
I. Introduction

Human-robot interaction has become a focus of 
research during the last two decades. Along with the 
development of social necessity, the interaction between 
Humans and Robots has also widened, such as in guide 
robot application [1]–[4], companion robot application 
[5], and the person following robot application [6]. The 
development of robot behavior previously only considered 
aspects of safety and efficiency. With the increase in robot 
development, many human activities can be helped by 
robots. Moreover, the user of robots is also increasing, 
not limited to expert people only, but also people who 
do not know much about robot technology. Due to those 
conditions, the robot behavior must also consider aspects of 
comfort on the side of humans interacting with them.  The 
behavior of robots that consider social aspects is necessary 
to help the interaction between humans and robots that 
potentially pose a threat. Comfort is a psychological 
aspect for humans means that there is no feeling of being 
intimidated or threatened by something and having enough 
space to do activities as if nothing is interfering with their 
activities. Thanks to Hall [7] for doing an excellent job of 
approaching by dividing proxemic areas around humans, 
taking into account social interaction spaces and norms. 
This approach has also been implemented with many 
robot applications [6], [8]. The robot navigation method 
uses this divided proxemics approach, called Social Force 

Model (SFM) [9]. 
In the previous research [10], [11], the application of 

the SFM to a Differential Drive Mobile Robot (DDMR) 
was implemented. In that research, the social force model 
has been improved by implementing Q-Learning, called 
Q-learning based Social Force Guiding Model (QL-
SFGM). Q-learning works by defining the robot as an 
agent and some parameters such as state, actions, state-
transition, and reward. The problem is that data from the 
environment of the DDMR is continuous data, and the data 
required by the Q-learning is discrete. So, the data require 
to be sampled discretely. This approach requires many 
definitions of Q-learning parameters, state-action pairs, 
and consumes a high manual process resource. Another 
research is to improve the SFM using a Fuzzy Inference 
System (FIS) [12]. This research uses FIS to update 
parameters in SFM to give an adaptive behavior called the 
Fuzzy Social Force Model (FSFM). The parameter updated 
by FIS here is the gain of obstacle repulsive force. The 
input of the FIS is the obstacle distance and the obstacle 
coming angle. This research focuses on the control of an 
omnidirectional soccer mobile robot. The algorithm has 
been tested on 3D simulation software named V-REP 
using an omnidirectional robot model from Robotino. The 
result from the test shows that FSFM can work very well 
and achieve the goal by minimizing collision with other 
obstacles.

In this research, we implemented FIS to replace 
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Q-learning and adopt adaptive behavior on DDMR. The 
drawback of FIS is a subjective element when defining 
the rule base. We cannot objectively know whether or 
not the defined rule base has been defined very well. To 
objectively define the FIS rule base, we use a Genetic 
Algorithm (GA) as the optimizer to generate the rule base 
for FIS. In a research done by Guo [13], he proved that 
GA could improve the performance of his fuzzy controller 
by updating its rule base. This research is tested on the 
simulation software CoppeliaSim (formerly V-REP). The 
experiment shows that GA has improved with the result of 
the movement of the DDMR.

The rest of this paper is structured as follows. Section 
II contains a brief description of SFM and Section III 
explains the design of the system and the approach 
method. The experiment setup, result, and discussion are 
included in Section IV. In Section V, we wrap up this study 
with conclusions.

II. Literature Review

In 1995, Helbing and Molnar [9] first introduced the 
SFM for modeling pedestrian dynamics. This model 
works by representing how humans interact and navigate 
with each other in a shared workspace as shown in Figure 
1. The robot must be modeled as an object receiving force 
in Newton’s law to implement the social force model. The 
first is goal force (Fg), calculated by multiplying its mass 
and acceleration. Assume the acceleration is the difference 
between current speed (v0) and target speed (v), so the goal 
force equation can be written as the follows [9]:
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The second force is the repulsive force (Fr) of an object. 
Repulsive force (Fr) can be modeled on two characteristics 
of force gain: social force (fsoc) and physical force (fphy) 
than can be expressed as follows [9]:
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where k is linear gain of the force, ri is the radius of the 
robot to starting response, di is the distance between the 
robot with the obstacle, σ is the impact range of the force, 
and  (


le  ) is the vector direction of the working force. And 

then, the navigation force (Fnav) is obtained by summing 
the goal force Fg and the repulsive force Fr. The navigation 
force (Fnav) can be written as follows [9]:
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The determination of the SFM parameters is crucial. 
Each parameter has its impact on the result response 
of the robot behavior. For example, for the gain of the 
repulsive force (k), it is better to set it by a high value 

if the environment where the robot run is wide enough. 
However, if the environment is narrow and the gain of 
repulsive force (k) is too high, the robot response will 
bounce toward the obstacle. It becomes a problem when 
the robot works in various conditions of the environment. 
So, an ability to update its parameters is required to make 
the SFM can work in various types of environments. Then, 
the FSFM will be employed in this research.

III. Method

A. Fuzzy Social Force Model

The FSFM uses FIS as the adaptive controller of the SFM 
parameter controller. There are three steps to employing 
the FIS, first is fuzzification which converts a crisp value 
into fuzzy data. In this work, the fuzzification converts two 
inputs: the obstacle distance (d) and the obstacle coming 
angle (α). This process utilizes a triangular membership 
function since the system requires a proportional ratio of 
the input-output relation. The membership degree can be 
calculated as follows: 
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where  is the degree of the membership function,  is the 
crisp input, and a, b, and c  represent the membership 
function's left, center, and right boundaries, respectively. 

Figures 2 and Figure 3 illustrate how the membership 
function of each input is divided. The relative distance, 
as shown in Figure 4, is separated into four sections to 
correspond to the proxemic distance suggested by Hall 
in [7], namely intimate, personal, social, and public. 
However, since the robot does not respond to the existence 
of an obstacle in public distance, then we ignored the 
public distance in our system. Our decision to ignore 
the public distance part is to simplify the computation. 
Additionally, the obstacle coming angle, as shown in 
Figure 5, is separated into three parts, front, side-front, 

Figure 1. The forces that work within the SFM framework [10]
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and side, to simplify the computation further. Since we 
have two inputs, obstacle distance (d) and obstacle angle of 
approach (α), the inference value can be determined using 
the following formula.
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where B denotes the T-Norms between µ
d
m  and 

αµm . Thus, 
M-memberships exist for obstacle distance (d) and obstacle 
coming angle (α), for a whole of F=M2 dimensions for 
which a fuzzy rule R must be determined. We defined our 
fuzzy rule, R={r1, r2, r3, r4, r5, r6; r7, r8, r9}. The design of 
the fuzzy rule is shown in Table 1.

Furthermore, the last step is defuzzification, which 
converts the inference system's fuzzy output into a crisp 
value using the Center of Area (CoA) equation as follows 
[14]:
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where N is the number of the inference B as well as the 
number of R, where k is the gain value of the obstacle's 
force.

B. Genetic Algorithm Fuzzy Social Force Model

Determining a fuzzy rule base leads to the designer's 
subjectivity. So, it is hard to know whether it is already 
the most suitable rule base solution or not. The GA is an 
optimization algorithm developed by John Holland and his 
colleagues in response to Charles Darwin's evolutionary 
theory [15]. Natural selection and genetics provide the 
basis of GA. Previous results reinforce this creative use of 
random search to lead the search to an area of the solution 
space with superior performance. GA replicates the process 
of natural selection, demonstrating that a species able to 
adapt to environmental changes will live and reproduce to 
produce the next generation. GA, in plain terms, exemplifies 
"Survival of the Fittest" among problem-solving humans 
from consecutive generations. Each generation consists of 
population of individuals, each having a point in the search 
space, and the solution is executed. Each individual can 
be represented as a string of characters, integers, floats, 
or bits values. Chromosomes are the names given to these 
sequences.

In this research, we defined the fuzzy rule as the 
chromosome of an individual. First, some random 
individuals are initialized with a value of chromosomes 
chosen randomly. Then each will be judged by the fitness 
function. The system will run the simulated FSFM enforced 
robot in a defined simulated environment and accumulate 
the total time taken and heading error rate. The fitness 
function can be obtained by using the equation as follows:

Figure 2. Membership function of obstacle distance input (d)

Figure 3. Membership function of obstacle coming angle input (α)

Figure 4. The proxemic distances proposed by Hall [7]

Table 1. The design of the fuzzy rule

R Obstacle distance (d)

Intimate Personal Social

Obstacle 
coming angle 

(γ)

Front r1 r2 r3

Side-front r4 r5 r6

Side r7 r8 r9

Figure 5. The division of relative direction of the obstacle
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where fflt is the fitness function, I is the total process 
iteration of the current fitness function calculation,  is the 
time taken for one process iteration, and γi is the heading 
error of the root toward the goal direction. 

The next step is crossover and mutation. Crossover is 
a process for determining a new solution represented by 
an individual. In this work, we use a uniform crossover, 
which randomly chooses some chromosomes of two 
individuals to be mixed to get a new individual. Then the 
uniform mutation is the process of getting a new value of 
chromosomes by randomizing some of its chromosomes. 
The algorithm is shown in the Pseudocode 1.

C. Simulation

The GA is an iterative training algorithm with certain 
number of individuals. To deal with GA, our robot must 
be run under certain conditions many times to find the best 
individual as the solution. This is not possible if done using 
a real robot due to power supply problems. In addition, we 
also argue that in carrying out iterative learning, we must 
also ensure that the possibility of robot damage or robots 
injuring humans can be avoided. Therefore, to deal with 
those requirements, we used simulation software. There 
are many simulations software available nowadays, from 
advanced featured software to simple featured software, 
which provides features like physical engine, body 3D 
object modeling, scripting, and animation rendering. 
A thorough breakdown of robot simulation software is 
provided in [16]. 

A flexible simulation framework with an integrated 
development environment, CoppeliaSim or previously 

known as V-REP comes with a large library of models and 
sample scripts for working mobile and fixed robots. It is 
employed in the creation of algorithms, the simulation of 
factory automation, remote monitoring, and instruction. 
The usage of embedded scripts, which may be attached to 
specific objects in the scene like bodies, joints, or sensors 
[17], is the key distinguishing characteristic. This feature 
makes it easier to simulate a robot's behavior, as will be 
shown in the next sections. Another benefit is the ability to 
communicate with other clients (such as Python, Matlab, 
ROS, or IoT apps), which enables a seamless transition to 
actual hardware.

Because the object of the optimization is DDMR, there 
is also another advantage to using CoppeliaSim, which is 
there is an already defined PioneerP3DX robot that can be 
used as shown in Figure 6. Besides the defined robot, we 
also defined a simulated environment which can be called a 
scene in CoppeliaSim. The simulation environment can be 
seen in Figure 7. Our basis for determining the simulation 
environment model is that the shape of the environment 
is sufficiently representative of the complexity of the 
environment where the indoor environment with winding 
shapes, walls, and many other objects is more difficult 
for the robot to navigate. So, we hope the results can 
be generalized to any condition. The process of GA 
optimization and testing has been done in a computer.

IV. Results and Discussion

In our experiments, we used a desktop PC equipped 
with specification as follows. CPU Intel Core i7 with 3.6 
GHz x 8, 4 GB of RAM, Linux Ubuntu 20.04, python, 
C++, and ROS Noetic. For the simulation hardware, we 
use a PioneerP3DX robot equipped with Hokuyo Lidar. 
We also defined a simulation environment in CoppeliaSim 
as shown in Figure 7. The GA training is set to 500 
iterations with a population consists of 20 individuals. 
The enhancement of the fitness value during the training 

Pseudocode 1. Genetic Algorithm

Input: Number of Fuzzy Rule, C

Number of Population, N

Number of Iteration, Iter

Output: Optimized Solution for Fuzzy Rule

Initialization: Generate N sets of Fuzzy Rule

Rn= {R1,R2,…,RC}, n = {1, 2, …, N}

Begin

1. for i = 1 to Iter step 1 do

2. Evaluation: sorting the population by Fitness value using eq. (8), 
from         lowest to highest

3. Reproduction: R1← R with lowest fitness value, R2←R which 
randomly chosen from the population

4. Crossover between R1 and R2

5. New composition population Rn is formed and replaced two of the 
2 worst solutions in the population

6. Mutation one of randomly chosen from the population

7. end for

8. The most optimized fuzzy rule solution R is obtained after Iter 
step

Figure 6. Defined PioneerP3DX in the CoppeliaSim

Figure 7. Defined simulated environment in the CoppeliaSim
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process is shown in Figures 8. Furthermore, Figure 9 shows 
the movement trajectories of the robot during training.

From the graph shown in Figure 8, the GA has proved 
that it can optimize the value of its movement efficiency by 
calculating the time taken and the error heading rate as the 
fitness function. The fitness value has already been steady 
on around 100 iterations. The result of the optimized rule 
base can be seen in Table 2. As the comparison, we also 
test the FSFM algorithm without the GA optimization, so 
the rule base of the fuzzy is tuned manually using human 
intuitive as shown in Table 3.

As we see in Table 2, the rule shows that the value 
around Front area has the largest value, followed by Side-
Front area, and then the one which has smallest value is 
around Side area. In the Front area, the closer our robot 
to the obstacle, the greater the rule value obtained. But, 
in around Side area, the rule value has the opposite 
characteristic. The closer to the obstacle, the smaller the 
rule value obtained. This anomaly happens because, during 
the training process in the defined simulation environment, 
not all rule base conditions occur with the same frequency. 
So, some rule base values affect the result of the robot's 
movement. However, some are not giving effect too much.

We also tested both the optimized rule base and the 
manually tuned rule base in the same environment. 
The result shows that GA optimization has improved 
the performance of the FSFM by minimizing the robot 

error heading toward the goal direction. The comparison 
data between our optimized FSFM and the manually 
tuned FSFM is shown in Table 4. It can be seen that the 
optimized version achieves better results by providing 
faster result in arriving at the goal position and a smaller 
number of heading bounces during completing the task. 
Furthermore, the comparison of the trajectory is shown in 
Figure 10. The purple line indicates the robot trajectory 
with manual defined value. The green line indicates the 
robot trajectory when implementing our algorithm. From 
Figure 10, the trajectory of optimized version is smoother 
than the manual version. However, both versions can reach 
the goal safely.

V. Conclusion

We have developed an adaptive control strategy for the 
SFM gain parameter value, k, since it greatly affects the 
repulsive forces of the SFM. Controlling this parameter 
will significantly affect to the robot’s behaviour. We used 
FIS to dynamically change the gain parameter value, 
where its rule was optimized using GA. We proved the 
performance of our proposed algorithm using a simulation 
that was conducted using the CoppeliaSim for DDMR. 
The controller successfully drove the DDMR pass through 
the obstacles in a simulated environment toward its goal. 
We compared the manually tuned fuzzy rule values and 
the optimized fuzzy rule values by the GA. Two factors 
were evaluated to see the algorithm’s performances, 
namely time needed for the robot to reach the goal and 
the robot’s heading deviation to evaluate the robot’s 
behaviour. As the results, the proposed FSFM with the GA 
optimization outperforms the manually tuned FSFM by 
achieving 1.6 seconds faster to run the robot from start to 
goal, and the robot heading has reduced by about 5.3°. The 
implementation of our algorithm to the real robot will be 
our focus for the next plan.

Figure 8. The enhancement of the fitness value during 500 iterations

Table 2. The optimized value of the fuzzy rule

R
Obstacle distance (d)

Intimate Personal Social

Obstacle 
coming angle 

(γ)

Front 393 301 164

Side-front 52 199 64

Side 7 13 60

Table 3. The manual defined value of the fuzzy rule

R
Obstacle distance (d)

Intimate Personal Social

Obstacle 
coming angle 

(γ)

Front 300 250 150

Side-front 200 150 125

Side 40 20 10

Figure 10. The comparison between manual defined value of the rule 
base and our proposed algorithm

Table 4. Comparison table of optimized and manually tuned rule base

Parameters Optimized rule Manually tuned

Time taken (s) 39.3411 40.9209

Mean square error of the 
heading (o)

52.9577 58.2952
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