be further studied.

In other fields the combination of metrics help at pointing out

some results in term of quality or similitude (Yao et al., 2005;

Pedersen and Hardeberg, 2012; Okarma et al., 2021). An other

idea could also to use non-reference quality metrics combinations

(Rubel et al., 2022). Some authors tries also to implement directly

a discriminator of generative adversarial networks based upon

human perception, this could be a solution if it is not time

consuming (Fujii et al., 2020; Arnout et al., 2021). It is not the case
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in this study, for us, an important task is to found an appropriate

metric for highlighting “the naturality” of the image and replacing

the psycho-visual evaluation. An idea is to test psycho-metrics

instead of classical similitude or quality metrics such as Hype from

Zhou et al. (2019) which is an alternative of FID from Heusel et al.

(2017), or implementing the GFI quality assessment created by Tian

et al. (2022).

The more experts validate a portion of synthetic images in the

dataset, the better the segmentation quality. This suggests that if

more experts are available to select images, and strengthen the

naturality of the synthetic dataset used during the training, it could

improve the accuracy of the segmentation results. However, even

if the psychovalidation of certain synthetic images allows us to

improve the segmentation, this method is still subjective. It could

include biases of the experts about the model, its configuration,

and the project objective. It requires knowledge of which images

are considered as natural and which ones are not for the target

domain, so the number of experts available in the field diminished

while our task required more experts. It is limited to the number

of images that can be reviewed in a reasonable time (Booij et al.,

2019).

Validation by six experts is the minimum to improve the

segmentation, but quantitative analysis show us, eight experts

validation is the minimum due to the equilibrium state between the

specificity and the sensibility. The performance of human judges

is not fixed and can improve over time, other articles choose a

validation by 15 experts for instance which is not possible in our

biomedical context which requires experts in the field (Denton

et al., 2015; Salimans et al., 2016b).

We could also apply this psychovisual evaluation on others

datasets to attempt to answer more specifically to the metric

replacement. We thought about noise optimized generated images

of brain organoids with an AAE for the same aim (BrémondMartin

et al., 2022b). It could be interesting to observe if with a noise

injection, similar to the bright-field acquisition images, generated

images are more perceive as natural even if metrics are not pointing

a particular kind of noise. Indeed, qualitative and similitudemetrics

point out Gaussian noise and shot noise injection. But as said

previously, this could maybe only due to the metric choice (Borji,

2019). An analysis of Psychovisual evaluation could maybe help

at highlighting a combination of metrics. In this future study, it

could be also interesting to observe for example the microscopic

experience of the Biological expert as a new criterion. A larger

application of this methodology could be made on others kind of

generation (such as on GAN, Goodfellow et al., 2014 or DCGAN,

Radford et al., 2015) and maybe help at pointing out the best

GAN model for brain organoid generation used during a training

segmentation task.

In this study we use a unbalanced dataset with more synthetic

images than original. Nevertheless, biological experts do not know

the number of real or synthetic images which render it unbiased.

In future studies, we need to obtain and use more original images

in order to re-equilibrate. We use a software created specifically

for the psychovisual task for brain organoid images. The software

needs to be updated due to some limitations. We have to realize

batch process with pauses to limit the tiredness of biological experts

similar to others psychovisual evaluations (Shaffrey et al., 2002).We

have to add also a cursor with a score instead of a button to estimate

a natural range in future studies and facilitate correlations studies

(Tian et al., 2022). The size of the image of the screen has to be

increase but not for all the participants. Apart from these updates,

the use of the software is simple and practical according to their

feedback.

To strengthen our statistical analysis we should increase the

number of biological experts. However, it could include biases of

the experts: it requires knowledge of which image is considered as

natural and which one is not for the target domain, so the number

of experts available in the field is diminished while our task required

more experts. The performance of human judges is not fixed and

can improve over time, other articles choose a validation by 15

experts for instance which is not possible in our biomedical context

which requires experts in the field (Denton et al., 2015; Salimans

et al., 2016a). Moreover, psychovisual evaluation is limited to the

number of images that can be reviewed in a reasonable time (Borji,

2019). The tradeoff between the number of synthetic images used

to train a network and the number of validating experts could be

further explored.

6. Conclusion

In this study psycho-visual evaluations allow us to:

• Validate some synthetic image generated from loss

optimization of generative brain organoid images with

an AAE in term of decision time and decision.

• Describe the quality and similitude of the synthetic images

with the original dataset by a metric validation.

• Verify if some synthetic images could be considered as natural

by psychovisual expert decision.

• Compare psychovisual and metric evaluations.

• Paves the way to finding a metric or a metric combination that

mimics psychovisual evaluations.

• Show the interest of selecting images validated by the highest

number of experts in a data augmentation strategy for a

segmentation task.

This selected images could be use in the training

phase of a segmentation task in order to help at their

morphological development characterization for instance.

We also need to evaluate psychovisually noise injected optimized

synthesized images.

In future studies we suggest a combination of metrics or a

perceptual metric could maybe help at replacing the psycho-visual

assessment which is time consuming. Such methodology could be

used for others brain organoid data-sets generated with a generative

adversarial network.
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