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Iron (Fe) is a vital element that is equally important for plants, animals, and 
humans. High Fe concentrations in wheat grains have reliance on plant roots, the 
hidden half of the plant with a role in nutrient mining. Enhanced grain Fe content 
of wheat can positively mitigate Fe malnutrition in poor populations. In the 
present study, 100 wheat varieties were studied to identify the root architectural 
characteristics in relation to grain Fe concentration. Germinated seeds were 
transplanted in a rhizobox kept in a standard nutrient solution and were harvested 
12  days after transplanting. Roots were scanned and the images were processed 
using smart root software. A total of 12 wheat varieties, which had a vigorous 
and weak root system architecture (RSA), in combination with higher and lower 
Fe grain concentrations, were selected using principal component analysis. The 
uptake and translocation of Fe from root to shoot were determined through a 
pot experiment conducted for the above-mentioned 12 wheat varieties, with or 
without Fe fertilizer applied as FeSO4 to the soil. The data obtained from the pot 
experiment revealed that Dharabi-11 with vigorous RSA exhibited the highest 
grain Fe concentration (57.20  mg  kg−1), low phytate concentration (6.50  mg  kg−1), 
and maximum 1,000 grain weight, whereas Ujala-16 with weaker RSA had the 
lowest grain Fe concentration (13.33  mg  kg−1), highest phytate concentration 
(9.07  mg  kg−1), and lowest 1,000 grain weight. There were also varieties showing 
higher grain Fe concentrations with weaker RSA and vice versa. Although it is 
indicated that vigorous RSA leads to high grain Fe concentration, it is not the 
sole factor in high grain Fe concentration. Nevertheless, the results demonstrate 
that large genetic diversity is available among indigenous wheat germplasm in 
terms of grain Fe concentration and RSA. This information may be  utilized in 
the development of new varieties through conventional and marker-assisted 
breeding programs using RSA traits for Fe biofortification in wheat, leading to the 
mitigation of Fe malnutrition.
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1. Introduction

An adequate supply of micronutrients and macronutrients is as important for plants as 
it is for humans and animals. The deficiency of any micronutrient in the soil can reduce plant 
growth and yield. However, a number of factors contribute to the sufficient supply of 
nutrients, like availability, rate of absorption, and transport within the plant (Riaz et al., 
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2017). Fertilizers are applied to crops to provide these nutrients, but 
nutrient uptake ability in crops varies depending upon various 
types of root systems (Timilsena et al., 2015), nutrient mobilizing 
exudates, soil chemistry and nutrient movement processes 
(Marschner and Rengel, 2023). Iron is an indispensable nutrient 
contributing to the development and growth of plants. It plays a 
critical role in many metabolic phenomena, such as chlorophyll 
synthesis, which is a major contributor in the redox reactions of 
photosynthesis (Jeong et al., 2017). Plants follow two strategies for 
the acquisition of Fe. Strategy I (reduction based) is adopted by 
non-graminaceous plants, where protons are secreted by roots H+-
ATPases that lower pH in the rhizosphere and reduction of Fe3+ 
takes place. Strategy II is adopted by graminaceous plants where 
plant roots release phytosiderophores that chelate with Fe3+, which 
passes through the root cell membrane via transporters (Rehman 
et al., 2021). Plant roots secrete several types of mugineic acids 
under Fe stress conditions. Since the distribution of Fe is 
heterogeneous in soil, roots adapt themselves to cope with this 
heterogeneity through morphological and physiological adaptive 
responses (Li et al., 2016). Wheat varieties reduce or increase root 
attributes to adjust plant Fe levels under Fe-sufficient and -deficient 
conditions, respectively. However, a variable extent of response to 
higher root-to-shoot ratio and root length has been witnessed 
among different varieties (Divte et  al., 2019). The optimal root 
system architecture (RSA) is needed for efficient nutrient 
acquisition from the rhizosphere (Alahmad et al., 2019). Wheat has 
a fibrous root system, comprising nodal, primary, and lateral roots 
(Ober et al., 2021). Studies show that RSA has changed over time in 
historical wheat varieties. A positive change (1965–1916) was 
identified in unique RSAs associated with yield, phenology, and 
variation in the expression of functional genes among wheat 
cultivars belonging to different release years. Evaluations indicated 
that wheat cultivars released after 1965 (green revolution period) 
showed significant increases in root depth and length. However, 
cultivars released after 2000 showed a significant increase in root 
depth, diameter, number of roots, and surface area (Maqbool 
et al., 2022).

Genotype and environmental interaction have a significant 
effect on quality-related traits of wheat (Amiri et  al., 2018). 
Wheat screening has revealed that primitive wheat varieties have 
the highest grain Fe content. In recent years, dwarf high-
productive wheat varieties have been introduced (Mamrutha 
et al., 2014), which have shown low grain Fe content. It is also 
evident that most of the staple crops have genetic diversity for 
micronutrient density in their grains. Enhanced concentrations 
of micronutrients not only fulfill micronutrient deficiency 
problems but can also lead to better productivity, even in 
micronutrient-deficient soils (Welch and Graham, 2004).

Despite the fact that agriculture has always, traditionally, been a 
source of food and nutrition, hunger and hidden hunger are becoming 
a worldwide challenge. Researchers are trying to relieve micronutrient 
deficiencies by adopting food diversification, supplementation, 
fortification, and biofortification. However, biofortification is the more 
appropriate solution to reduce mortality and improve food security, 
yield, and quality of life (Wakeel et  al., 2018). The agronomic 
biofortification of cereal crops with essential elements, i.e., Fe and Zinc 
(Zn), has been proven as a sustainable approach to improving the 

nutritional status of people in developing countries (Kiran et  al., 
2021). Desired wheat varieties can be selected by establishing genetic 
variation by screening wheat varieties on the basis of levels of Fe, Zn, 
phenols, and vitamins growing under various environmental 
conditions (Amiri et al., 2015). The Harvest Plus Challenge Program 
has approved the target of increasing the concentration of Fe to 
approximately 25 mg kg−1 in order to acquire quantifiable outcomes, 
for which the Fe level will have to be increased from 35 to 60 mg kg−1 
(Welch and Graham, 2004).

Iron plays an important role in human metabolism, and its 
deficiency causes anemia and increases the risk of psychosis, anxiety, 
depression, and sleep disorders. Globally, 29.4% of women are 
reproductive, and 40% of pregnant women and 30% of non-pregnant 
women have anemia (Wu et al., 2020). According to the World Health 
Organization estimates, more than 27% of the world’s population may 
suffer from Fe deficiency, leading to anemia (Owaidah et al., 2020). It 
is also evident that the main staple foods of the world’s 2 billion 
Fe-deficient people are wheat-based and wheat products (Cakmak 
et al., 2010).

This study was designed to identify the relationship between RSA 
and grain Fe concentration to select wheat cultivars for productivity 
and Fe concentration improvement to be used in further breeding 
programs. The study of RSA is difficult, time-consuming, and 
expensive, which is why it is not usually included in breeding 
programs (Rufo et al., 2020). Nevertheless, rhizobox/rhizotron-based 
experiments have made it feasible to study RSA. Rhizoboxes are useful 
tools for understanding the hidden half of plants (Maskova and 
Klimes, 2020). It has been hypothesized that high grain Fe 
concentration depends on the vigorous RSA of wheat.

2. Materials and methods

This study was designed to find the correlation between grain 
iron content and root system architecture in wheat. Seeds of 100 
wheat varieties were collected from the National Agriculture 
Research Center (NARC), Islamabad, Pakistan to perform two 
experiments in this study (Supplementary Table S1 includes 
pedigree information and year of release). In the first experiment, 
the association of RSA with a grain Fe content-based experimental 
system (under Fe-deficient conditions in a rhizobox) was conducted 
in a growth room situated in the Department of Botany, at the 
University of Agriculture Faisalabad Pakistan. The grain Fe content 
of all wheat varieties was determined using an atomic absorption 
spectrophotometer (Estefan et  al., 2013). A rhizobox-based 
experiment was conducted to study RSA traits. A rhizobox consists 
of two plexiglass plates spaced 1.0 cm apart, with pores on the 
bottom side (Photo 1). The sand was washed, dried, and used to fill 
in the boxes. The rhizoboxes were adjusted in a tank, and nutrient 
solution without an Fe source was supplied in the tank, assuring the 
depth of solution to be 3 cm only (this depth is sufficient to raise the 
nutrient solution to the top of the rhizobox).

Wheat seeds were germinated in petri plates separately for 
24 h and then germinated seeds were sown in sand-filled 
rhizoboxes, which were irrigated with the nutrient solution, as in 
Photo 1. Each rhizobox contained 10 wheat varieties. Each variety 
had four replicates (in separate rhizoboxes). Seedlings were 
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harvested after 12 days and images of the roots were taken 
immediately after harvesting using a camera (Nikon Coa-PTX 
L840) through an optimized image-taking system. The optimized 
image system consisted of a case with the dimensions 
30 cm × 30 cm fitted with a camera on the top at the height of 
60 cm. The plants to be  imaged were placed on a scaled hard 
sheet, which was adjusted at the bottom. Images of roots were 
subjected to the software Smart Root (Lobet et al., 2011), and 
data for RSA attributes, i.e., primary root length (PRL), total 
lateral root length (TLRL), total root length (TRL), lateral root 
number (LRN), and lateral root density (LRD), were recorded. 
Data were arranged in ascending order for grain Fe contents and 
formed an index to check the frequency of varieties for root traits.

The second experiment was conducted, in polyvinyl chloride 
(PVC) pots, to evaluate the Fe uptake and translocation to shoot/grain 
in selected wheat varieties (with different combinations of RSA and 
grain Fe content). These combinations were developed from analyzing 
the data of the first experiment, through principal component analysis, 
and three varieties from each of the four combinations were selected 
for the previously mentioned pot study, i.e., high grain Fe content and 
vigorous RSA, high grain Fe content and weak RSA, low grain Fe 
content and vigorous RSA, low grain Fe content and weak RSA 
(Supplementary Table S2).

Pots were filled with an 8 kg sieved mixture of soil and sand at a 
60:40 ratio. Nitrogen, phosphorus, and potassium fertilizers were 
applied at a rate equivalent to 150:100:60 kg ha−1 in the form of urea, 
single super phosphate, and potassium sulfate. Potassium and 
phosphorous were applied as a basal dose, while nitrogen was applied 
in three equal splits. The first split was applied as a basal dose, while 
the second and third were applied at the tillering and heading stages, 
respectively. Iron was applied as soil application at a rate equivalent 
to 20 kg ha−1 at the time of first irrigation using FeSO4.7H2O in one 
treatment, while the other treatment was not supplied with 
Fe fertilizer.

Standard crop management practices were followed during the 
whole experiment. At harvest, three plants were selected from each 

pot, then the number of spikelets on each spike and the number of 
grains were counted. The average was calculated considering each 
replicate. The grains of the harvested plants were weighed for the 
determination of yield.

2.1. Estimation of grain iron

The grain Fe content of all the wheat varieties was determined 
using an atomic absorption spectrophotometer following the atomic 
absorption method (Estefan et al., 2013). All grain samples were oven-
dried at 60–70°C for 2 h. Sample powder (0.25 g) was digested in 
2.5 mL of (2:1) nitric acid and perchloric acid mixture in the digestion 
flask. Samples were allowed to stand overnight. These samples were 
heated on a hot plate (180°C) until white fumes appeared and the 
digest was transparent. They were then cooled down, and deionized 
water was added to make the volume up to 50 mL. The samples were 
filtered and preserved for further analysis. The same process was 
carried out for the preparation of the blank solution. Iron analysis of 
the samples was conducted by Atomic Absorption Spectrophotometer 
(Hitachi Polarized Zeeman Z-5200 A A Spectrophotometer, 
Hitachi, Japan).

The localization of Fe in wheat grain was determined using the 
Perls Prussian blue staining method (Shobhana et al., 2013), for which 
2% Prussian blue solution was utilized for the determination of the 
localization of grain Fe content. Grain samples were dipped in a stain 
solution for 2 h. Seed grains became imbibed and stained. Then, cross-
sections of grains were taken, slides were observed under a microscope 
(Stereo Blue Euromex model), and images were taken.

Statistical analysis was carried out using the R studio R × 64 3.6.1 
software. The selection of wheat varieties from the rhizobox 
experiment was done by applying principal component analysis 
(PCA). Analysis of variance was applied to the pot experiment 
conducted in a completely randomized design (CRD). Comparison of 
treatment was carried out using the mean of least square difference 
(LSD) at a probability level of 0.05.

PHOTO 1

(A) Rhizobox setup (B) sand-filled rhizobox (closed) 10 wheat seedlings (C) sand-filled rhizobox (opened) with 10 wheat seedlings.
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3. Results

3.1. Study I association of RSA with grain Fe 
content under Fe-deficient conditions in 
rhizobox-based experimental system

3.1.1. Grain Fe concentration
A grain Fe concentration histogram exhibited a right-skewed 

distribution. The distribution peak is toward the right-side limits from 
the center, and the tail stretches away from the center. A high number of 
varieties (~80 varieties) were found to have grain Fe content within the 
range of 0–10 mg kg−1. The highest grain Fe concentrations were 
39.84 mg kg−1, 37.18 mg kg−1, and 35.52 mg kg−1, which were detected in 
Dharabi-11, Punjab-11, and Faisalabad-2008, respectively, and the lowest 
grain Fe concentrations were determined in Ujala-16, Lasani-08, and 
Miraj-08, which were 0.16 mg kg−1, 0.13 mg kg−1, and 0.08 mg kg−1, 
respectively (Figure 1A).

Primary root length, total lateral root length, total root length, 
and lateral root density of wheat varieties shown skewed 
distribution toward the right side of the histogram. Most of the 
varieties lie within the range of 5–10 cm for PRL. Among the 
varieties, the longest PRL was observed in Dharabi-11 (27.05 cm), 
while the shortest PRL was found in Lasani-08 (1.95 cm; Figure 1B). 
Total lateral root length ranging from 15 cm to 30 cm was observed 
in a maximum number of varieties. The longest TLRL was detected 
in Dharabi-11 (132.06 cm), whereas the shortest TLRL was found 
in Lasani-08 (4.03 cm; Figure 1C). The TRL of most of the varieties 
was between 20 cm and 40 cm, whereas the longest and the shortest 
TRL was observed in Dharabi-11 (159.12 cm) and Lasani-08 
(5.98 cm), respectively (Figure 1D).

The LRN is shown to have a normal distribution trend in the 
histogram, and most of the varieties were observed to produce three 
lateral roots, although the maximum of four lateral roots was 
observed in Punjab-11, and the minimum LRN was in Lasani-08 
(Figure 1E). The lateral root density was found to range from 0.1 to 2 
roots per cm (Figure 1F).

Comparison of RSA attributes with grain Fe content by correlation 
matrix predicted that grain Fe content has a positive correlation with 
PRL (R2 = 0.26), TLRL (R2 = 0.16), and TRL (R2 = 0.19) and a negative 
correlation with LRN (R2 = −0.01) and LRD (R2 = −0.000). Similarly, 
RSAIN is also shown to have a positive correlation with grain Fe 
content (Figures 2A,B).

3.1.2. Screening of wheat varieties with reference 
to root system architecture and grain Fe content

Principal component analysis explored four types of trends in 
wheat varieties on the basis of the correlation of root system 
architecture with grain Fe content, i.e., 6% of varieties were found 
to have vigorous RSA and higher grain Fe content; amongst these 
varieties, Dharabi-11 (V77), Punjab-11 (V73), and Faisalabad-08 
(V126) were found to be the most efficient. However, 7% of the 
varieties showed higher grain Fe content and weak RSA, amongst 
which, BARS-09 (V58), NARC-09 (V55), and Jauhar-78 (V69) 
were more efficient. Similarly, 9% of varieties represented lower 
grain Fe content and vigorous RSA with PirSabak-2013 (V82), 
Pakistan-2013 (V86), and NARC-2011 (V78) on top. 
Approximately 78% of varieties were found to have low grain Fe 
content and weak RSA. At the same time, Ujala-16 (V117), 
Miraj-08 (V50), and Lasani-08 (V49) exhibited the weakest 
attributes (Figure 3).

FIGURE 1

Histogram representation of the frequency distribution of 100 wheat varieties vs root system architecture: (A) grain Fe content (B) primary root length 
(C) total lateral root length (D) total root length (E) lateral root number (F) lateral root density.
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3.2. Study-II: evaluation for Fe uptake and 
translocation to shoot/grain and yield 
parameters in wheat varieties with varying 
RSA

3.2.1. Yield under Fe-sufficient and -deficient 
conditions

Data related to yield parameters were recorded at the time of 
anthesis. Statistical analysis of the data revealed that the number of 
spikelets was increased under Fe-sufficient conditions. The number 
of spikelets ranged from 11 to 21 among various varieties. The 

maximum number of spikelets (i.e., 21) was found in Dharabi-11 in 
Fe-sufficient conditions, whereas the minimum number of spikelets 
(i.e., 11) was found in Ujala-16 under Fe-deficient conditions. The 
mean value of the number of grains ranged between 36 in (Ujala-
16) and 61 in Dharabi-11 (Table 1). Grain yield and 1,000 grain 
weight (showing the vigor of grains) were higher in Fe-sufficient 
conditions. The maximum 1,000 grain weight was found for 
Dharabi-11 (i.e., 47.00 g) and the minimum 1,000 grain weight was 
recorded in Ujala-16 (29.90 g; Figures 4A,B). Data regarding leaf 
area, plant height, and total biomass are presented in 
Supplementary Table S3.

FIGURE 2

Pearson correlation matrix for the comparison of root system architecture with grain Fe content in 100 wheat varieties (A) correlation between individual 
root attributes vs grain Fe content (B) correlation between total root attributes vs grain Fe content. Diagonal represents attributes trend, upper portion of 
diagonal denotes coefficient of R2, lower portion of diagonal indicates scatter plot with trend line. PRL, primary root length; LRL, lateral root length; TRL, 
total root length; LRN, lateral root number; LRD, lateral root density; Fe, iron concentration; RSAIN, root system architecture index.
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3.2.2. Evaluation for Fe concentration, uptake, 
and translocation

Roots proliferate in the rhizosphere for the acquisition and uptake 
of Fe. In order to explore the translocation, Fe concentration was 
analyzed in roots, shoots, husks, and grains. The highest grain Fe 
concentration, 57.20 mg kg−1, was found in Dharabi-11, and the lowest 
Fe concentration 13.33 mg kg−1 was observed in Ujala-16 (Figure 5A). 
Phytate content has significant importance as it reduces the 

phytoavailability of Fe. The highest concentration of phytate was 
9.07 mg kg−1 and was found in Ujala-16, and the lowest concentration, 
5.75 mg kg −1, was observed in Faisalabad-08 (Figure 5B).

Comparative analysis of the uptake of Fe and its translocation to 
shoots, husks, and grains disclosed that each variety acquired different 
concentrations of Fe from soil containing the same amount of Fe. The 
uptake of total Fe by the roots influenced the concentration of Fe to 
be  translocated to the shoots, husks, and grains. Moreover, the 

FIGURE 3

Principal component analysis between root system architecture and grain Fe content in 100 wheat varieties for the selection of 12 varieties. G1: 
efficient root system architecture vs higher grain Fe content, G2: weaker root system architecture vs higher grain Fe content, G3: efficient root system 
architecture vs lower grain Fe content, G4: weaker root system architecture vs lower grain Fe content.

TABLE 1 Effect of Fe application on yield attributes of various varieties of wheat.

Varieties Spike length (cm) Number of spikelets per spike Number of grains per spike

Without Fe With Fe Without Fe With Fe Without Fe With Fe

Dharabi-11 16.38 ± 0.23ab 17.00 ± 0.20a 20 ± 0.28b 21 ± 0.45a 56 ± 0.41 cd 61 ± 0.29a

Punjab-11 15.75 ± 0.14bcd 16.00 ± 0.40bc 19 ± 0.25b 20 ± 0.25b 55 ± 0.25d 60 ± 0.29a

Faisalabad-2008 15.13 ± 0.12cdef 15.38 ± 0.23cde 19 ± 0.25b 20 ± 0.28b 53 ± 0.41ef 58 ± 0.48b

BARS-2009 13.50 ± 0.20hi 14.50 ± 0.28efg 16 ± 0.28ef 17 ± 0.28def 39 ± 0.41 m 44 ± 0.48 k

NARC-2009 14.25 ± 0.47fgh 15.88 ± 0.42bc 16 ± 0.25ef 17 ± 0.40cdef 52 ± 0.29 g 54 ± 0.29e

Jauhar-78 13.25 ± 0.25i 15.50 ± 0.28bcd 17 ± 0.47cde 18 ± 0.51c 49 ± 0.41 h 52 ± 0.48 g

Pir Sabak-2013 12.88 ± 0.51ij 13.38 ± 0.23hi 16 ± 0.40f 18 ± 0.16 cd 49 ± 0.41 h 52 ± 0.41 fg

Pakistan-2013 14.88 ± 0.31def 15.75 ± 0.25bcd 18 ± 0.47c 19 ± 0.25b 55 ± 0.41d 57 ± 0.29c

NARC-2011 13.75 ± 0.14ghi 14.25 ± 0.14fgh 15 ± 0.47 g 17 ± 0.25cdef 44 ± 0.48 k 48 ± 0.48i

Miraj-08 12.25 ± 0.32jk 13.25 ± 0.14i 14 ± 0.36 g 15 ± 0.47 g 44 ± 0.29 k 46 ± 0.29j

Lasani-08 12.00 ± 0.20jk 13.25 ± 0.47i 12 ± 0.55 h 14 ± 0.16 g 38 ± 0.48n 42 ± 0.48 l

Ujala-16 10.88 ± 0.37 l 11.88 ± 0.12 k 11 ± 0.41i 13 ± 0.49 h 36 ± 0.48o 41 ± 0.48 l

LSD 0.91 1.04 1.13

Treatment: without Fe application and with Fe application at a rate of 20 kgha−1. Mean value of agronomic parameters with standard error.
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application of Fe enhanced its availability in the rhizosphere and 
improved the uptake of Fe. Varieties with efficient uptake of Fe by the 
roots generally translocate higher amounts of Fe to the shoots, husks, 
and grains. The amount of Fe to be translocated toward the furthest 
sink grains from the roots correlates with the amount of Fe existing in 
the shoots, husks, and grains. Varieties with higher Fe content in the 
roots, shoots, and husks translocated higher amounts to grains 
(Table 2).

Although only a small amount of Fe was translocated to the 
grains, varieties with higher uptake potential by the roots translocated 
higher concentrations of Fe to grains. The order of uptake of Fe by 
the roots was Dharabi-11 > Faisalabad-2008 > Punjab-11 > BARS-
2009 > NARC-2009 > Jauhar-78 > NARC-2011 > Pakistan-2013 > Pir 
Sabak-2013 > Lasani-08 > Miraj-08 > Ujala-16. Similarly, the varieties 
can be arranged in increasing order of grain Fe content as follows: 
Dharabi-11 > Punjab-11 > BARS-2009 > NARC-2009 > 
Faisalabad-2008 = Jauhar-78 > NARC-2011 > Pir Sabak-2013 > 
Pakistan-2013 > Lasani-08 > Miraj-08 > Ujala-16 (Figure 6).

3.2.3. Fe localization in wheat grains
Visualization of Fe localization by staining showed that the parts 

of the grains with a higher concentration of Fe appeared darker in 
color compared to the parts of the grains with a lower concentration 
of Fe. The aleuronic layer and embryo part of the seed stained darker 
than the endosperm (Photo 2).

3.2.4. Physiological attributes
Evaluation of physiological parameters is of significant 

importance as physiological attributes influence the photosynthetic 
yield. The physiological activity was improved when wheat varieties 
were grown in Fe-sufficient conditions. The maximum 
improvement in physiological attributes was observed in 
Dharabi-11, Faisalabad-2008, Punjab-11, and Pakistan 2013, 
respectively. As in these varieties, photosynthetically active 
radiation, fluorescent transient, electron transport rate, and 
effective quantum yield of photosystem II exhibited a positive 
correlation. However, the minimum improvement was observed in 
Ujala-16, Lasani-08, and Miraj-08. NARC-2009, Pir Sabak-2013, 
Jauhar-78, BARS-2009, and NARC-2011 showed moderate 
behavior, where a negative correlation was observed in 
physiological attributes (Figure 7).

4. Discussion

Fe deficiency is one of the most prevalent problems leading not 
only to a risk of early death but also to long-term negative 
consequences related to health and growth. One of the major factors 
contributing to Fe malnutrition is the low bioavailable Fe content in 
staple foods such as wheat, which is inherently low in Fe (Wakeel 
et al., 2018; Hassan et al., 2021). The current study was conducted to 

FIGURE 4

Effect of Fe application on yield attributes of various varieties of wheat in pot conditions. Treatment: Without Fe application and with Fe application at a 
rate of 20  kg  ha−1. (A) 1,000 grain weight (B) Grain yield. The value in the column shows the mean of four replications, the filled column denotes with Fe 
application, and the unfilled column denotes without Fe application. The bars show the standard error, and column sharing letters are not significantly 
different at p  <  0.05. 
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TABLE 2 Effect of Fe application on uptake and translocation of Fe in various varieties of wheat in greenhouse conditions.

Varieties Soil Fe concentration 
(mg  kg−1)

Root Fe concentration 
(mg  kg−1)

Shoot Fe 
concentration 

(mg  kg−1)

Husk Fe concentration 
(mg  kg−1)

Without Fe With Fe Without Fe With Fe Without 
Fe

With Fe Without 
Fe

With Fe

Dharabi-11 94.62 ± 0.57o 127.49 ± 0.37 h 82.62 ± 1.14b 94.72 ± 1.62a 59.07 ± 0.32d 67.32 ± 0.44a 47.50 ± 0.20e 58.93 ± 0.53a

Punjab-11 95.45 ± 0.28no 148.54 ± 0.46f 74.48 ± 0.57fgh 80.49 ± 0.46bc 58.09 ± 0.27de 64.94 ± 0.31b 46.91 ± 0.37ef 57.40 ± 0.80b

Faisalabad-2008 95.94 ± 0.48mn 151.35 ± 0.54d 75.94 ± 0.33ef 78.60 ± 0.54 cd 58.54 ± 0.53de 64.19 ± 0.32bc 46.37 ± 0.52efg 55.96 ± 0.65c

BARS-2009 96.96 ± 0.47 lm 155.41 ± 0.41b 73.29 ± 0.33gh 77.84 ± 2.75de 58.13 ± 0.37de 64.69 ± 0.35b 46.73 ± 0.28ef 55.82 ± 0.50c

NARC-2009 96.04 ± 0.12mn 146.67 ± 0.46 g 67.61 ± 0.29ijk 74.37 ± 0.44fgh 57.53 ± 0.49e 63.40 ± 0.46c 45.96 ± 0.47fgh 53.32 ± 0.57d

Jauhar-78 95.95 ± 0.39mn 152.71 ± 0.57c 69.64 ± 0.47i 72.81 ± 0.56 h 57.96 ± 0.52de 63.90 ± 0.51bc 44.75 ± 0.78 h 53.17 ± 0.45d

Pir Sabak-2013 98.20 ± 0.32 L 153.98 ± 0.56c 65.53 ± 0.55kl 73.49 ± 0.42gh 47.97 ± 0.33hi 55.23 ± 0.33f 37.03 ± 0.31i 45.14 ± 0.58gh

Pakistan-2013 103.33 ± 0.86 k 150.27 ± 0.35de 63.49 ± 0.49lmn 68.88 ± 0.51ij 48.21 ± 0.30 h 55.35 ± 0.33f 36.71 ± 0.28jk 43.06 ± 0.32i

NARC-2011 96.36 ± 0.49mn 155.55 ± 0.47b 61.68 ± 0.46mn 75.51 ± 0.50efg 47.13 ± 0.37 hi 53.55 ± 0.40 g 36.57 ± 0.13jk 43.02 ± 0.50i

Miraj-08 107.61 ± 0.25j 149.13 ± 0.16ef 61.36 ± 0.34n 66.59 ± 0.54ik 38.69 ± 0.40 k 45.43 ± 0.79j 36.33 ± 0.32jk 42.01 ± 0.16i

Lasani-08 109.02 ± 0.32i 164.96 ± 0.50a 62.30 ± 0.55mn 68.59 ± 0.88ij 38.65 ± 0.53 k 46.77 ± 0.67i 36.26 ± 0.20jk 41.91 ± 0.17i

Ujala-16 107. 55 ± 0.37j 164.91 ± 0.53a 58.92 ± 0.50o 64.03 ± 0.54 lm 38.91 ± 0.27 k 44.97 ± 0.53j 35.58 ± 0.53 k 42.06 ± 0.17i

LSD 0.90 0.34 0.77 1.03

Treatment: without Fe application and with Fe application at a rate of 20 kg ha−1.

identify the root characteristics responsible for high Fe content in 
wheat grain to mitigate Fe malnutrition in developing countries 
where wheat is used as a staple food.

Often, breeding is carried out considering the grain yield trait, 
which is a late-stage and multifaceted trait influenced by a number 
of factors, including root system architecture (RSA). Roots’s vigor at 

FIGURE 5

Effect of Fe application on grain Fe concentration: (A) Fe concentration in grain (B) Phytate concentration in grain. The value in the column shows the 
mean of three replications, the filled column denotes without Fe application, and the unfilled column denotes with Fe application. The bars show the 
standard error, and column not sharing letters are significantly different at p  <  0.05. LSD value. Grain Fe: 0.65, phytate: 0.02.
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an early growth stage can be useful for screening efficient genotypes 
for future breeding programs (Kiran et al., 2019). Bontpart et al. 
(2020) stated that phenotypic analysis of RSA can assess the soil 
resources acquired by the roots.

Most of the varieties with higher grain Fe content were found to 
produce vigorous root systems, and several varieties with lower grain 
Fe content formed weaker root systems. According to Oliveira et al. 
(2018), Fe accumulation in grain is affected by the uptake potential 
of root system architecture. However, some varieties with low grain 
Fe concentration developed long roots and vice versa. Low grain Fe 
concentration may develop long roots because root growth is 
stimulated at low rhizospheric Fe concentration to struggle for Fe 
acquisition (Giehl and Lima, 2012). A high grain Fe concentration 
producing a weaker root system might be  due to metabolic 
reprogramming for the uptake of Fe by making phenotypic changes 
in roots, as elaborated by Yan et al. (2020). Plants absorb or restrict 
Fe acquisition by modifying their RSA (Brumbarova et al., 2015). 
Moreover, Fe transporters IRTI are also stimulated in roots under 
Fe-deficient conditions in order to regulate Fe homeostasis (Zhang 
et al., 2019). It reveals an excellent genotypic variation considering 
RSA and grain Fe content (Liu et al., 2021).

Diversification of RSA is necessary for plants to adapt to the 
complex rhizosphere (Kiran et al., 2019). Furthermore, it has been 
observed that varieties with smaller root lengths produce a greater 
number of lateral roots compared to varieties with larger root lengths. 
The unavailability of Fe triggers plants to produce more lateral roots 
in order to acquire the optimum quantity of Fe for growth (Zhang 
et  al., 2019). However, it can be  influenced by genotype and soil 
environment (Hodgkinson et al., 2017). Root system architecture 
index (RSAIN) considering all the RSA attributes showed a 
correlation with grain Fe concentration (Figure 2). In this study, the 
principal component analysis (PCA) shown in Figure 3 revealed that 
screening at the initial seedling stage by an association of grain Fe 
concentration and root system architecture can be a way forward for 
the selection of wheat varieties. Amongst the 15% of wheat varieties 
with vigorous root system architecture, 40% of varieties showed high 
grain Fe concentration. Out of the 85% of varieties with weaker root 
system architecture, 92% of varieties exhibited low grain 
Fe concentration.

Among the 12 varieties categorized by PCA, Dharabi-11 and 
Faisalabad-08 have Pastor-97 as a common ancestor in parentage, 
which also has a high grain Fe content, although grain Fe has been 

FIGURE 6

Uptake and translocation of Fe by various wheat varieties grown in conditions with soil application of Fe in the pot experiment. Fe application 
at a rate of 20  kg  ha−1. Fe uptake and translocation are displayed on the clustered stacked column chart, giving a visual comparison of Fe 
content from root to grains, where the numeric value in individual stacks represents the Fe percentage in the respective plant part. Numeric 
values on the Y axis represent total Fe uptake by the plant. (A) Uptake and translocation of Fe by various wheat varieties grown in conditions 
with soil application of Fe in the pot experiment (B) uptake and translocation of Fe by various wheat varieties grown in conditions without soil 
application of Fe in the pot experiment.
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found to decline in modern varieties by 0.06 mg kg−1 year−1 (Shaukat 
et al., 2021). Dharabi-11 and Faisalabad 2008 are also drought- and 
disease-resistant, high-yielding varieties with longer roots (Hussain 
et  al., 2009; Tariq et  al., 2013). The variation in Fe uptake can 
be attributed to the variation in plant requirements and utilization 
because high Fe concentration in the root, shoot, husk, and grains led 
to a higher root, shoot, husk, and grain dry weight. Produce yield and 
quality can be improved by the application of micronutrient fertilizers 
(Kiran et al., 2022). Moreover, grain Fe concentration was enhanced 

under Fe-sufficient conditions compared to Fe-deficient conditions, 
as also documented in previous studies (Kiran et  al., 2021). This 
indicates that soil Fe content has an ultimate impact on grain Fe 
concentration in wheat regardless of genetic variation, which endorses 
that the application of Fe fertilizer to soil is a successful strategy to 
biofortify wheat grain with Fe (Wakeel et al., 2018).

Higher grain weight exhibited higher grain Fe concentrations, 
while wheat varieties with lower grain weight showed lower 
concentrations of Fe, with some varieties showing deviation from this 

FIGURE 7

Effect of Fe application on physiological parameters of various varieties of wheat in pot conditions. PAR, photosynthetically active radiation [PAR 
(μmol  m−1  s−1)]; YII, effective quantum yield photosystem II; ETR, electron transport rate [ETR (umole−2 s−1)]; FT, fluorescent transient; Treatment, without 
Fe application (C) and with Fe application (T) at a rate of 20  kg  ha−1.

PHOTO 2

Localization of Fe in wheat grain (A) whole stained grain (B) cross-section of stained grain, where the stained aleurone layer represents the existence of Fe in 
aleurone.
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trend (Figures 4, 5), as observed in another study (Kiran et al., 2021). 
This may be  due to the genotype influence and environmental 
conditions that make phytoavailable mineral content in wheat (Ishfaq 
et al., 2021). Conferring to another study, membrane transporters 
regulate the uptake and translocation of Fe. Under nutrient constraints 
inside plants, the consequence of signal conduction and regulation of 
H+-ATPase facilitated H+ efflux from root to soil takes place. The H+ 
efflux-induced acidification of the rhizosphere reduces ferric to 
ferrous ions, and Fe is transported inside the root cells through IRT 
transporters. Therefore, RSA variation in wheat varieties has an 
indirect effect on Fe uptake through H+ release from the roots (Conte 
and Walker, 2011; Zhang et al., 2019). Other factors include the release 
of phytosidrophores that chelate with Fe3+ and cross the root cell 
membrane via transporters (Rehman et  al., 2021). Furthermore, 
enzymes nicotianaminsynthase (NAS) and nicotianamintranferase 
(NAAT) are involved in the translocation of Fe. The terminal 
destination of Fe translocation is considered the seed, where Fe is 
stored to be used for germination. Iron is sequestered in a seed vacuole 
in the form of ferritin (Fe storage proteins) via vacuolar iron 
transporters (Connorton et al., 2017; He et al., 2020).

The variable responses of the varieties, despite an equivalent 
dose of Fe being applied, may be due to the presence of different 
phytate contents in grain, which influences the Fe concentration 
of grain. Wheat varieties with higher grain Fe concentration 
exhibited lower phytate content. In the current study, Dharbi-11 
exhibited the highest grain Fe concentration, extensive RSA, and 
lowest phytate content whereas, Ujala-16 showed the lowest grain 
Fe concentration, weaker RSA, and the highest phytate content 
(Figure  6). Since phytate is a captivating inhibitor of Fe, it 
decreases the bioavailability of Fe (Bilgrami et  al., 2018). 
Similarly, Fe was localized in the aleurone layer and embryonic 
region (Photo 2), as was evident in the previous research 
conducted by Kiran et al. (2021).

It has also been observed that variations exist in grain yield among 
different varieties with the same concentration of Fe. It was found that 
an increase in chlorophyll content, photosynthetically active radiation 
absorption, and photosynthetic yield of photosystem II were supportive 
for enhanced yield. Photosynthetic efficiency enhances the yield 
potential of cereal crops since photosynthetic apparatus to light is also 
genotype-dependent (Yousef et al., 2022). Therefore, Fe fertigation 
alone does not provide an adequate solution to the problem of Fe 
deficiency in wheat; instead, the selection and cultivation of Fe-efficient 
wheat cultivars is the appropriate practice to cope with this matter 
(Wakeel et al., 2018). This work will be helpful for the selection of 
wheat varieties to develop Fe-biofortified wheat varieties with efficient 
Fe uptake and grain Fe content.

5. Conclusion

The current study has revealed that genetic variability in root 
system architecture (RSA) exists in wheat varieties cultivated in 
Pakistan during the last 40 years. The existence of a large genetic pool 
for grain Fe and RSA content in the pedigree was also observed in 
ancestors from which high grain Fe decendents arose. Although Fe 
transport systems are also variable in different varieties, as mentioned 
in previous studies, the impact of variable RSA is also obvious. 
Nevertheless, a vigorous root architecture system is not always 

efficient for Fe uptake. Approximately 77% of varieties showed 
weaker RSA and lower grain Fe content, indicating that a vigorous 
root system is significant in enhancing Fe uptake. Furthermore, it is 
also clear that vigorous RSA has not only increased shoot Fe 
concentration but also grain Fe content, and it has also improved 
yield as 90% of varieties with extensive RSA gave better yield. Based 
on the RSA study, the varieties Dharabi-11, Punjab-11, and 
Faisalabad-08 are identified as having the potential for Fe 
biofortification as well as high grain yield and can be used for further 
molecular studies to identify the genes responsible for it without 
jeoperdizing of yield and can be included in both conventional and 
molecular marker-based breeding programs.
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