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Toward the appropriate
interpretation of Alphafold2

Tian Xu1*†, Qin Xu2† and Jianyong Li1

1Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA,

United States, 2Department of Mathematics, The University of Arizona, Tucson, AZ, United States

In life science, protein is an essential building block for life forms and a crucial

catalyst for metabolic reactions in organisms. The structures of protein depend

on an infinity of amino acid residues’ complex combinations determined by gene

expression. Predicting protein folding structures has been a tedious problem in

the past seven decades but, due to robust development of artificial intelligence,

astonishing progress has been made. Alphafold2, whose key component is

Evoformer, is a typical and successful example of such progress. This article

attempts to not only isolate and dissect every detail of Evoformer, but also raise

some ideas for potential improvement.
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1. Introduction

The most common approach to obtain and elucidate protein structures in biological
science is x-ray crystallography, by which three-dimensional protein structures are derived
based on x-ray diffraction data of individual amino acid residues (Smyth and Martin,
2000). Another useful tool to derive protein structure is nuclear magnetic resonance (NMR)
spectroscopy (Wüthrich, 1990), by which one can obtain dynamic changes of the protein
structures under specific conditions. Both approaches often lead to accurate structural
solutions of proteins of interest. In addition, protein NMR analysis could provide dynamic
changes of a given protein under specific solvent conditions. However, obtaining structural
information is extremely time consuming and expensive with either method. Issues related
to obtaining protein samples with adequate purity also present themselves in protein
crystallography and NMR analysis. For example, obtaining crystals that diffract at high
resolution once protein samples are obtained is a challenge in protein crystallography. In
protein NMR analysis, the size and solubility of given protein samples may lead to additional
problems and may require more sophisticated NMR equipment. Some membrane proteins
are difficult to crystallize, if not impossible.

Despite the painstaking nature of structural determination (by crystallography or
NMR), structural determination is essential, providing structural information for a deep
understanding of individual protein functions and numerous reliablemodels for comparison
and contrast. The availability of a substantial number of protein structures is essential,
particularly through the crystallographic approach. This requirement is based on the need
for a solid foundation in understanding protein functions and interactions at a molecular
level. Achieving these structures through crystallography demands a high degree of accuracy
during the crystallization process. A known downside of NMR spectroscopy is the huge
number of purified samples needed. Managing the purifying process for large amounts of
protein is challenging in some scenarios. There is a long history of protein folding prediction
via computational methods. In 1995, the Critical Assessment of protein Structure Prediction
(CASP) was founded. Held every 2 years, CASP provides an opportunity for scientists and
engineers to test their mathematical models. However, despite decades of work, people
have still not found a model to predict protein folding that is close to the ground truth.
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In 2020, Alphafold2 (Jumper et al., 2020) won the CASP14 for
achieving the most accurate prediction of protein-folding with less
than the diameter of one carbon atom confidence error in average
(<1Å in average). This was the best result made for that time, and
it vastly outperformed other competitors’ results. The competitor
with the highest scores obtained a summed z score of 244.0217 and
an average Z score of 2.6524. In comparison, the closest competitor
achieved a lower summed z score of 92.1241 and an average Z
score of 1.0013.1 This result was exhilarating since it was the first-
time humans had begun getting truly close to the ground truth.
Moreover, scientists have started applying Alphafold2 in many sub-
fields of biology. For example, Ren et al. applied Alphafold2 in drug
discovery. As the first reported small molecule targeting CDK20,
out of the seven compounds that were synthesized, ISM042-2-001
exhibited a Kd value of 9.2 ± 0.5µM (n = 3) in the CDK20 kinase
binding assay (Ren et al., 2022). In the work by Zhang et al. (2020,
2021), they even extended Alphafold2 by combining Prod Conn.
AlphaFold2, and sequential Monte Carlo (Doucet et al., 2001)
to predict engineered unstable protein structures. Their findings
indicate that the representations derived from AlphaFold2 models
can effectively forecast the stability alterations caused by point
mutations. Furthermore, they observed that AlphaFold accurately
predicted the ProDCoNN-designed sequences, which exhibited
varying root-mean-square deviations (RMSDs) in relation to the
target structures. This suggests that certain sequences possess
higher foldability compared to others (Zhang et al., 2021). There
are more examples in Table 1. Since the major components of
Evoformer (Jumper et al., 2020) (row and column attention,
triangular self-attention) (Vaswani et al., 2017) are all built upon the
transformer model (Vaswani et al., 2017), it is important to have a
good grasp of the transformer model (Vaswani et al., 2017). In this
article, we will highlight the structure of the Evoformer (Jumper
et al., 2020) and how it works from a basic attention mechanism
(Vaswani et al., 2017), for instance, the math behind it and what
the attention score really is. We will also discuss how Evoformer
relates to transformer (Vaswani et al., 2017) and the difference
between them, especially when message passing based on graph
theory (Gilmer et al., 2020) is blended in. Despite its strengths,
Alphafold2 shows reduced accuracy when predicting very long
sequences. The root mean square deviation (RMSD) of longer
sequence prediction grows quickly. A potential improvement for
this weakness is provided in the discussion section.

2. Methodology

Many machine learning techniques have been used in
Alphafold2, including Evoformer (Jumper et al., 2020) and dataset
distillation (Wang et al., 2018). In this article, we will mainly focus
on the Evoformer, a modification of the transformer (Vaswani
et al., 2017), because Evoformer is the most crucial component
of Alphafold2.

Evoformer is a derivative of the transformer (Vaswani et al.,
2017), and it improves attention modules to fit many proteins’
specific aspects. In the transformer model (Vaswani et al., 2017)

1 https://predictioncenter.org/casp14/zscores_final.cgi

TABLE 1 Applications of Alphafold2 in di�erent areas.

Area of
study

Achievement

Novel fold of rotavirus
glycan-binding domain
predicted by AlphaFold2 and
determined by X-ray
crystallography (Hu L. et al.,
2022)

Structural
biology

Alphafold2 successfully
predicts the structure of the
VP8∗ domain (VP8∗B) of
VP4 and the result is verified
by experiment.

AlphaFold accelerates
artificial intelligence powered
drug discovery: efficient
discovery of a novel
Cyclin-Dependent Kinase 20
(CDK20) small molecule
inhibitor (Ren et al., 2022)

Drug
discovery

Alphafold2 successfully
predicts the structure of the
chemical compound which
demonstrates it is helpful in
the early stage of drug
discovery.

De novo protein design by
inversion of the AlphaFold
structure prediction network
(Goverde et al., 2023)

Protein
design

Alphafold2 shows the
potential capability to solve
the challenge in de novo
protein design.

CavitySpace: a database of
potential ligand binding sites
in the human proteome
(Wang et al., 2022)

Target
prediction

Alphafold2 is used to create
the database CavitySpace
which is the first library of
human proteome.

Exploring evolution-based
and-free protein language
models as protein function
predictors (Hu M. et al., 2022)

Protein
function
prediction

Evolution-based evoformer
and evolution-free evoformer
are compared based on
alphafold2.

Improved prediction of
protein-protein interactions
using AlphaFold2 (Bryant et
al., 2022)

Protein-
protein
interaction

Alphafolder2 based docking
methods perform better than
other docking methods.

Identification of a novel
substrate motif of yeast
separase and deciphering the
recognition specificity using
AlphaFold2 and molecular
dynamics simulation (Liang et
al., 2022)

Biological
mechanism of
action

Alphafold2 helps scientists
with deeper understanding of
mechanism of substrate
recognition and activation of
separase.

for Image Recognition at Scale (ViT) (Dosovitskiy et al., 2020) or
Natural Language Processing (NLP), embedding vectors are not
correlated to each other. However, from an Evoformer perspective,
all the rows and columns are somehow interconnected. So, to solve
the interconnections in that scenario, Evoformer introduced row-
wise and column-wise attention, which have practical meanings
in homology.

One of the inputs of Evoformer isMultiple Sequence Alignment
(MSA) (Corpet, 1988), which is composed of human amino
acids sequences and amino acid sequences from other animals
that are highly similar or identical to humans. Row attention
tracks the amino acids’ correlations among different species and
column attention compares the interconnections among amino
acids sequences among homologous species.

Another important input of Evoformer is amino acids
pairs, which allow protein-to-protein information transfer (Root-
Bernstein, 1982). One of the major problems of sequential data
machine learning in a Euclidean space is it does not sustain the
relational connectivity for neighborhood elements, especially when
we assume relational connectivity does not have connection, but
it does. The consequence of this is the model will lose tons of
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information to induce the result. To maintain the neighborhood,
Evoformer aggregates information across amino acids pairs by
using Triangular multiplicative updates and Triangular self-
attention in analogy to passing information in GNN (Gilmer
et al., 2020). In this article, we will mainly focus on the structure
analysis of Evoformer and the comparison between the traditional
transformer (Vaswani et al., 2017) and Evoformer.

2.1. Linear projection

In linear algebra, a linear projection P is a linear function to a
vector space that, when applied to itself, elicits the same result. This
definition of linear projection is confusing because it is too abstract
to imagine. In machine learning, linear projection is used to project
a target vector onto higher or lower dimensional subspace and
simply align different vectors’ dimensions. Perceptron (Marsalli,
2008) is a typical linear projection usage.

In transformer models (Vaswani et al., 2017), including
Evoformer, embedding vectors are projected into query, key,
and value vectors. Assume input X = R

m×n ,WK ,WQ =
R
n×dk and WV = R

n× dl

Q = X ·WQ (1)

K = X ·WK (2)

V = X ·WV (3)

where Q,K ∈ R
m×dk and V ∈ R

m×dl . Q,K, and V stand for
query, key and value. WQ,WK , and WV are learnable parameters.
The intuition of why input X is projected to three different outputs
is from a retrieval system. A query is like your search input in
Google; Google finds your expected value based on the key words
of your search.

2.2. Attention

Attention (Q,K,V)=softmax

(

Q · K√
dk

)

·V (4)

Attention mechanisms can be analogous to humans capturing
crucial information in sentences. The transformer model (Vaswani
et al., 2017) utilizes dot-product attention instead of additive
attention for efficient storage and faster performance (Figure 1). To
understand why a dot product works in attention, we need to look
inside the dot product.

Let’s assume two vectors u and v in R
n:

u · v = ||u|| · ||v|| · cos θuv =
n

∑

i=1

ui · vi (5)

The Euclidean distance between vectors u and v:

||u− v|| =
√

||u||2 + ||v||2 − 2 · ||u||·||v|| · cos θuv
=

√

||u||2 + ||v||2 − 2 · u · v (6)

FIGURE 1

Flowchart of one module of transformer model. In real applications,

there would be many layers of transformer modules.

In general, if two vectors are close, their Euclidean distance
needs to be small according to equation 6, which means the value
from equation 5 needs to be big enough. In this manner, one can
say the bigger the dot product value, the more similar the two
vectors are. Although we cannot draw diagrams in dimensions
higher than three, we can show what vectors in 3d looks like in
terms of similarity (Figure 2):

a =
[

1&2&3
]

, b =
[

3&2&1
]

, c =
[

2&1&3
]

||a|| = ||b|| = ||c|| =
√
14

aT · b = 1 · 3+ 2 · 2+ 3 · 1 = 10

aT · c = 1 · 2+ 2 · 1+ 3 · 3 = 13

||a− b|| =
√
28− 2 · 10 =

√
8

||a− c|| =
√
28− 2 · 13 =

√
2

||a− b|| > ||a− c||

This is exactly how self-attention works. The scalar value
calculated from the dot product of two vectors is represented as
scores of similarities. In equation 4, Q is a matrix and K is also a
matrix. To calculate dot products of each row between matrix Q

and K, matrix multiplication is required:
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FIGURE 2

Plots of three vactors a, b, c. 3D drawings of vectors a = [1, 2, 3], b = [3, 2, 1], c = [2, 1, 3]. (A) Rough view in 3D space. It may not show c is “closer” to

a than b obviously. (B) Projection in X-Z plane. By looking from top to bottom (projection), it is clearly to say c is “closer” to a than b.

Q · KT = q1 · k1 + q2 · k2 + · · · + qi · ki =
m

∑

i=1

qi · ki

The problem of dot-product attention is it may get either too
large or too small depending on the dk. To see that, assume all qi
and ki are random independent variables and have a distribution
with mean 0 and variance 1

Cov
(

qi, ki
)

= E[(qi − E
[

qi
]

)(ki − E[ki])]

= E
[

qi·ki
]

− E
[

qi
]

· E[ki] = 0 (7)

Var
(

qi
)

= E
[

q2i
]

− E
[

qi
]2

= E[q2i ] (8)

= 1

Var
(

ki
)

= 1 (9)

So, based on equations 8 and 9, we have:

Var
(

qiki
)

= E
[

(qiki
)2
]− E

[

qiki
]2

= E
[

qi
]2 · E

[

ki
]2 −

(

E
[

qi
]

· E
[

ki
])2 = 1 (10)

and ki is a random independent variable and based on equation
7, 10:

E
[

q · k
]

=
dk

∑

i=1

E
[

qi · ki
]

= 0 (11)

Var
(

q · k
)

=
dk

∑

i=1

Var
(

qi · ki
)

= dk (12)

FIGURE 3

SoftMax functions in 2D. This graph illustrates that the right side of

SoftMax function is close to horizontal line which means the slope

in that interval is also close to 0, left side of SoftMax function goes

up dramatically making the slope approach infinity. Large slope

value is also not expected sometimes, especially when model is

reaching optimal.

Softmax (xi) =
exi

∑

j e
xj

(13)

If dk is large enough, qk may be much larger or smaller than
mean 0.

This will make the SoftMax (equation 13) activation function in
equation 4 have an unstable or tiny slope (Figure 3), and make the
gradient at the backpropagation stage explode or vanish. To avoid
that happening, we need to clip it by scaling down the scores by
their standard deviation (

√

dk) (equation 12).
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FIGURE 4

Workflow of one multi-head attention unit.

ai = Softmax(
qi · ki
√

dk
) (14)

attention
(

qi, ki, vi
)

= ai · vi (15)

2.3. Multi-head

In the transformer model (Vaswani et al., 2017), linear
projection and attention have been done h (h = 8 in transformer
model (Vaswani et al., 2017) times (Figure 4). So, equations 1, 2,
and 3 become:

Qi = X ·WQi

Ki = X ·WKi

Vi = X ·WVi

i = 1, 2, 3, · · · , h (16)

equation 4 becomes:

Headi = Attention (Qi,Ki,Vi) = Softmax

(

Qi·Ki√
dk

)

· Vi

i = 1, 2, 3, · · · , h (17)

To get all attention, we concatenate all the heads by:

Heads = Concat
(

Head1,Head2, · · · ,Headh
)

(18)

Recalling equations 1, 2, and 3, the input dimension is Rm×n.
The result of equation 18 has the dimension R

m×nh. To keep all
attention layers consistent, we use a matrixWo = R

nh×n to learn a
representation back to dimension R

m× n.’

MultiheadAttention (Q,K,V) = Heads ·Wo (19)

2.4. Residual

Theoretically, a deeper network should learn more
representations than a shallow network. In practice, this is
not true since gradients may vanish in deep layers. Intuitively,
we want deep layers to perform at least as well as shallow layers,
not worse. Resnet (He et al., 2016) introduced a way to solve that
problem called “Identity shortcut connection.” If a model is already
optimized, we have

F (x) : =H (x) − x = 0 (20)

Equation 20 means H (x) is an identical mapping of x and
optimal layers learn nothing. So, it makes sure that the shallow
layers receive useful information(x) at least.

2.5. Layer normalization

xi =
xi − x

δ
(21)

lim
n→∞

n
∑

i=1

xi

n
= µ (law of large numbers) (22)

Layer normalization (Ba et al., 2016) is a substituent of
batch normalization (Ioffe, 2015). It provides great help in two
areas of batch normalization: small batch sizes of samples and
different input lengths in dynamic networks. Both areas mean
batch normalization cannot represent the real distribution of data
(equation 21 and 22). Instead of normalizing across the batch axis,
layer normalization normalizes the channel or embedding axis to
avoid such problems (Figure 5).

3. Evoformer

With previous knowledge of the transformer model (Vaswani
et al., 2017), we can continue with Evoformer, which takes
some advantages from the transformer model, but also provides
improvement to fit specific protein attributes. In this section, we
give a brief introduction of how Evoformer works and is related to
the transformer model.
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FIGURE 5

Normalization in di�erent axis. C is channel or embedding axis, N is batch axis and F is feature axis. (A) Normalize samples in batch axis. Each feature

is not normalized in sample-wise, but in batch-wise. (B) Normalize samples in their channel or embedding axis. Each feature is not normalized in

batch-wise, but in sample-wise.

3.1. Row and column attention

Like equation 1, the transformer model (Vaswani et al.,
2017) is often used in NLP missions. The batched inputs of
NLP are word-token sequences where they are not related at
all if random sampling is performed. For instance, the first
sentence is “Alphafold is a great tool,” and the next sentence is
“Panda is one of the rare animals,” but that is not the case in
Evoformer. The “word-tokens” from input layers are homologous
to each other among rows and columns. Row-wise sequence
alignment could represent the similarity or difference of gene
expression across different species and column-wise sequence
alignment embeds the information of how gene expression
evolves (Zhang et al., 2022). For such reasons, Evoformer is
used for how to learn weight distribution across rows and
columns. Supplementary Figure 2 from the original paper (Jumper
et al., 2020) shows all the steps of row-wise self-attention and
looks like a traditional multi head self-attention in transformer
model with several modifications. One can notice that queries
(

rq, h, c
)

, keys
(

rv, h, c
)

, values
(

rv, h, c
)

, and gate
(

rq, h, c
)

are all
linearly transformed from a specific specie (row-wise). To calculate
attention weight, pair bias is added at the end before SoftMax
activation is performed. Moreover, gate g is used to filter
value representation.

For regular self-attention (equation 4) in the transformer
model, there is no bias terms since it only has one source of input
(e.g., sentences, pictures). However, Evoformer has two totally
distinct types of input: MSA and amino acids pairs. Just like a linear
function, for instance y = x · w+ b, according to algorithm 7 from
Supplementary material of the paper (Jumper et al., 2020), if we

treat
qh

T

si ·khsj√
c

as xw and bhij as b, then bhij shifts the attention score to

fit the actual score better by utilizing the information in pairs. The
sub-index of each tensor is a little bit tricky. So be cautious when

aligning the proper bhij to
qh

T

si · khsj√
c

.

As mentioned above, column-wise attention is a new technique
for specific protein problems. It captures attention across MSA
columns. Columns in MSA represent the same gene expression
among different species. Supplementary Figure 3 (Jumper et al.,
2020) from the original paper shows the details of column-
wise attention. Queries

(

sq, h, c
)

, keys
(

sv, h, c
)

, values
(

sv, h, c
)

, and
gate

(

sq, h, c
)

are all linearly transformed from a specific gene
expression (column-wise). There is no pair bias anymore so that
column-wise attention looks almost the same as the transformer’s
self-attention except it has a gate.

The idea of a gate has a relatively long history. Long short-term
memory (LSTM) (Hochreiter, 1997) introduced a few kinds of gate
cell to improve RNN (Medsker, 2001). A gate cell can be seen as a
filter which only allows values with high confidence to pass because
of the nature of sigmoid function (Figure 6).

3.2. MSA transition

MSA transition is equivalent to a feed forward layer in the
transformer model (Vaswani et al., 2017) which has most of the
trainable parameters and key-value memories (Geva et al., 2020).

3.3. Outer product mean

As in Figure 5A of the paper (Jumper et al., 2020), the result
coming from the transition layer needs to be added back to pair
representation. However, MSA has a shape (s, r, cm) and pairing
representation has a shape (r, r, cz). To add them up, MSA must
be reshaped to the same shape as the pairing representation
[Supplementary Figure 5 of the paper (Jumper et al., 2020)]. The
outer product is a vector version of the Kronecker product of
matrices. The most straightforward effect of the outer product is
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FIGURE 6

Plot of sigmoid function. Sigmoid function is often used as filter

because it compresses input values between 0 and 1. Close to 1 if

input value is large enough or 0 if input value is small.

that the outer product of two vectors is a matrix. In other words, an
extra dimension is produced. Here is an example:

Assume vectors u and v ∈ R
n

u
⊗

v =

















u1
u2
u3
...
un

















⊗

[

v1 v2 v3 · · · vn
]

=

















u1v1 u1v2 u1v3 · · · u1vn
u2v1 u2v2 u2v3 · · · u2vn
u3v1 u3v2 u3v3 · · · u3vn
...

...
...

. . .
...

unv1 unv2 unv3 · · · unvn

















(23)

To update pair representation pij, it calculates the outer product
of ith and jth columns from MSA representation, then takes the
mean value along the new axis (first dimension s) and finally maps
to pair representation pij with a linear transformation.

There are multiple ways to expand dimensions in this case.
For example, we can perform a matrix tile operation on the third
dimension. The reason to choose the outer product here is it
condenses all the information in MSA in order to reconstruct
pair representation.

3.4. Triangular multiplicative update

The triangular multiplicative update model is analogous to
nodes in graph theory. To update the information contained at
position

{

i, j
}

by receiving all information, its neighbor nodes
{

i, k
}

and
{

j, k
}

pass according to Supplementary Figure 6 of the
paper (Jumper et al., 2020). There are two symmetric versions for
updating zij (Jumper et al., 2020). One refers to the “outgoing” edge

(row wise) and another is the “incoming” edge (column wise). In
the “outgoing” edge version, every zij is updated by the sum of
all columns of the ith row and jth row. In the “incoming” edge
version, every zij gets updated by the sum of all rows of the ith
column and jth column. The algorithm looks like row- or column-
wise attention, but the dot product is replaced by elementwise
multiplication for a cheaper computational cost (equation 24).

3.5. Triangular self-attention

Triangular self-attention looks almost exactly the same as row
and column attention [algorithm 11 and 12 from the paper (Jumper
et al., 2020)] and there are also two symmetric versions (Jumper
et al., 2020). In the starting node version, the key kij and value vij
are replaced by kik and vik (key and value from ith row and kth
column), bjk is also created and added to inner product affinities as
a bias term. In the ending node version, the key kij and value vij

are replaced by kki and vki (key and value from ith column and kth
row); bki is also created and added to inner product affinities as a
bias term. Now, updating zij not only depends on the dot product
similarities of neighbor gene expression but also depends on the
third edge bik and bkj (Jumper et al., 2020).

4. Discussion

Although Alphafold2 can make highly accurate predictions of
protein structures, it is not perfect. There are some things the
model ignores.

(a) Alphafold2 is not designed to model co-factor-based protein
folds. Myoglobin or hemoglobin need a heme to fold and
zinc-finger domains are not stable without a zinc ion, so
Alphafill is developed to address such issues (Hekkelman et al.,
2023).

(b) One major drawback of AF2, which has a significant impact
on the field of biomedicine, is the inadequate quality of
transmembrane protein models. Although the confidence
indices for transmembrane segments can be reliable, the
overall predicted topology of these models is incompatible
with their insertion into a membrane bilayer (Tourlet et al.,
2023).

(c) An inherent constraint of MSA (Multiple Sequence
Alignments)-based methods like AlphaFold2 is
their reliance on existing knowledge and datasets.
While these methods can make educated estimates
between known protein structures and potentially
even make predictions around those known
structures, they struggle to confidently and precisely
predict entirely new configurations. Incorporating
a molecular dynamics component is crucial
to effectively model these novel configurations
(Marcu et al., 2022).

Considering the above limitations, the model should
aim to incorporate the effects generated by co-factors. To
improve the prediction results of poor-quality transmembrane
proteins, it should consider how to enhance the accuracy
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and reliability of their modeling. Additionally, the model
should focus on generalizing to data not present in
the existing databases, in order to improve and refine
its predictions.

5. Conclusion

Alphafold2 is a complicated system. There are more than
60 pages in the supplementary document of Alphafold2 (Jumper
et al., 2020). If we break it down to every step, hundreds
of pages will be required. In this article, we only discussed
the most important module-Evoformer. However, other modules
also made huge contributions to its success, for instance,
data preparation, IPA Module, and recycling. The argument is
still controversial, but some discussion says Alphafold2 is the
future of protein structure prediction (Al-Janabi, 2022). However,
Alphafold2 provides us with a new way to study protein structure
where we can combine experimental efforts with a powerful
tool set. The Alphafold2 model can be used to generate more
specific drugs and find more suitable animals to test medicines
(Thornton et al., 2021), improve structural coverage of the human
proteome (Porta-Pardo et al., 2022), and so on. Alphafold2
also shows its success in general sequential models other than
NLP and image recognition tasks. At the beginning of the self-
attention transformer model (Vaswani et al., 2017), most of
the studies were based on NLP missions, for instance, “Bert”

(Devlin et al., 2018). Now, the transformer model is also popular
in biology.

Author contributions

TX contributed to the design and conception of the study. QX
contributed to all the details and mathematics of the study. JL
contributed by editing and reviewing the manuscript. All authors
contributed to the manuscript revision, read, and approved the
submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Al-Janabi, A. (2022). Has deepmind’s alphafold solved the protein folding problem?
Future Sci. 72, 73–76. doi: 10.2144/btn-2022-0007

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer Normalization. arXiv
preprint arXiv.

Bryant, P., Pozzati, G., and Elofsson, A. (2022). Improved prediction
of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265.
doi: 10.1038/s41467-022-28865-w

Corpet, F. (1988).Multiple sequence alignment with hierarchical clustering.Nucleic.
Acids Res. 22, 10881–10890. doi: 10.1093/nar/16.22.10881

Devlin, J., Chang, M. -W., Lee, K., and Toutanova, K. (2018). Bert: pretraining of
deep bidirectional transformers for language understanding. arXiv [Preprint]. arXiv.
1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). An image is worth 16x16 words: transformers for image recognition at
scale. arXiv [Preprint]. arXiv. 2010.11929 doi: 10.48550/arXiv.2010.11929

Doucet, A., Freitas, N. D., and Gordon, N. (2001). An Introduction to Sequential
Monte Carlo Methods. Sequential Monte Carlo Methods in Practice: Springer.
doi: 10.1007/978-1-4757-3437-9_1

Geva, M., Schuster, R., Berant, J., and Levy, O. (2020). Transformer
feedforward layers are key-value memories. arXiv preprint arXiv.
doi: 10.18653/v1/2021.emnlp-main.446

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2020).
Message Passing Neural Networks.Machine learning meets quantum physics. Springer.
doi: 10.1007/978-3-030-40245-7_10

Goverde, C., Wolf, B., Khakzad, H., Rosset, S. and Correia, B. E. (2023). De novo
protein design by inversion of the AlphaFold structure prediction network. Protein Sci.
32, e4653. doi: 10.1002/pro.4653

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision. (Las Vegas,
NV). doi: 10.1109/CVPR.2016.90

Hekkelman, M. L., De Vries, I., Joosten, R. P., and Perrakis, A. (2023). AlphaFill:
enriching AlphaFold models with ligands and cofactors. Nat. Methods 20, 205–213.
doi: 10.1038/s41592-022-01685-y

Hochreiter, S. A. S. (1997). Long short-term. Memory. 8, 1735–1780.
doi: 10.1162/neco.1997.9.8.1735

Hu, L., Salmen, W., Sankaran, B., Lasanajak, Y., Smith, D. F., Crawford, S.
E., et al. (2022). Novel fold of rotavirus glycan-binding domain predicted by
AlphaFold2 and determined by X-ray crystallography. Commun. Biol. 5, 419.
doi: 10.1038/s42003-022-03357-1

Hu, M., Yuan, F., Yang, K. K., Ju, F., Su, J., Wang, H., et al. (2022). Exploring
evolution-based &-free protein language models as protein function predictors. arXiv
[Preprint]. arXiv: 2206.06583.

Ioffe, S. A. S. C. (2015). “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International Conference on Machine Learning
(New York, NY).

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K., et al.
(2020). AlphaFold 2. Fourteenth Critical Assessment of Techniques for Protein Structure
Prediction. London: DeepMind.

Liang,M., Chen, X., Zhu, C., Liang, X., Gao, Z., and Luo, S. (2022). Identification of a
novel substrate motif of yeast separase and deciphering the recognition specificity using
AlphaFold2 andmolecular dynamics simulation. Biochem. Biophys. Res. Commun. 620,
173–179.
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