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Background: Attenuation correction (AC) is an important correction method to

improve the quantification accuracy of dopamine transporter (DAT) single photon

emission computed tomography (SPECT). Chang’s method was developed for AC

(Chang-AC) when CT-based AC was not available, assuming uniform attenuation

coe�cients inside the body contour. This study aims to evaluate Chang-AC and

di�erent deep learning (DL)-based AC approaches on 99mTc-TRODAT-1 brain

SPECT using clinical patient data on two di�erent scanners.

Methods: Two hundred and sixty patients who underwent 99mTc-TRODAT-1

SPECT/CT scans from two di�erent scanners (scanner A and scanner B) were

retrospectively recruited. The ordered-subset expectation-maximization (OS-EM)

method reconstructed 120 projections with dual-energy scatter correction, with

or without CT-AC. We implemented a 3D conditional generative adversarial

network (cGAN) for the indirect deep learning-based attenuation correction (DL-

ACµ) and direct deep learning-based attenuation correction (DL-AC) methods,

estimating attenuation maps (µ-maps) and attenuation-corrected SPECT images

from non-attenuation-corrected (NAC) SPECT, respectively. We further applied

cross-scanner training (cross-scanner indirect deep learning-based attenuation

correction [cull-ACµ] and cross-scanner direct deep learning-based attenuation

correction [call-AC]) and merged the datasets from two scanners for ensemble

training (ensemble indirect deep learning-based attenuation correction [eDL-ACµ]

and ensemble direct deep learning-based attenuation correction [eDL-AC]). The

estimated µ-maps from (c/e)DL-ACµ were then used in reconstruction for AC

purposes. Chang’s method was also implemented for comparison. Normalized

mean square error (NMSE), structural similarity index (SSIM), specific uptake ratio

(SUR), and asymmetry index (%ASI) of the striatum were calculated for di�erent

AC methods.

Results: The NMSE for Chang’s method, DL-ACµ, DL-AC, cDL-ACµ, cDL-AC,

eDL-ACµ, and eDL-AC is 0.0406 ± 0.0445, 0.0059 ± 0.0035, 0.0099 ± 0.0066,

0.0253 ± 0.0102, 0.0369 ± 0.0124, 0.0098 ± 0.0035, and 0.0162 ± 0.0118 for

scanner A and 0.0579 ± 0.0146, 0.0055 ± 0.0034, 0.0063 ± 0.0028, 0.0235 ±

0.0085, 0.0349 ± 0.0086, 0.0115 ± 0.0062, and 0.0117 ± 0.0038 for scanner B,

respectively. The SUR and %ASI results for DL-ACµ are closer to CT-AC, Followed

by DL-AC, eDL-ACµ, cDL-ACµ, cDL-AC, eDL-AC, Chang’s method, and NAC.
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Conclusion: All DL-based AC methods are superior to Chang-AC. DL-ACµ is

superior to DL-AC. Scanner-specific training is superior to cross-scanner and

ensemble training. DL-based AC methods are feasible and robust for 99mTc-

TRODAT-1 brain SPECT.

KEYWORDS

deep learning, generative adversarial network, attenuation correction, dopamine

transporter SPECT, 99mTc-TRODAT-1

Introduction

Dopamine transporter (DAT) single photon emission

computed tomography (SPECT) is well established and

widely used for Parkinson’s disease (PD) diagnosis. The

current PD diagnosis from DAT SPECT is mainly based on

the visual assessment of the decreased striatal uptakes and

the asymmetry of left and right striatum uptake for indirect

measurement of DAT decrement (1). Iodine 123-radiolabeled 2β-

carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane

(123I-FP-CIT) (2) and 99mTc-[2[[2-[[[3-(4-chlorophenyl)-8-

methyl-8-azabicyclo[3,2,1]-oct-2-yl]-methyl](2-mercaptoethyl)

amino]ethyl]amino]ethane-thiolato(3-)-N2,N2′,S2,S2]oxo-[1R-

(exo-exo)])) (99mTc-TRODAT-1) (3) are two common tracers

for DAT SPECT, with the former more common in Western

countries and the latter more common in Asia. 123I-FP-CIT

is a European Medicines Agency (EMA) and U.S. Food and

Drug Administration (FDA)-approved tracer to differentiate

PD from essential tremor. Compared to 123I-FP-CIT, 99mTc-

TRODAT-1 has a lower binding ratio of the striatum, lower

thyroid uptake, and can be produced at a lower cost without a

cyclotron. Though the clinical utility of CT-based attenuation

correction (AC) (4) is controversial in 123I-FP-CIT SPECT (5),

CT-based AC has been proven to improve SPECT image quality

and quantification accuracy in DAT SPECT (6, 7). In hybrid

SPECT/CT systems, CT scans can be used as attenuation maps

Abbreviations: SPECT, single photon emission computed

tomography; DAT, dopamine transporter; 123I-FP-CIT, Iodine

123-radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-

fluoropropyl) nortropane; 99mTc-TRODAT-1, 99mTc-[2[[2-[[[3-(4-

chlorophenyl)-8-methyl-8-azabicyclo[3,2,1]-oct-2-yl]-methyl](2-

mercaptoethyl)amino]ethyl]amino]ethane-thiolato(3-)-N2,N2′,S2,S2]oxo-

[1R-(exoexo)]); AC, attenuation correction; µ-map, attenuation map; DL,

deep learning; cGAN, conditional generative adversarial network; CNN,

convolutional neural networks; OS-EM, ordered-subset expectation-

maximization; DL-ACµ, indirect deep learning-based attenuation correction;

DL-AC, direct deep learning-based attenuation correction; cDL-ACµ, cross-

scanner indirect deep learning-based attenuation correction; cDL-AC,

cross-scanner direct deep learning-based attenuation correction; eDL-ACµ,

ensemble indirect deep learning-based attenuation correction; eDL-AC,

ensemble direct deep learning-based attenuation correction; NMSE,

normalized mean square error; SSIM, structural similarity index; SUR, specific

uptake ratio; %ASI, asymmetry index.

(µ-maps) for AC in brain SPECT reconstructions. However, many

existing SPECT-only systems or recently proposed dedicated

brain SPECT images (8) are not integrated with CT scanners.

In addition, the extra CT radiation dose in SPECT/CT poses

substantial health concerns (9) and is not routinely performed

in some centers. Potential mismatches between SPECT and CT

images due to the involuntary and voluntary movements of

PD patients can also degrade AC performance (10, 11). CT-

less AC is thus of significant research and clinical impact for

DAT SPECT.

Chang’s AC method is a conventional CT-less AC method

for brain SPECT that assumes a uniform attenuation coefficient

for the volume of interest (VOI) (12). However, the assumption

of a uniform µ-map would introduce estimation errors to

AC, especially for bones. Deep learning (DL) methods recently

emerged as a promising alternative for SPECT AC (13).

Shi et al. (14) and Yang et al. (15) first performed DL-

based AC on SPECT. Shi et al. (14) generated µ-maps from

non-attenuation-corrected (NAC) SPECT images (indirect deep

learning-based attenuation correction [DL-ACµ]) using a 3D

conditional generative adversarial network (cGAN) for myocardial

perfusion (MP) SPECT. Yang et al. (15) and Chen et al. (16)

estimated AC MP SPECT images directly from NAC MP SPECT

images (direct deep learning-based attenuation correction [DL-

AC]) using different deep convolutional neural networks. Chen

et al. (17) and Du et al. (18) compared the AC performance of DL-

AC and DL-ACµ and demonstrated that indirect estimation of µ-

maps is superior to direct estimation of AC SPECT on MP SPECT.

Chen et al. (19) further investigated the feasibility of transfer

learning-based AC for MP SPECT images from different scanners,

tracers, and acquisition protocols. For brain SPECT, Sakaguchi

et al. (20) developed a 2D convolutional neural networks (CNN)-

based autoencoder for the direct generation of AC from NAC

images for brain perfusion SPECT. Murata et al. (21) compared

Chang’s AC with a 2D autoencoder and U-Net for DL-AC for brain

perfusion SPECT. Chen et al. have proposed CNN-based µ-map

generation for brain perfusion SPECT (22) and 123I-FP-CIT SPECT

(23) using NAC SPECT input in simulations, demonstrating

improved absolute quantification accuracy. A diagram explaining

DL-ACµ and DL-AC is shown in Figure 1. In this study, we

implemented a conventional first-order Chang’s method and a 3D

cGAN for DL-AC and DL-ACµ, respectively. We then compared

their performance for 99mTc-TRODAT-1 brain SPECT based on

clinical data from two scanners in a single center with different

acquisition protocols, field-of-view, and voxel sizes.
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FIGURE 1

Diagram of DL-ACµ (indirect) and DL-AC (direct) methods.

TABLE 1 Demographic information for the patient study.

Scanner A Scanner B

Dataset Training+

validation

Testing Training+

validation

Testing

Patient

number

100 30 100 30

Age

(years)

72.74± 13.14

(range: 29 to

98)

71.17± 10.28

(range: 49 to

88)

70.88± 9.84

(range: 35 to

87)

72.20± 7.85

(range: 55 to

85)

p-value 0.56 0.50

Sex 50 male /50

female

18 male/12

female

55 male/45

female

14 male/16

female

p-value 0.067 0.096

Materials and methods

Clinical dataset

Two hundred and sixty anonymized patients (Table 1) who

underwent 99mTc-TRODAT-1 scan in two widely used clinical

SPECT/CT systems (Infinia Hawkeye, GE Healthcare, Wauwatosa,

WI, USA; Symbia, Siemens Healthineers, Erlangen, Germany)

from two affiliated centers were retrospectively recruited under the

local ethics approval (SCMH_IRB No: 1110704). Unpaired t-test

on age and χ2 test on gender showed no significant difference

between the training-validation dataset and the testing dataset

(all ps>0.05). The acquisition protocols of the two scanners are

shown in Table 2. CT was acquired for SPECT AC after the SPECT

scan. The CT was manually registered to SPECT by the scanner

software and converted to the µ-map using a bilinear model (4).

No mismatches were observed between the CT and SPECT images

in this study.

SPECT projections were reconstructed with dual-energy

window scatter correction (24), with or without CT-based AC.

The SPECT images with a matrix size of 64 × 64 × 64 and a

TABLE 2 Acquisition protocols for the patient study.

Scanner A Scanner B

Hospital Chang Bing Show

Chwan Memorial

Hospital

Show Chwan Memorial

Hospital

Model GE Infinia Hawkeye SIEMENS Symbia

Injection activity 1,110 MBq 925 MBq

Acquisition time (s/view) 60 45

Collimator type LEHR

Primary/scatter window

(keV)

126 to 154/114 to 126 126 to 154/109 to 126

Projection number 120 over 360◦ 90 over 360◦ 31, 120 over

360◦ (99)

Reconstruction OS-EM; 8 iterations× 4 subsets

Dual-energy window scatter correction,

with or without attenuation correction

Post-reconstruction filter 3D Gaussian filter 3D Gaussian filter

σ = 0.8 voxels σ = 1.2 voxels

Matrix/voxel size (mm) 64× 64× 64/4.4181

(30);

128× 128× 128/2.761

(100)

128× 128× 128/2.6970

CT scan 4-slice, 2.5 mAs, 2-slice, 10 mAs,

140 kVp, 1.9 pitch, 130 kVp, 1.5 pitch,

5mm thickness 3mm thickness

voxel size of 0.4418 cm/voxel from scanner A were resampled

to a matrix size of 128 × 128 × 128 and a voxel size of

0.2761 cm/voxel. We implemented the first-order Chang’s method

for conventional CT-less AC in brain SPECT. The uniform µ-

maps were based on the NAC SPECT brain mask. An intensity

threshold of 2 was used to separate the brain from the background.

The masks were applied with uniform attenuation coefficients
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of 0.148 cm−1 (25). The 0.148 cm−1 attenuation coefficients

were then converted to 0.0408 voxel−1 for scanner A and

0.0399 voxel−1 for scanner B by multiplying with a voxel size

of 0.2761 cm/voxel and 0.2697 cm/voxel to get the Chang’s

method µ-maps, which were used in reconstruction for Chang-

AC.

Conditional generative adversarial network

We implemented a 3D cGAN (18, 26) using Tensorflow on

an NVIDIA GeForce RTX 3090 GPU with 24 GB RAM. An

Adam optimizer was applied using an adaptive learning rate

with an initial value of 0.001 and trained for up to 400 epochs.

For our cGAN (Figure 2), a U-Net-based generator is trained to

generate a realistic µ-map or AC SPECT, while a CNN-based

discriminator is trained to differentiate between the true µ-map

and the generated µ-map or between the true AC SPECT and

the generated AC SPECT. The U-Net-based generator consists of

encoder, bottleneck, and decoder layers. Each layer contains a 3

× 3 × 3 convolution, a batch normalization, and a leaky rectified

linear unit (LeakyReLU). For encoder layers, a down-sampling

layer of 2 × 2 × 2 max pooling was connected to down-sample

feature maps. For bottleneck layers, a dropout layer with a 50%

dropout rate was used to avoid over-fitting. For decoder layers,

the up-sampling layer was used to recover the input image size.

Skip connection was applied for DL-AC but not for DL-ACµ due

to the large structural difference between SPECT and CT images

(18, 27).

L1 loss was used to train the generator as it can enforce low-

frequency correctness and encourage less blurring as compared to

the commonly used L2 (28). The cross-entropy-based discriminator

loss (LD) was used to train the discriminator. The discriminator loss

combined with generator loss (L1) was used to train the generator.

The objective function of cGAN can be expressed as follows:

G
∗

= argmin
G

max
D

VLD (G,D) + λVL1 (G) (1)

where λ is an adjustable parameter (28) [λ = 20 in this

study (14)] used to control the balance between objective function

VLD (G,D) and VL1 (G ).

Whole images instead of patches were used as training input

to provide more information on the 3D patient contour (18). The

patient dataset of each scanner was divided into 90, 10, and 30 for

training, validation, and testing, respectively. Data augmentation

by horizontal and vertical flips was used to enhance the training

dataset, i.e., a total of 270 datasets were used for training. As

supervised learning methods, the AC SPECT and NAC SPECT

images were paired to train DL-AC, while the µ-maps and NAC

SPECT images were paired to train DL-ACµ. The input NAC

SPECT images for DL-ACµ were normalized to a range of [0,

1], better matching the range of attenuation coefficients from the

µ-maps. Network hyperparameters were chosen based on our

previous DL-based AC for MP SPECT, i.e., 3 layers and 48 feature

maps for DL-ACµ and 2 layers and 48 featuremaps for DL-AC (18).

To confirm the robustness of the DL-based AC methods,

we applied cross-scanner training (cross-scanner indirect deep

learning-based attenuation correction [cDL-ACµ] and cross-

scanner direct deep learning-based attenuation correction [cDL-

AC]), i.e., testing data from scanner A based on a model trained

from scanner B and vice versa. We also merged the datasets

from two scanners for ensemble training (ensemble indirect deep

learning-based attenuation correction [eDL-ACµ] and ensemble

direct deep learning-based attenuation correction [eDL-AC]).

The same data augmentation technique used in scanner-specific

training was applied in cross-scanner and ensemble training.

Data analysis

Normalized mean square error (NMSE) and structural

similarity index (SSIM) for the whole brain were computed on

the NAC, Chang’s AC, and DL-based AC images as compared to

the CT-AC SPECT images. The count profile across the striatum

regionwas also drawn tomeasure the count distribution of different

AC methods.

Specific uptake ratio (SUR) (Equation 2) of the whole striatum

to the background regions and asymmetry index (%ASI) (Equation

3) of the left and right striatum were calculated based on the

striatal VOIs delineated by an experienced nuclear medicine

physician (Figure 3). The 2D striatal regions of interest (ROIs)

were delineated slice by slice, stacking to form a 3D VOI. For the

background, a 2D ROI (10 pixels × 6 pixels) in the cerebellum

region was chosen, excluding ventricular regions. Bland–Altman

plots were applied to SUR and%ASI results to evaluate the potential

difference between different AC methods as compared to CT-AC.

A paired t-test was performed on NMSE, SSIM between different

DL-based methods, and on SUR and %ASI each between AC

method and CT-AC. Bonferroni correction was applied for tests

with multiple comparisons.

SUR =
MeanCountsstriatum −MeanCountsbackground

MeanCountsbackground
(2)

%ASI =

∣

∣

∣

∣

∣

SURleft striatum − SURright striatum

SURleft striatum + SURright striatum

∣

∣

∣

∣

∣

× 100% (3)

Results

Figures 4A, B shows sample Chang’s µ-map, DL-ACµ, cDL-

ACµ, and eDL-ACµ generated µ-maps of scanner A and

corresponding error maps using CT-basedµ-map as reference. The

brain contours are well recovered, while the bony structures could

be better restored for DL-ACµ. Figures 4C, D shows SPECT images

of different AC methods and corresponding error maps using CT-

AC SPECT as a reference. Three axial slices containing the highest

striatum counts are displayed for comparison. All DL-based AC

methods show improved image quality as compared to NAC and

Chang-AC, while DL-ACµ is better than DL-AC from a visual

assessment based on the error maps. The errors are increased by

cross-scanner and ensemble training, while c/eDL-ACµ has fewer

errors than the corresponding c/eDL-AC. Figures 5A, B shows the

sample results of Chang’s µ-maps, different DL-ACµ generated µ-

maps, and SPECT images of different AC methods on scanner B.
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FIGURE 2

Diagram of 3D cGAN used in this study.

FIGURE 3

Sample delineated striatum ROIs (red mask) and background (blue

mask).

The results are similar to scanner A. Both DL-based AC methods

are better than Chang-AC and NAC, while DL-ACµ is better than

DL-AC. Though the cross-scanner and ensemble trainingDL-based

methods show performance degradation compared to scanner-

specific training, they still show fewer errors than Chang-AC. The

2D count profiles of 40 pixels across the striatum region by different

AC methods for the same patients are shown in Figure 6. The

profiles of all DL-based AC methods are much closer to CT-AC

compared to Chang-AC and NAC, while the profile of DL-ACµ is

also less deviated from CT-AC as compared to DL-AC. eDL-ACµ

has errors between DL-ACµ and DL-AC, followed by cDL-ACµ,

cDL-AC, and eDL-AC.

The NMSE and SSIM results of the two scanners are shown in

Tables 3, 4. For µ-maps, DL-ACµ achieves the lowest NMSE and

highest SSIM (all ps < 0.001), followed by eDL-ACµ and cDL-ACµ

for both scanners. All DL-based methods have generated better µ-

maps than Chang’s µ-maps for both scanners. For SPECT images,

the NMSE of all AC methods is lower than NAC. All DL-based

ACmethods are better than Chang-AC. DL-ACµ has a significantly

lower NMSE than DL-AC (p < 0.05) for both scanners. The NMSE

values of eDL-ACµ and cDL-ACµ are lower than eDL-AC and

cDL-AC, respectively. The SSIM follows the same trend as the

NMSE. The SUR and %ASI results are shown in Table 5. There

is no significant difference between DL-ACµ/DL-AC and CT-AC

(p > 0.05) on SUR for both scanners. There is also no significant

difference between DL-ACµ/DL-AC/eDL-ACµ/cDL-ACµ and CT-

AC (p > 0.05) on %ASI for both scanners. Cross-scanner and

ensemble training increase the errors on SUR and %ASI scanner-

specific training.

The Bland–Altman plots of SUR processed by NAC, Chang-

AC, and DL-based methods using CT-AC as a reference are shown

in Figure 7. NAC shows lower SUR values (mean difference of

−0.3984 for scanner A and −0.1770 for scanner B) than CT-AC.

Chang-AC shows an overestimated attenuation (mean difference

of +0.2532 for scanner A and +0.1262 for scanner B). All DL-

based AC methods have a narrower distribution than NAC and

Chang-AC, except cDL-AC and eDL-AC. Both DL-ACµ and DL-

AC have similar SUR values to CT-AC. DL-ACµ shows a narrower

distribution compared to DL-ACwith a smaller standard deviation,

i.e., 95% confidence interval (CI) of [−0.0733, 0.1948] vs. [−0.1780,

0.1398] for scanner A and [−0.0291, 0.0469] vs. [−0.1424, 0.0469]

for scanner B. Figure 8 shows the Bland–Altman plots of the %ASI

results, which are similar to those of SUR. The 95% CI with CT-

AC for NAC, Chang-AC, DL-ACµ, and DL-AC are [−53.65, 69.51],

[−21.44, 20.38], [−3.798, 5.993], [−6.203, 8.186] for scanner A

and [−11.59, 19.25], [−8.300, 7.009], [−3.345, 3.352], [−5.583,
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FIGURE 4

Representative image results of a 38-year-old male patient on scanner A. (A) Sample µ-maps generated by di�erent methods. (B) Corresponding

error maps of di�erent µ-maps as compared to CT-based µ-map. (C) Sample axial slices with the highest striatum uptake from di�erent AC SPECT

images. (D) Corresponding error maps of di�erent AC methods as compared to CT-AC.
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FIGURE 5

Representative results of a 71-year-old female patient on scanner B. (A) Sample µ-maps generated by di�erent methods. (B) Corresponding error

maps of di�erent µ-maps as compared to CT-based µ-map. (C) Sample axial slices with the highest striatum uptake from di�erent AC SPECT

images. (D) Corresponding error maps of di�erent AC methods as compared to CT-AC.
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FIGURE 6

Count profiles of di�erent AC methods of (A) a 38-year-old male patient on scanner A from Figure 4 and (B) a 71-year-old female patient on scanner

B from Figure 5.

4.675] for scanner B, respectively. For cross-scanner and ensemble

training, the 95% CI with CT-AC for cDL-ACµ, cDL-AC, eDL-

ACµ, and eDL-AC are [−16.30, 22.87], [−18.57, 24.87], [−6.203,

8.186], [−17.94, 28.38] for scanner A, and [−5.025, 8.762], [−7.441,

8.005], [−5.893, 7.168], [−9.158, 8.832] for scanner B.

Discussion

Our study is the first DL-based AC study using clinical 99mTc-

TRODAT-1 brain SPECT data. In addition, we recruited patient

data from two scanners with different acquisition protocols, field-

of-view, and voxel sizes to show the robustness of DL-based AC

methods on different scanners. Despite slight differences between

the two scanners, e.g., brain orientation and field-of-view, spatial

resolution, and CT slice thickness, their results showed similar

trends for different AC methods. Murata et al. (21) demonstrate

that 2D autoencoder and U-Net-based direct DL-AC are better

than NAC and Chang’s AC for brain perfusion SPECT. Chen et al.

(23) suggest that CNN-estimated µ-map could be a promising

substitute for CT-based µ-map for 123I-FP-CIT scans. Our results

are consistent with theirs in that DL-based AC is better than NAC
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TABLE 3 NMSE and SSIM measurements on µ-maps generated by di�erent methods on 30 tested patients of scanner A and 30 tested patients of

scanner B.

Scanner A B

Metric NMSE SSIM NMSE SSIM

Chang-AC 0.2933± 0.0383 0.9766± 0.0072 0.2824± 0.0306 0.9718± 0.0064

DL-ACµ 0.0348± 0.0133 0.9935± 0.0127 0.0591± 0.0185 0.9917± 0.0042

cDL-ACµ 0.1427± 0.0305 0.9856± 0.0124 0.1345± 0.0345 0.9849± 0.0051

p-value 2.11×10−15 4.74×10−17 6.91×10−24 4.98×10−15

eDL-ACµ 0.0532± 0.0158 0.9917± 0.0137 0.0702± 0.0215 0.9916± 0.0034

p-value 1.42×10−8 2.97×10−23 8.52×10−7 2.66×10−8

TABLE 4 NMSE and SSIM measurements on SPECT images with di�erent AC methods on 30 tested patients of scanner A and 30 tested patients of

scanner B.

Scanner A B

Metric NMSE SSIM NMSE SSIM

NAC 0.4495± 0.0193 0.9187± 0.0977 0.3900± 0.0338 0.9038± 0.0170

Chang-AC 0.0406± 0.0445 0.9415± 0.0144 0.0579± 0.0146 0.9562± 0.0081

DL-ACµ 0.0059± 0.0035 0.9982± 0.0036 0.0055± 0.0034 0.9973± 0.0011

DL-AC 0.0099± 0.0066 0.9974± 0.0016 0.0063± 0.0028 0.9938± 0.0017

p-value 1.90× 10−4 1.84× 10−3 3.68× 10−4 2.34× 10−19

cDL-ACµ 0.0253± 0.0102 0.9913± 0.0136 0.0235± 0.0085 0.9932± 0.0025

cDL-AC 0.0369± 0.0124 0.9900± 0.0027 0.0349± 0.0086 0.9930± 0.0019

p-value 3.80× 10−4 1.07× 10−3 4.46× 10−7 0.11

eDL-ACµ 0.0098± 0.0035 0.9935± 0.0027 0.0115± 0.0062 0.9963± 0.0017

eDL-AC 0.0162± 0.0118 0.9965± 0.0024 0.0117± 0.0038 0.9950± 0.0017

p-value 6.92× 10−27 2.11× 10−2 0.67 1.24× 10−14

TABLE 5 SUR and %ASI measurements on SPECT images with di�erent AC methods on 30 tested patients of scanner A and 30 tested patients of

scanner B.

Scanner A B

Metric SUR (p-value) %ASI (p-value) SUR (p-value) %ASI (p-value)

CT-AC 0.71± 0.33 11.75± 15.52 0.67± 0.21 9.01± 7.37

NAC 0.40± 0.18 (2.47×10−16) 19.88± 23.59 (8.92×10−4) 0.49± 0.22 (2.65×10−11) 12.83± 12.43 (1.24×10−2)

Chang-AC 0.80± 0.38 (2.75×10−2) 10.17± 15.90 (8.13×10−3) 0.76± 0.26 (5.28×10−16) 8.13± 6.54 (1.85×10−3)

DL-ACµ 0.68± 0.37 (0.13) 12.54± 14.93 (0.31) 0.68± 0.21 (0.12) 9.01± 7.17 (0.99)

DL-AC 0.77± 0.35 (4.68×10−5) 13.01± 20.46 (0.07) 0.62± 0.20 (0.08) 8.83± 8.01 (0.87)

cDL-ACµ 0.59± 0.40 (1.70×10−9) 12.88± 15.63 (0.11) 0.74± 0.22 (1.82×10−9) 8.90± 7.43 (0.91)

cDL-AC 0.55± 0.38 (3.34×10−10) 13.44± 21.58 (2.65×10−11) 0.70± 0.22 (2.11×10−2) 8.54± 7.64 (5.70×10−2)

eDL-ACµ 0.64± 0.35 (0.09) 12.65± 15.19 (0.55) 0.68± 0.21 (0.13) 9.04± 8.02 (0.96)

eDL-AC 0.58± 0.41 (9.55×10−9) 13.25± 21.03 (2.50×10−5) 0.53± 0.22 (3.87×10−9) 10.97± 10.31 (3.87×10−2)

and Chang’s method. We further demonstrate that the generation

of µ-map is superior to the direct generation of AC SPECT for
99mTc-TRODAT-1 SPECT.

Furthermore, to the best of our knowledge, there is also no

comparison of Chang’s method with direct and indirect DL-based

AC methods for DAT SPECT. As expected, the results show that

Chang-AC has generally better image quality and quantitative

results than NAC. However, the assumption of uniform attenuation

coefficients over the whole brain is obviously problematic for

brain SPECT, as attenuation coefficients for skull bone (0.21∼0.27
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FIGURE 7

Bland–Altman plots of SUR results of di�erent AC methods, using CT-AC as the reference of (A) scanner A and (B) scanner B (the dotted lines

indicate 95% CI, and the blue lines indicate the mean values).

cm−1), soft tissues (0.14∼0.15 cm−1), and nasal cavity or mouth

(∼0 cm−1) are quite different based on the measurements on our

data, consistent with previous measurements (4). There are also

potential errors in the estimation of the brain contour on SPECT-

reconstructed images in Chang’s method. In this study, Chang’s

µ-maps are ∼2–4 voxels larger than the original CT-based µ-

maps in three dimensions (Figure 4). This is probably attributed

to the inherent limitation of the use of thresholding method to

generate Chang’s µ-maps (25). A larger µ-map would lead to an

overestimation of attenuation outside the skull region, i.e., the red

rim in Figures 4B, 5B. Thus, DL-based methods could provide a

promising alternative.

For DL-ACµ, the µ-maps can generally be estimated well for

both scanners. That could be attributed to NAC SPECT images

providing a rough estimate of the brain contour based on the

background uptake. For all quantitative indices, all AC methods

significantly improve the image quality as compared to NAC,

while both DL-based methods are significantly better than Chang-

AC (Figures 4–8). The use of a DL-generated µ-map for the

AC purpose outperforms a direct DL-AC approach, even with

cross-scanner and ensemble training, showing better robustness of

indirect DL-ACµ than direct DL-AC, which is consistent with our

previous MP SPECT study (18).

Although the cross-scanner and ensemble training models have

better NMSE and SSIM than Chang-AC, their performance is still

inferior to scanner-specific training. This could be caused by the

differences between the two scanners’ data, e.g., voxel size, injection

dose, acquisition time, and patient positioning, leading to slightly

different SPECT and CT image characteristics. Transfer learning

aims to address this problem by fine-tuning the pre-trained model
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FIGURE 8

Bland–Altman plots of %ASI results of di�erent AC methods, using CT-AC as the reference of (A) scanner A and (B) scanner B (the dotted lines

indicate 95% CI, and the blue lines indicate the mean values).

with a small dataset from the target scanner (19). This study is

beyond the scope of this study and is ongoing in our group (29).

The SUR and %ASI are highly related to the clinical diagnosis

of PD by the detection of decrement in DAT and asymmetry uptake

in the left and right striatum. NAC has a much lower SUR than

other AC methods, as counts are substantially attenuated toward

the center of the brain, where the striatum is located. Chang-

AC shows an overestimated SUR compared to CT-AC, which has

been reported by previous studies (25, 30), yet it is still better

than NAC. Thus, NAC may lead to a false positive, and Chang-

AC may lead to a false negative diagnosis. All AC methods have

better SUR and %ASI results than NAC. For DL-based methods,

the SUR and %ASI values are much closer to CT-AC compared to

Chang-AC except for cross-scanner-tested cDL-AC and ensemble-

trained eDL-AC, indicating an improved count recovery in both the

striatal region and background. DL-ACµ is the best AC method for

SUR and %ASI. For (c/e)DL-ACµ, we have applied normalization

to SPECT image intensity, which is not applied on (c/e)DL-AC

to keep the counts invariable. Our proposed DL-based AC can

improve quantitative accuracy, image quality, and clinical diagnosis

accuracy of DAT SPECT, reducing the radiation dose (31, 32),

the additional scan time of CT scans, and potential mismatches

concern between SPECT and CT images for AC and providing a

CT-less AC option for SPECT without integrated CT.

There are certain limitations to this study. Involuntary head

motion is commonly observed in patients with neurodegenerative
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disease (33). It may lead to amismatch between SPECT andCT data

(34–36), which could be reduced by registration (37) and motion-

tracking methods (38). Previously, we showed that this mismatch

compromises DL-based AC performance, but it is still better than

NAC in MP SPECT (18). We expect a similar result for DL-based

AC in DAT SPECT.

Conclusion

This is the first clinical evaluation of DL-based AC methods

for DAT SPECT. Both DL-based methods improve image quality

and quantitative accuracy as compared to Chang-AC and NAC.

DL-ACµ is consistently better than DL-AC on clinical patient data

on two scanners with different acquisition protocols and post-

processing parameters.

New knowledge gained

Deep learning-based attenuation correction (AC) is feasible for

DAT SPECT. Indirect generation of attenuation maps is better

and more robust than direct generation of attenuation-corrected

SPECT images from non-attenuation-corrected SPECT images and

Chang’s AC for DAT SPECT.
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