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This perspective highlights the role of new-generation analytical techniques in
future applications in environmental sciences since the shift to the One Health
research paradigm. It reviews the interactions between the compartments of One
Health and indicates the current challenges in traditional environmental research.
The termOne Health was first used at the beginning of the 20th century, yet much
is still needed for the cross-disciplinary research collaboration required in this
approach.
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1 Introduction

The natural environment and its compartments constitute the basis of life on Earth. It
affects not only to human health but also that of animals and the environment. The concept
of One Health is longstanding, first known as One Medicine, then One World, and finally
One Health (Mackenzie and Jeggo, 2019). The term One Health was first used around
2003–2004 in relation to severe acute respiratory (SARS) and avian influenza H5N1 diseases
(Mackenzie and Jeggo, 2019). But still, there is no unified definition of One Health. The
University of California defines One Health as an approach to ensure the wellbeing of
humans, animals, and the environment using collaborative problem-solving on local,
national, and global scales (Mackenzie and Jeggo, 2019). This definition underlines that
these three components must be treated equally and, more importantly, highlights their
interconnections, which means that they can affect one another (Figure 1).

The intensive industrial and agricultural activities, along with urbanization, disrupt the
natural balance of our planet (Zhang et al., 2023), leading to higher levels of known chemicals
in the environment, as well as the introduction of new chemicals. The new chemicals
introduced by anthropogenic activities are named contaminants of emerging concern
(CECs) or emerging contaminants (ECs). CECs are likely to cause adverse health and
environmental impacts and usually are not yet regulated under environmental laws (Bayabil
et al., 2022). They are also recognized as xenobiotics, a term referring to all foreign chemicals
(to the biological organism under consideration), and they may cause adverse effects (Ortiz
et al., 2022). Among xenobiotics, currently, special attention is given to pharmaceuticals,
personal care products, endocrine-disrupting chemicals (EDCs), and microbiota-disrupting
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chemicals (MDCs) (Ampatzoglou et al., 2022). The list is not
exhaustive, and more will likely be added as adverse health
effects are reported in case studies related to environmental
exposure.

As all environmental compartments are interlinked, there is a
strong trend in research to take a global approach, adopting the
perspective of ecosystems. An excellent example is the gut
microbiome, with the state of health of the host organism (aka
eubiosis) depending on the microorganisms living in the gut and
the host-microorganism interactions. In this sense, it can be
considered as ecosystem. The removal of xenobiotics from the
organism via chemical transformation is divided into following
steps: host absorption, distribution, metabolism, and excretion,
called ADME approach (Tsaioun et al., 2016). Recent discoveries
in the medical sciences revealed that the removal of xenobiotics
from the organism is closely related with the human microbiota,
that might play important roles in these processes (Silbergeld et al.,
2017; Koppel et al., 2018; Abdelsalam et al., 2020; Dikeocha et al.,
2022; Miglani et al., 2022).

2 Traditional approach in
environmental analysis

Environmental analysis consist of three main stages: sampling
and sample preparation, sample analysis, and result evaluation.

To achieve reliable results, sampling needs to be representative,
and measurements must be accurate (Hussain and Kecili, 2020).
Depending on the environmental compartment, samples can be
gaseous (ambient or soil air), liquid (water or wastewater samples,
urine, or blood), or solid (soil, waste, or biological tissues). The
state of matter as well as the target pollutants, investigated in the
analyzed samples, determine the analytical methods of detection.
Traditional environmental analysis use methods that determine
the content of known pollutants. This implies that the pollutants or
groups of pollutants of interest are known. To detect investigated
contaminants, first extraction techniques must be applied to purify
and concentrate the analytes in the medium intended to be
analyzed using the analytical instrument. Currently, the most
popular analytical techniques used for investigating
environmental contaminants are gas chromatography (GC),
high-performance liquid chromatography (HPLC), ion
chromatography (IC), size-exclusion chromatography (SEC),
and supercritical fluid chromatography (SFC), and
spectroscopic techniques, such as UV-visible (UV-vis), infrared
spectroscopy (IR), and Raman spectroscopy (Hussain and Kecili,
2020). However, as we shift from monitoring, i.e., measuring the
concentration of the analyzed pollutants in a particular
environmental compartment, to investigations on their fate and
ecological and health effects due to their presence, exposure and
cycling in the environment, brand-new methods and tools are
required.

FIGURE 1
Environmental research challenges in the prism of the One Health approach and current life sciences analytical methods (redrawn from Liébana,
2022 and based on Ampatzoglou et al., 2022; Gruszecka-Kosowska et al., 2022; Destoumieux-Garzon et al., 2018; Zhu et al., 2021).
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3 Current challenges in environmental
sciences research

3.1 Exposome and environmental pollution

Since the exposome has become the new research paradigm in
biomedical science (González-Domínguez et al., 2020) the link
between environmental sciences and life sciences has tightened.
The term exposome was originally introduced to represent
everything that the genome could not explain in terms of chronic
disease in developed countries, and thus revealed nongenetic causes
of disease and gene-environment interactions throughout the
lifetime of the population (Zhang et al., 2021). The original
concept of the exposome, described in 2005 as all environmental
exposures, including lifestyle factors and excluding genetic factors,
throughout a lifetime from the prenatal period onwards, has
evolved, with various definitions in existence (Wild, 2012). The
latest expansion of the exposome definition has included the
presence of chemicals in environmental media such as air, water,
diet, and the built environment (Zhang et al., 2021).

The concept of exposome is challenging as it involves multiple
measures of each environmental exposure to the chemical under
investigation and its subsequent effects on the human body,
integrating many external and internal exposures from different
sources continuously over the life course (Escher et al., 2022). Thus,
this presents an excellent opportunity to integrate new analytical
methods, including omics techniques and new approach
methodologies (NAMs) in toxicology, such as Adverse Outcome
Pathways (AOPs) or Source-To-Outcome (STO), into classical
environmental sciences.

3.2 Climate change as the “threat multiplier”

The climate change is widely called a threat multiplier to the One
Health approach (Black and Butler, 2014). As climate change we
understand the changes of the climate caused by the anthropogenic
activities and resulting in magnifying the frequency and intensity of
the extreme weather events (Adamo et al., 2021; Ondiko et al., 2022).

In terms of environmental pollution, it is prognosed that climate
change could cause such changes in the weather conditions that will
amplify air pollution (Zhang et al., 2022), and the negative impact of
air pollution on human health in undeniable (Manisalidis et al.,
2020). Aligning One Health with climate change is suggested by
Essack (2018) to result in entrenching the environment
compartment in the One Health triad.

The climate change phenomenon affects not only the state of the
natural environment but also have wider implications. Regarding
the disease transmissions, climate change might significantly impact
the spatial distribution of disease vectors, encroachment in the
habitats of animals, disturbing the pathways of animal migration,
and changes in the functioning and management of crops, animals,
and their habitats (Zhang et al., 2022).

The impact of climate change on food safety is not well known
yet, however the main issues that need to be addressed in relation to
food production chain are as follows: soil quality and degradation,
marine environment pollution and seafood production, changing
weather conditions and its impact on livestock and husbandry

production, increased antimicrobial resistance, water and food-
borne diseases related with zoonosis pathogen transmissions, and
food spoilage (Misiou and Koutsoumanis, 2023).

Climate change become the game-changer that indicated that
even better connections than was thought were needed among
various scientific disciplines, are required to tackle ecological
systems threats (Stephen, 2023).

3.3 Antimicrobial resistance

Antimicrobial resistance (AMR) is a global public health threat
affecting human, animal, plant, and environmental health.
Interestingly, microbiomes may play an important role in the
course of AMR development, with the gut microbiome believed
to be a reservoir for antibiotic resistance genes (Gibson et al., 2015;
Anthony et al., 2021) and the role of the environment increasingly
coming into focus (Larsson and Flach, 2022).

The irresponsible use of antibiotics is considered the major
player in AMR (O’Neill, 2016; World Health Organization, 2021),
and is well-established. Nevertheless, non-antibiotic antimicrobials,
have previously been suggested as playing a role (Scientific
Committee on Consumer Safety, 2010). Examples include MDCs
triclosan and parabens (Aguilera et al., 2020). Their main
contribution to AMR stems from the potential of
microorganisms exposed to them over time to gradually develop
resistance against them. However, another contribution may be
more critical, albeit not yet conclusive. Specifically, microorganisms
exposed to them may develop resistance against antibiotics
(Scientific Committee on Consumer Safety, 2010; Ribado et al.,
2017).

Exposure to non-antibiotic antimicrobials such as MDCs may
apply selective pressure in favor of taxa with relevant metabolic
pathways (López-Moreno et al., 2021; Torres-Sánchez et al., 2021).
Although the selective pressure examples above would primarily be
attributed to the direct antimicrobial effects of the MDCs in
question, an alternative type of pressure is also applicable in the
case of xenobiotics with no direct antimicrobial properties, such as
those acting as nutrient sources (Frame et al., 2020) or altering the
metabolism of (Anwar et al., 2018) selective taxa within the
microbiome. In these cases, the non-antimicrobial xenobiotics
may mediate directly or via the selected taxa, modulation of the
composition and function of exposed microbiota, potentially
reducing the microbiome’s diversity and inducing dysbiosis and
adverse metabolic effects. Of course, these outcomes may be
beneficial/desirable or detrimental/non-desirable from our
perspective. Nevertheless, this highlights the potential for the
concept of single-cell resistance to antimicrobials to be extended
to xenobiotics, more generally, in the context of microbial
communities. Under this perspective, the notion of xenobiotic
resistance may warrant further consideration (Ampatzoglou et al.,
2022).

Due to its global public health significance, increasing efforts
have focused on combating AMR. Alternatives to antibiotics
currently under investigation, include antibodies, probiotics,
vaccines, phage lysins and antimicrobial peptides (Czaplewski
et al., 2016; Alam et al., 2019), as well as versatile CRISPR-Cas9
antimicrobials, which are increasingly explored particularly in the
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context of multidrug-resistant microbial infections (Getahun et al.,
2022). High-throughput methodologies are critical in the fight
against AMR. For example, high-throughput qPCR screening can
be used to simultaneously investigate the presence of antimicrobial
resistance genes (ARGs) and mobile genetic elements, including
plasmid replicons, integrons, and insertion sequences, in a wide
range of bacteria (Delannoy et al., 2022), while single-cell
spectroscopic techniques may detect signature changes in the
spectra of pathogenic bacteria, including differentiating between
antibiotic-sensitive and resistant strains (Lu et al., 2023; Xu, Cui, and
Song, 2023). Moreover, high-throughput organoid-based novel
model systems, e.g., air–liquid interface, can be used to screen
antimicrobial peptides as potential drug candidates (Zhang et al.,
2023). Additionally, bioinformatics is critical in the advancement of
AMR research. A number of methods exist for detecting novel ARGs
in silico, based on sequence or structural similarity, which, of course,
can only be applied to known structural classes of ARGs. Functional
metagenomics, e.g., shotgun metagenomic sequencing, overcome
this limitation and can, thus, be used for the discovery of entirely
new classes of ARGs (Bengtsson-Palme et al., 2023), although
certain aspects, including the selection of appropriate
bioinformatic methodology and databases, require careful
consideration (Bengtsson-Palme, Larsson, and Kristiansson, 2017;
Angers-Loustau et al., 2018). Finally, in recent years, machine
learning has been increasingly applied to AMR research,
including decision support systems, random forest, rapid
detection, decision trees, high-throughput screening, and
multivariate analysis, as well as more advanced deep learning
models, such as artificial neural networks (Farhat et al., 2023).

3.4 Food safety and consumer behavior

As we all must eat, food safety and security have always been
important issues, more so nowadays. All food originates from soils
where edible plants are grown either for direct food production or
for feed production, the latter leading to environmental exposure of
food-producing animals. Thus, the quality and quantity of
agricultural soil, the quality of water used for irrigation
(including environment-friendly water treatment methods), the
air quality (as it might be a source of contamination for crops),
and the inorganic and organic contaminants that might be present
in waste and wastewater used for fertilization and/or irrigation of
crops (European Food Safety Authority, 2021) are all becoming
burning topics, especially under current or developing geopolitical
issues and global food shortages. As soil quality and quantity are
under high pressure, remediation and restoration have become
particular interests for researchers (Dessureault-Rompré, 2022).
Looking at the significant achievements in research in the
domain of living organisms under the remit of life sciences,
similar approaches could be considered for adoption in
environmental research. Although, in the case of soils, the
concept of bioremediation is not new, such approaches have not
been widely adopted due to limitations inherent to previous research
and their effectiveness (Chandran et al., 2020). Nevertheless, as new
techniques become potentially available, the opportunity arises to
employ them in environmental sciences to enhance environmental
research (Kim et al., 2022; Sharma et al., 2022). The “farm to fork”

concept refers to the journey that food takes from the farm where it
is grown or produced to the consumer’s plate. Consumer food safety
behavior is a critical part of this journey as it plays a significant role
in reducing the risk of foodborne illnesses (Fung et al., 2018;
Mihalache et al., 2021).

Consumer food hygiene practices play a critical role in
maintaining the One Health approach. By adopting safe food
handling practices at home, such as washing their hands before
handling food, properly storing food to prevent contamination,
cooking food at the recommended temperature, and properly
cleaning utensils and surfaces that come into contact with food,
consumers can contribute to food safety (World Health
Organization, 2006; Centers for Disease Control and Prevention,
2022). Consumers can also make informed purchasing decisions by
looking for products that meet food safety standards, checking
expiration dates, and avoiding products that are damaged or past
their expiration date. Additionally, if consumers have any food
safety concerns, they can report them to the relevant authorities
to help prevent foodborne illnesses (Food and Agriculture
Organization, 2023). It is important for consumers to be aware
of the potential risks associated with different types of food and to
take the necessary precautions to reduce those risks (Borda et al.,
2021). By doing so, consumers can help ensure that the food they
consume is microbiologically safe (Centers for Disease Control and
Prevention, 2022). Following food hygiene practices reduces the risk
of foodborne illnesses and contributes to the overall goal of the One
Health approach, which is to protect and promote the health and
wellbeing of humans, animals, and the environment.

The One Health approach applies to consumers’ dietary trends
as well. EAT-Lancet recommendations include consuming a
balanced diet, reducing the consumption of processed food,
minimizing the consumption of animal-based products, and
incorporating more plant-based foods in their diets (Willett et al.,
2019). Shifting to alternative protein sources is part of the policy
framework of the United Nations Sustainable Development Goals
(2023). Therefore, consumers can contribute both to UN SDGs and
the One Health system by adopting sustainable dietary trends.

4 Future directions in environmental
analysis: omics and NAM techniques

The gut microbiome’s significance for human health has been
well-established. A similar importance can be attributed to the
environmental microbiome, where microorganisms play a crucial
role in chemical processes (Naylor et al., 2022). The identification of
various relevant organisms is an essential step to understanding the
chemical processes occurring in the soil. Traditional cultivation
methods in laboratory conditions can only detect less than 1% of soil
microorganisms due to the limitation of laboratory media and
conditions to support their growth (Wydro, 2022). However,
omics techniques have overcome this limitation by analyzing
nucleic acids (DNA and RNA) extracted from the soil
microbiome to determine microbial biodiversity circumventing
the need for cultivation, thus leading to a faster and more
efficient process. This improved approach has also unlocked
novel environmental applications of relevant taxa from the soil
microbiome, ranging from improving crop development (e.g.,
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disease resistance, reduced nutrient requirements) to remediation of
contaminated soils (Wydro, 2022).

Pollution is a major environmental issue, and some
pollutants are of a protein nature. Thus, the use of
proteomics in soil research has been growing in recent years
(Gouveia et al., 2019). Compared to classical techniques,
proteomics offers several advantages in ecotoxicology.
Proteomics allows for the comprehensive profiling of soil
proteins, enabling a more precise determination of the
proteins present and their quantification. This information
provides a more comprehensive view of the molecular
changes that occur in response to environmental stressors,
enabling the construction of toxicity pathways and adverse
outcome pathways (Gouveia et al., 2019). Additionally, this
technique allows for the identification of novel biomarkers
that can be used to assess environmental quality with
advantages over classical biomarkers, such as easier detection
and greater sensitivity to environmental changes. Overall,
proteomics provides a more detailed and comprehensive
approach to studying the impact of proteinic pollution on the
environment, as well as a faster evaluation than classic methods.
New Approach Methodologies (NAMs) encompass a wide range
of technologies, methodologies, and approaches that provide
information on risk assessment and chemical hazard without
involving animal testing (Stucki et al., 2022). This includes in
silico, in chemico, in vitro, and ex vivo approaches (Stucki et al.,
2022). According to Andersen et al. (2019), NAMs for toxicity
testing can be categorized into four levels: The first level relies on
computational screening, the second involves high-throughput
in vitro screening, the third focuses on fit-for-purpose assays
selected based on presumptive modes of action, and the fourth
includes more complex multi-dimensional or multi-cellular
assays. However, in the context of environmental evaluation,
NAMs are currently more commonly used at the first level, with
Quantitative Structure Activity Relationship (QSAR) models
being particularly emphasized.

These mathematical models rely on the principle that hazard is
an inherent property of chemicals and is directly related to their
molecular structure. They can predict the intrinsic hazard of
chemicals by comparing them to large data sets (Gramatica et al.,
2018). QSAR models offer several advantages in environmental
studies: 1) They save time and resources in risk assessment by
predicting the properties of new chemicals; 2) They help screen and
prioritize chemicals’ impact, enabling regulators to make informed
safety decisions; 3) They provide a comprehensive view of chemicals
by combining multiple effects and properties into cumulative
endpoints; 4) They eliminate the need for costly and time-
consuming experimental data by utilizing existing chemical
information.

5 Conclusion

Environmental protection, environmental epidemiology, and
biodiversity preservation have become major challenges in the
current world. The One Health approach underlines the necessity
of connection and cooperation. Thus, also in the upcoming tasks of
the environmental sciences research field, cooperation between

traditional approaches and new achievements from various
research disciplines is required.

Omics and NAM techniques have established a permanent
presence in environmental research. The speed and level of detail
at which the information is generated using these techniques far
outperform traditional methods. Although there is room for
improvement, incorporating these techniques, and even using
several of them simultaneously, is crucial for well-designed
environmental research.

Among environmental sciences, all aspects related to food
safety are under special concern. Consumers’ food safety
practices are crucial as they can prevent the risk of foodborne
illnesses. A combination of proper food hygiene practices and the
integration of sustainable dietary trends will help improve
consumers, animals, and the environment health. Hence,
contributing to the main scope of the One Health approach is
to achieve optimal health for the above-mentioned triad. Finally,
AMR, one of the main threats to One Health, and particularly its
interaction with environmental microbiomes, is one of the fields
that warrants further research.
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