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Editorial on the Research Topic

The role of posttranslational modifications in polyglutamine diseases

Polyglutamine (polyQ) diseases represent a class of rare inherited neurodegenerative

disorders, originated by the expansion of glutamine-coding CAG/A trinucleotide repeats

within exons of causative genes. This class of neurological conditions includes dentatorubral-

pallidoluysian atrophy (DRPLA), Huntington’s disease (HD), spinobulbar muscular atrophy

(SBMA), and six different types of spinocerebellar ataxias (SCAs). While all mutant proteins

share expanded polyQ tracts and a common propensity to form intraneuronal aggregates,

their structures and cellular functions vary. This variation may explain the diversity of

brain regions affected by the different disorders (Stoyas and La Spada, 2018; Lieberman

et al., 2019; Bunting et al., 2022). To unravel the pathogenesis of these devastating

diseases, it is crucial to have a comprehensive understanding of the molecular consequences

triggered by polyQ expansion on the functional integrity of the disease proteins. Moreover,

identification of disease-modifying factors is fundamental for developing strategies to treat

these incurable disorders.

An important factor within the pathomechanistic complexity of polyQ disorders are

posttranslational modifications (PTMs), which have manifold repercussions on the targeted

disease protein. More than 400 different types of PTMs exist, including acetylation,

glycosylation, lipidation, phosphorylation, non-proteasomal proteolysis, SUMOylation, and

ubiquitination, which all exert profound effects on the function, localization, and stability

of targeted proteins (Mann and Jensen, 2003; Ramazi and Zahiri, 2021). Consequently,

by altering these properties, PTMs can also influence the toxicity and aggregation-prone

nature of polyQ disease proteins, thereby significantly contributing to the progression of the

disorder (Sambataro and Pennuto, 2017). In their review article, Johnson et al. summarize

the most current knowledge on PTMs in all nine polyQ disease proteins. Additionally, they

present information on their described proteinaceous interactors, shedding light on the

significant modulatory role of both aspects in the molecular pathogenesis.
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Focusing specifically on androgen receptor (AR), the disease

protein of SBMA (Hashizume et al., 2020), Gogia et al.

review research work analyzing the contribution of acetylation,

methylation, SUMOylation, ubiquitination, and, in particular,

phosphorylation of AR on the functional regulation of the protein.

They also explore both the pathogenic and protective roles of

these PTMs in SBMA pathogenesis. In addition, Sengupta et al.

discuss in detail the importance of AR ubiquitination, including

the associated enzymes and pathways behind this PTM, namely

E3 ubiquitin ligases, deubiquitinases (DUBs), and the degradative

ubiquitin proteasome system.

One of the most significant PTMs is proteolytic fragmentation,

which irreversibly removes portions of the substrate proteins,

thereby permanently altering their structure and function. Several

classes of enzymes, such as caspases, cathepsin, or matrix-

metalloproteinases, have been shown to cleave polyQ proteins,

generating detrimental protein fragments. This process is linked

to the toxic fragment hypothesis of neurodegeneration (Weber

et al., 2014; Matos et al., 2017). An in-depth examination

of the involvement of calpains, a class of calcium-activated

proteases, was provided in a review article by Incebacak Eltemur

et al. The article underscores the importance of calpains in the

cleavage process as a unifying molecular pathomechanism in

polyQ diseases and their targetability for the development of

new therapies.

The large huntingtin protein associated with HD offers

numerous sites for posttranslational modifications, and significant

scientific research has focused on their physiological and HD-

related pathological importance (Ehrnhoefer et al., 2011; Saudou

and Humbert, 2016). Notably, the first 17 amino acids of

huntingtin undergo extensive posttranslational modifications,

including phosphorylation and ubiquitination, which have been

linked to the regulation of mutant huntingtin toxicity and

aggregation (Gu et al., 2009; Hakim-Eshed et al., 2020). In this

context, Zhao et al. analyzed the consequences of removing

huntingtin exon 1, which encodes the veryN-terminus as well as the

polyQ and polyproline stretches of the protein, in a mouse model,

to assess whether its absence would adversely affect physiological

characteristics. Interestingly, various mechanisms important for

cellular homeostasis remained unaltered, suggesting that removal

of the N-terminus of mutant huntingtin could potentially serve

as a therapeutic strategy without compromising the protein’s

normal function.

Among all polyQ disease proteins, the Machado-Joseph

disease (MJD, also known as SCA3) protein ataxin-3 holds a

unique position. It not only serves as a target for PTMs but

also functions as a DUB, involved in trimming polyubiquitin

chains from other substrate proteins (Matos et al., 2011). As a

result, posttranslational modifications of ataxin-3 and its polyQ

expansion-related dysfunction have been associated with the

molecular pathogenesis of MJD. In their cell-based study, Pereira

Sena et al. investigated the significance of lysine residues within the

ataxin-3 protein, with absence of all or presence of certain residues

showing implications on the polyQ protein stability, polyubiquitin

chain-binding, aggregation propensity and toxicity. The capability

of ataxin-3 to bind and trim polyubiquitin chains is known to be

altered by the polyQ expansion. Luo et al. analyzed changes of

global ubiquitination levels in both ataxin-3 knockout andMJD cell

or mouse models, showing that the absence of the wild-type protein

and the presence of polyQ-expanded ataxin-3 differently impact

K48- and K63-linked polyubiquitin levels. The active involvement

of ataxin-3 inmodulating ubiquitination and being itself a substrate

for this PTM highlights the complexity of these modifications and

their role in disease progression.

In conclusion, this Research Topic on posttranslational

modifications in polyQ diseases underscores the crucial role that

PTMs play in the molecular pathogenesis of these disorders. A

thorough comprehension of how PTMs affect the physiological

function and stability of disease proteins holds the potential to

pave the way for the development of interventions that can

restore normal cellular processes disrupted by polyQ expansions.

The ability to target specific PTMs has been demonstrated in

multiple preclinical studies focusing on various polyQ disorders,

showing compelling results in modulating aggregation, toxicity,

or clearance of mutant proteins. This offers an auspicious avenue

for the discovery of novel therapeutic strategies. Thus, further

advancements in this field present a great promise for improving

the lives of individuals affected by these debilitating conditions.
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