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Purpose: To construct a superior single-sequence radiomics signature to assess

lymphatic metastasis in patients with cervical cancer after neoadjuvant

chemotherapy (NACT).

Methods: The first half of the study was retrospectively conducted in our hospital

between October 2012 and December 2021. Based on the history of NACT

before surgery, all pathologies were divided into the NACT and surgery groups.

The incidence rate of lymphatic metastasis in the two groups was determined

based on the results of pathological examination following lymphadenectomy.

Patients from the primary and secondary centers who received NACT were

enrolled for radiomics analysis in the second half of the study. The patient

cohorts from the primary center were randomly divided into training and test

cohorts at a ratio of 7:3. All patients underwent magnetic resonance imaging

after NACT. Segmentation was performed on T1-weighted imaging (T1WI), T2-

weighted imaging, contrast-enhanced T1WI (CET1WI), and diffusion-weighted

imaging.

Results: The rate of lymphatic metastasis in the NACT group (33.2%) was

significantly lower than that in the surgery group (58.7%, P=0.007). The area

under the receiver operating characteristic curve values of Radscore_CET1WI for

predicting lymph nodemetastasis and non-lymphatic metastasis were 0.800 and

0.797 in the training and test cohorts, respectively, exhibiting superior diagnostic

performance. After combining the clinical variables, the tumor diameter on

magnetic resonance imaging was incorporated into the Rad_clin model

constructed using Radscore_CET1WI. The Hosmer–Lemeshow test of the
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Rad_clin model revealed no significant differences in the goodness of fit in the

training (P=0.594) or test cohort (P=0.748).

Conclusions: The Radscore provided by CET1WI may achieve a higher diagnostic

performance in predicting lymph node metastasis. Superior performance was

observed with the Rad_clin model.
KEYWORDS

cervical cancer, neoadjuvant chemotherapy, multi-parameter MRI, lymph node
metastasis, radiomics
1 Introduction

Cervical cancer is the fourth most common malignant tumor in

women worldwide in terms of morbidity and mortality according to

epidemiological surveys (1). The quality of medical care has improved

globally; however, the prognosis of cervical cancer remains poor, with

its 5-year survival rate varying greatly with different risk factors (51–

95%) (2). Lymph node metastasis (LNM) is the main risk factor

associated with poor prognosis in patients with cervical cancer. The

five-year survival rate of patients with lymphatic metastasis is

significantly lower than that of patients without lymphatic metastasis.

Several studies have also reported that patients with cervical cancer

metastasized to the lymph nodes undergoing radical surgery show

significant decreases in survival rates (3–5).

The National Comprehensive Cancer Network (NCCN) guidelines

recommend radical hysterectomy (RH) for patients with stage IB1-IIB

cervical cancer. However, traditional RH can seriously affect endocrine

and reproductive functions (5). Neoadjuvant chemotherapy (NACT)

was proposed in the 1980s. The NCCN recommends that patients with

FIGO stage IB2-IIB should undergo RH after NACT (3).

NACT combined with surgical treatment significantly improves

progression-free survival (6). The postoperative pathological results

of patients with cervical cancer, with no significant difference in

FIGO staging, receiving NACT combined with surgery reveal a

decrease in the LNM rate. Studies have also reported that the 5-year

survival rate of patients receiving NACT combined with RH for

cervical cancer is significantly higher than that of patients

undergoing surgery alone (6, 7).

RH may be combined with NACT to reduce the positive rate of

lymphatic metastasis, especially among patients with stage IB1-IIB

cervical cancer, which may increase the 5-year survival rate (8).

NACT reduces the risk of lymphatic metastasis; however, the

occurrence of lymphatic metastasis remains significant for the

prognosis of patients with cervical cancer receiving NACT (9).

Lymphatic metastasis is currently identified using clinical and

pathological detection methods. However, non-invasive approaches

such as multi-parameter magnetic resonance imaging (mpMRI)

have also been proposed (10). mpMRI includes T2-weighted

imaging (T2WI), contrast-enhanced T1-weighted imaging

(CET1WI), and diffusion-weighted imaging (DWI). DWI and

CET1WI can be used to evaluate tumor blood perfusion and
02
changes in tissue physiology, while T2WI can provide anatomical

information of the lesion and pelvis; therefore, mpMRI non-

invasively assesses the size and morphological characteristics of

tumor lesions. However, the sensitivity of mpMRI for assessing

lymphatic metastasis is relatively low (10–12).

Radiomics has been widely used in the quantitative assessment

of tumor heterogeneity, including pre-disease staging; assessment of

the efficacy of radiotherapy and chemotherapy; and assessment of

survival (8, 13, 14). Radiomics uses texture features in medical

images to build machine-learning models that can predict or

evaluate disease-related information. In current MRI radiomics

research, controversies regarding sequence selection remain, and

little attention has been paid to whether the lymphatic metastasis of

cervical cancer in patients who received NACT should be assessed

using a radiomics model.

Therefore, we attempted to construct a superior single-sequence

radiomics model for assessing lymphatic metastasis in patients with

cervical cancer after NACT in this study. We combined clinical

parameters to construct a combined imaging and clinical model to

predict whether patients with cervical cancer have lymphatic

metastasis after NACT.
2 Materials and methods

2.1 Patients and lymph node ratio analysis

This multicenter research was approved by the Ethics

Committee of our (primary center) and the Ethics Committee of

our secondary center. The patients enrolled in the study were

divided into two groups. The first part of the study consisted of

retrospectively analyzing the difference in the lymph node ratio

between patients who received NACT-RH and RH in our hospital

between October 2012 and December 2021. The study included

1099 patients who underwent type C radical resection and pelvic

lymphadenectomy only for cervical cancer in the primary center

from October 2012 to December 2021. The diagnosis and staging

criteria for all the patients were based on the 2019 cervical cancer

FIGO staging criteria, and the staging of all the patients was

determined by two or more senior gynecologists. The inclusion

criteria for the first half of the study were as follows: [1] successful
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radical surgery, negative margins, and no residual tumor; [2]

multimodal MR scans performed within 15 days before surgery

and surgical treatment following the NACT MR scan in the NACT

group; and [3] age ≥20 years. Exclusion criteria were as follows: [1]

radiotherapy or cervical conization before surgery and [2] other

malignant tumors or concurrent major chronic diseases.

The study excluded 696 patients; thus, 403 patients were finally

included. The patients were divided into NACT (NACT-surgery,

n=230) and surgery groups (only surgery, n=173) based on whether

they had received NACT before surgery. The incidence rate of

lymphatic metastasis in each group was calculated based on the

number of pathologica l ly confirmed LNM fol lowing

lymphadenectomy.

LNR =
number of  lymph node metastasis

The total number after lymphadenectomy
2.2 Radiomics analysis after NACT

The radiomics analysis for assessing lymphatic metastasis in

patients in the NACT group (n=230) included patients from the

primary center in the first part of the study and those who received

NACT before surgery from the secondary center. The inclusion

criteria for the second half of the study were: [1] successful radical

surgery, negative margins, and no residual tumor; [2] standard

NACT before surgery; [3] multimodal MRI performed

preoperatively and within 15 days before surgery and after

NACT; and [4] regular follow-up for 3 years. Exclusion criteria

were as follows: [1] prior radiotherapy or cervical coning prior to

surgery; [2] incomplete clinical or pathological data; [3] presence of

other malignancies or major chronic diseases during the study

period; [4] image artifacts; [5] other autoimmune diseases; and [6]

repeated entry into the bed during the scanning.

A total of 230 patients from the primary center (54 patients of

LNM and 176 patients of non-LNM) and 56 patients from the

secondary center (14 patients with LNM and 42 patients with non-

LNM) were included in the second part of the study. The patients from

the primary center were randomly divided into a training cohort

(n=162) and a test set (n=68) at a ratio of 7:3, and the patients from the

secondary center were included as the external validation cohort. The

training cohort was used to construct the model and adjust the

parameters during the 10-fold cross-validation. The test cohort was

used to evaluate the generalization performance of the model, which

does not involve the process of feature selection, feature

standardization, and model construction. The external validation

cohort was used to avoid overfitting and improve repeatability.
2.2.1 Neoadjuvant chemotherapy

The indications for NACT were based on the 2019 FIGO

guidelines for cervical cancer. According to the International 2019

FIGO staging standards, the cases were staged as massive IB2-IIA

(maximum tumor diameter >4 cm) and IIB. All patients from the

primary and secondary centers who had completed NACT and
Frontiers in Oncology 03
received the following medicine regimen were included: paclitaxel

(175 mg/m2 D1) + cisplatin (75 mg/m2 D1); or paclitaxel (175 mg/

m2 D1) + nedaplatin (80 mg/m2 D1). The interval between

chemotherapy cycles was 3 weeks. NACT is generally performed

for 1–3 cycles, and its efficacy is evaluated based on the objective

response rate and adverse reactions (3). Before surgery, patients

were evaluated for complete response (Suppliment Material

Figure 1), partial response (Suppliment Material Figure 2), and

progressive disease (Suppliment Material Figure 3).
2.2.2 Surgery

In the surgery group, 173 patients directly underwent surgery

after completing examination, while the 230 patients in the NACT

group underwent surgery 3–4 weeks after completing

chemotherapy, which was completed by two senior associate chief

physicians with more than 10 years of clinical experience. All

patients underwent C-type radical cervical cancer surgery,

bilateral pelvic lymph node resection, and para-aortic lymph node

resection. The scope of lymph node resection included the internal

iliac, external iliac, common iliac, obturator, presacral, and para-

aortic lymph nodes (at the level of the inferior mesenteric artery).
2.3 Image acquisition and reconstruction
of mpMRI

The MR images used in this study were those obtained before

surgery and after NACT. Scanning at the primary center was

performed with a supine head and an 8-channel body-part

phased array abdominal coil, with the center of the coil facing the

symphysis pubis on a 3.0-Tesla MRI machine (Inginia, Philips

Healthcare, Netherlands). Before the examination, all patients were

instructed to drink water sufficient to replenish the bladder

appropriately, and 20 mg of scopolamine was injected

intramuscularly 10 min before the scan to minimize intestinal

peristaltic artifacts. MRI protocols included TIWI (repetition time

[TR]/echo time [TE]: 546 ms/8 ms, field of view [FOV]: 300 × 340,

slice thickness: 5 mm, slice gap: 1.5 mm, matrix: 332 × 332); T2WI

(TR/TE: 3,881 ms/100 ms, FOV: 200 × 200, slice thickness: 4 mm,

slice gap: 1.2 mm, matrix: 400× 297); CET1WI (TR/TE: 3.68 ms/0

ms, FOV: 300 × 340, slice thickness: 5 mm, slice gap: 0 mm, matrix:

280 × 138, enhancement contrast: Omniscan (GE healthcare,

Ireland), 0.1 mmol/kg, 2 mL/s); and DWI (TR/TE: 6,000 ms/56

ms, FOV: 200 × 200, slice thickness: 4 mm, slice gap: 1.2 mm,

matrix: 80 × 110, b value: 1200 s/mm).

Scanning at the secondary center was performed with a 16-

channel body-part-phased array abdominal coil with the center of the

coil facing the symphysis pubis on a 3.0-Tesla MRI machine

(Discovery 750, GE Healthcare, USA). MRI protocols included

TIWI (TR/TE: 850 ms/10 ms, FOV: 400 × 400, slice thickness: 5

mm, slice gap: 1.5 mm, matrix: 320 × 320); T2WI (TR/TE: 1300 ms/

70 ms, FOV: 240 × 240, slice thickness: 4 mm, slice gap: 1.2 mm,

matrix: 320 × 320); CET1WI (TR/TE: 10 ms/3 ms, FOV: 260 × 240,

slice thickness: 5 mm, slice gap: 0 mm, matrix: 352 × 352,
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enhancement contrast: Omniscan (GE healthcare, Ireland), 0.1

mmol/kg, 2 mL/s); and DWI (TR/TE: 4,000 ms/80 ms, FOV: 400 ×

400, slice thickness: 4 mm, slice gap: 1.2 mm, matrix: 160 × 120, b

value: 1500 s/mm).

2.3.1 Region-of-interest segmentation, image
pre-processing, and feature extraction

The regions of interest (ROI) for the tumors were segmented on

T1W images with the open-source software ITK-SNAP (version

3.6.0, www.itksnap.org). The most inferior and superior slices were

excluded to minimize the effects of the partial volume. The two

radiologists with 3–5 years of experience segmented the tumor ROI

based on T1WI, following which the radiomics features were

extracted and the inter-observer intraclass correlation coefficient

(ICC) was calculated such that the features were maintained with an

ICC inter value ≥0.7. Subsequently, a senior radiologist with over 10

years of diagnostic experience contoured the ROI twice. The senior

physicians performed ROI segmentation according to the single-

blind principle. After the first segmentation of the ROI, the ROI was

segmented again after 6 weeks. The features were extracted from the

results of the two ROIs, the ICC was calculated, and the parameters

with ICC intra value ≥0.7 were retained. The features with ICC inter

value ≥0.7 and ICC intra value ≥0.7 after the first segmentation were

used for subsequent statistical analysis.

MATLAB 2016a (MathWorks, Natick, MA, USA) was used to

reconstruct the images to provide the same spatial information

(thickness, slice, and interlamellar space) to map the ROI for other

single sequences of MRI. Before radiomics extraction, all images were

co-registered, normalized (normalized scale: 100, as per the

equation), and resampled to 1× mm3. All images were transformed

into Gaussian and wavelets using Python (version 3.9.6) by the

pyradiomics packages (github.com/Radiomics/pyradiomics). The

radiomics features were extracted using Python by the pyradiomics

package according to the feature guidelines of ImageJ (IBSI).

Radiomics features were mainly extracted into six types: first-order

features, shape features, gray-level co-occurrence matrix (GLCM),

gray-level run-length matrix (GLRLM), gray-level size zone matrix

(GLSZM), and gray-level dependence matrix (GLDM).

image _ standardization
X − m

adjusted _ stddev

adjustedstddrev =  max (d ,
1:0
ffiffiffiffi

N
p

2.3.2 Radiomics signature construction
Four MRI sequences were used to construct the radiomics

signature in this study. To optimize the research process of

radiomics signature (Radscore) and reduce the waste of medical

resources, we chose the optimal Radscore with the highest

diagnostic performance among the four Radscores-based single-

sequence radiomics signatures from patients from the primary

center: Radscore_T1WI, Radscore_T2WI, Radscore_CET1WI,

and Radscore_DWI. The optimal Radscore was selected based on

the area under the receiver operating characteristic (ROC) curve

(AUC) and the results of the DeLong test.
Frontiers in Oncology 04
The datasets of the primary center were randomly divided into a

training cohort and a test cohort at a ratio of 7:3. To predict LNM,

the minimal redundancy maximum relevance (mRMR) algorithm,

which can considerably improve the accuracy of feature selection

and classification of the 30 features that had been kept, was used for

initial feature selection in the training cohort. The least absolute

shrinkage and selection operator (LASSO) method, which is

suitable for the regression of high-dimensional data, was used to

select significant distinguishable features based on minimum

binomial deviance by adjusting the penalty coefficient (L) to

construct the radiomics signature with 10-fold cross-validation.

2.3.3 Clinical variables
The clinical variables included the clinical characteristics (age,

sex, height, weight, body mass index [BMI], gestation number,

parturition number); FIGO stage (IB1, IB2, IB3, IIA1, IIA2, IIB,

IIC1p, IIIC2p) (15); neutrophil, lymphocyte, monocyte, platelet,

hemoglobin, serum albumin, and tumor marker (squamous cell

carcinoma-associated antigen [SCC-Ag], carcinoembryonic antigen

[CEA], cancer antigen [CA]125) levels; human papillomavirus

(HPV) levels; pathological type (15); lymph vascular space invasion

(LVSI) (16); depth of stromal invasion; maximum tumor diameter on

MRI; maximum tumor diameter determined via pathological

examination, and histotypes (including squamous cell carcinoma,

adenocarcinoma, and adenosquamous carcinoma) (17).

2.3.4 Rad_clin model construction
The clinical variables from the training cohort were used to

build the clinical and Rad_clin models to predict LNM. Clinical

variables from the training cohort should be excluded with variance

inflation factor ≥ at first. In the second, the clinical model was built

using a multivariate logistic regression model based on the

minimum Akaike information criterion (AIC). Subsequently, the

Rad_clin model was built using a multivariate logistic regression

model by clinical variable kept in the clinical model and the optimal

Radscore, with 10-fold cross-validation to distinguish the status of

LNM through a likelihood ratio test with backward step-down. A

nomogram was constructed based on the Rad_clin model.

2.3.5 Evaluation of model effectiveness
The AUC was used to predict the diagnostic performance of the

models constructed using the training and test data and externally

validated using the external validation data, and the Radscore of the

patients in the test cohort and external validation cohort was calculated

using the formula built-in the training cohort. The accuracy of the

radiomics signature was evaluated for the training and test cohorts. The

calibration of the models was assessed using calibration curves and the

Hosmer–Lemeshow test. Decision curve analysis (DCA) was

performed to estimate the clinical utility of the models.
2.4 Statistical analysis

Statistical analysis was performed using R 3.6.1 (www.Rproject.org).

The R packages used in this study included tidyverse, caret, pROC,

glmnet, DMWR, rmda, ggpubr, ModelGood, rms, mRMRe,
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DescTOOLs, and irr. Tenfold cross-validation was used at two points for

recursive feature elimination to avoid random overestimation: [1] after

the construction of the radiomics signatures by LASSO regression and

[2] after the construction of the Rad_clin model. The DeLong test was

used to compare the differences in the ROC curves between the two

arbitrary models using Medcalc. The differences in the demographic and

clinical variables were compared between the patients with non-

lymphatic metastasis (NLM) and LNM in the training and test cohorts

using GraphPad Prism 8 (www.graphpad-prism.cn). Based on the

multiple comparisons being made, it was considered more appropriate

to use a robust statistical test such as the Kruskal-Wallis nonparametric

ANOVA and the Welch parametric ANOVA with post hoc correction

for multiple comparisons. Chi-square tests were used to analyze

categorical data.
3 Results

3.1 Incidence of LNM in the NACT and
surgery groups

The NACT group consisted of 230 patients with cervical

cancer, including 54 patients with LNM and 176 patients with

NLM. A total of 173 patients were enrolled in the surgery group,

including 64 with LNM and 109 patients with NLM. The average

rate of lymphatic metastasis in the NACT group was 33.2%, which

was significantly lower than that in the surgery group

(58.7%, P=0.007).
3.2 Patient characteristics and
clinical features

The demographic and clinical variables of patients in the

training, test, and external validation cohorts are presented in

Tables 1, 2. No significant differences were observed in

demographic data, including age, height, weight, BMI, gestation

number, parturition number, laboratory test results, diameter by

pathological, FIGO stage, diameter by MRI, depth of stromal

invasion, and LVSI, between the training and test cohorts,

indicating that patients were randomly divided into the training

and test cohorts (P>0.05, Table 1). The lymphocyte (P=0.004,

Table 2), blood platelet (P=0.001, Table 2), SCC_Ag (P=0.014,

Table 2), and HPV (P=0.029, Table 2) levels were significantly

lower for patients with NLM than for those with LNM in the

training cohort; however, the difference was not significant in the

test and external cohorts (Table 2). The tumor diameter on MRI

was significantly smaller for patients with NLM (3.7 ± 1.3) than for

those with LNM (4.2 ± 1.3) in the training cohort (P=0.039,

Table 2). The same trend was observed in the test (P=0.011,

Table 2) and external validation cohorts (P=0.044, Table 2). The

FIGO stage was significantly different between patients in the NLM

and LNM groups in the training (P<0.0001, Table 2) and test

cohorts (P<0.0001, Table 2). The same trend was observed in the

external validation cohort (P=0.016). Additionally, the tumor

diameter based on pathological examination and depth of
Frontiers in Oncology 05
invasion showed significant differences between the patients with

NLM and LNM in the external validation cohort (Table 2).

The parturition number was significantly smaller for patients

with NLM (1.9 ± 1) than for those with LNM (2.6 ± 1.3) in the test

cohort (P=0.041, Table 2). The monocytes showed significant

differences between patients with NLM and those with LNM in

the external validation cohort (P=0.004, Table 2) but not in the

training and test cohorts. Other demographic data did not differ

significantly between the NLM and LNM groups in the training,

test, and external validation cohorts (P>0.05, Table 2).
3.3 Constructed radiomics signature

A total of 1,127 features (first-order statistics, shape-based

texture, GLCM, GLRLM, GLSZM, GLDM, and neighboring gray

tone difference matrix) per sequence were extracted from all four

MRI sequences. After inter-observer ICC analysis, 943 radiomics

features were retained (ICC>0.7). Four radiomics signatures

(Radscore) were first constructed using single MRI sequences of

T1WI, T2WI, CET1WI, and DWI separately. All Radscores were

constructed using the minimum l. The loglmin values of the four

sequences were 0.00017 (T1WI, Figure 1A), 0.0051 (T2WI,

Figure 1B), 0.00091(CET1WI, Figure 1C), and 0.0019 (DWI,

Figure 1D). In total, 20 radiomic features were used to build

Radscore_T1WI (Figure 2A), 17 for Radscore_T2WI (Figure 2B),

19 for Radscore_CET1WI (Figure 2C), and 19 for Radscore_DWI

(Figure 2D). Additionally, the Radscore showed a significant

correlation with height (P=0.00), weight (p=0.001), neutrophils

(P=0.00), monocytes (P=0.004), serum albumin (P=0.004),

SCC_Ag (P=0.00), HPV (P=0.00), tumor diameter on MRI

(P=0.00), FIGO stage (P=0.00), depth of stromal invasion

(P=0.001), and LVSI (P=0.00) as shown in Supplementary Table 1.
3.4 Diagnostic performance of Radscores

The Radscores per single sequence of patients were calculated

according to the Radscore equations (Equations 1–4). All Radscores

exhibited significant differences between NLM and LNM (P<0.05,

Figure 3). The AUCs of Radscore_T1WI for predicting NLM and

LNM were 0.755 (Figure 4A) and 0.742 in the training and test

cohorts, respectively (Figure 4B). The AUCs of Radscore_T2WI for

predicting NLM and LNM were 0.737 (Figure 4A) and 0.736

(Figure 4B) in the training and test cohorts, respectively.

Additionally, the AUCs of Radscore_CET1WI for predicting

NLM and LNM were 0.800 (Figure 4A) and 0.797 (Figure 4B) in

the training and test cohorts, respectively. Further, the AUCs of

Radscore_DWI for predicting NLM and LNM were 0.747

(Figure 4A) and 0.728 (Figure 4B) in the training and test

cohorts, respectively.

There were no statistically significant differences among the

individual Radscores of the single-sequence model in either the

training or test cohort (P>0.05, Figures 4A, B). Therefore,

Radscore_CET1WI was selected to be combined with other

demographic and clinical variables based on the highest AUC to
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TABLE 1 Clinical information of patients in the training and test cohorts.

Training cohort
n=162

Test cohort
n=68 P value

Age, years 47.1 ±8.8 46.8 ±9.0 0.820

Height, cm 159.0 ±6.4 158.4 ±6.2 0.507

Weight, kg 58.4 ±9.0 58.1 ±8.9 0.788

BMI 23.1 ±3.3 23.1 ±3.3 0.928

Gestation number 3.6 ±1.5 3.9 ±1.8 0.147

Parturition number 2.1 ±1.1 2.3 ±1.2 0.194

Laboratory values

Neutrophils 4.2 ±1.7 4.1 ±1.9 0.754

Lymphocytes 1.9 ±1.6 1.9 ±0.8 0.886

Monocytes 0.3 ±0.1 0.3 ±0.2 0.203

Blood platelets 281.1 ±73.0 272.9 ±73.6 439

Hemoglobin 127.6 ±20.6 125.9 ±22.6 0.600

Serum albumin 44.6 ±4.1 44.8 ±5.2 0.756

SCC_Ag 7.4 ±18.9 4.8 ±6.3 0.122

CEA 11.4 ±55.9 13.6 ±61.8 0.801

HPV 563.1 ±718.1 413.1 ±596.7 0.102

Tumor diameter on MRI, cm 3.8 ±1.3 3.9 ±1.3 0.668

FIGO stage 0.403

IB1 19 12

IB2 62 26

IB3 11 4

IIA1 17 8

IIA2 13 4

IIB 24 8

IIIC1p 15 3

IIIC2p 1 3

Diameter pathology, cm 2.8 ±1.4 2.6 ±1.4 0.299

Depth of stromal invasion 0.952

0 7 2

1 43 17

2 52 23

3 60 26

Lymph vascular space invasion 5 (7.4%) 25 (15.4%) 0.148

Histotypes, n. (%) 0.49

Squamous cell carcinoma 140 (86.4) 59 (86.8)

Adenocarcinoma 17 (10.5) 9 (13.2)

Adenosquamous carcinoma 5 (3.1) 0 (0.0)
F
rontiers in Oncology
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BMI, body mass index; SCC_Ag, squamous cell carcinoma-associated antigen; CEA, carcinoembryonic antigen; HPV, human papillomavirus; MRI, magnetic resonance imaging; FIGO,
International Federation of Gynaecology and Obstetrics; *P<0.05 indicates a significant difference.
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TABLE 2 Clinical information of patients with non-lymphatic metastasis (NLM) and lymph node metastasis (LNM) in the training, test, and external
validation cohorts.

Training cohort

P value

Test cohort

P value

External validation
cohort

P value
NLM
n=124

LNM
n=38

NLM
n=52

LNM
n=16

NLM
n=42

LNM
n=14

Age, years 47.1 ± 8.6 45.8 ± 10.3 0.426 47.5 ± 8.9 45.9 ± 8.5 0.523 47.3±9 47.8±3 0.890

Height, cm 158 ± 6.2 159.9 ± 6.2 0.089 158.5 ± 6.5 160.8 ± 6.1 0.203 159.2±5 161.6±0 0.297

Weight, kg 57.6 ± 8.6 59.8 ± 9.6 0.173 57.6 ± 8 61.2 ± 11.6 0.158 58.5 ± 3 63.0 ± 5 0.149

BMI 23.1 ± 3.2 23.4 ± 3.8 0.578 22.9 ± 3.1 23.6 ± 4 0.467 23.1 ± 4 24.1 ± 1 0.359

Gestation number 3.9 ± 1.8 4.1 ± 2.1 0.588 22.9 ± 3.1 23.6 ± 4 0.467 3.5 ± 3 4.4 ± 0 0.174

Parturition number 2.3 ± 1.1 2.3 ± 1.5 0.911 1.9 ± 1 2.6 ± 1.3 0.041* 2.2 ± 9 2.5 ± 3 0.395

Laboratory test

Neutrophils 4.1 ± 1.8 4.1 ± 2.5 0.972 4.1 ± 1.8 4.3 ± 1.4 0.762 3.9 ± 1.8 3.9 ± 1.3

Lymphocytes 1.8 ± 0.8 2.2 ± 0.6 0.004* 1.9 ± 0.6 1.9 ± 0.7 0.818 1.6 ± 0.5 2.1 ± 0.5 0.902

Monocytes 0.3 ± 0.2 0.3 ± 0.1 0.193 0.3 ± 0.1 0.3 ± 0.1 0.324 0.3 ± 0.1 0.3 ± 0.1 0.004*

Blood platelets 262.1 ± 67.6 307.9 ± 82.3 0.001* 272.3 ± 65.5 309.6 ± 89.8 0.069 264.4 ± 68.2 316.7 ± 88.7 0.644

Hemoglobin 127.7 ± 22.4 120.4 ± 22.4 0.081 128.7 ± 21.4 124.2 ± 17.9 0.455 130.1 ± 17.7 123.6 ± 21.3 0.067

Serum albumin 44.9 ± 5.1 44.7 ± 5.4 0.823 44.6 ± 4.4 44.6 ± 3.1 0.990 44.9 ± 5.9 45.2 ± 4.8 0.863

SCC_Ag 4.2 ± 5.4 7 ± 8.4 0.014* 7 ± 21.1 8.9 ± 9.6 0.720 2.7 ± 3.5 8.6 ± 9.9 0.055

CEA 14.8 ± 70 9.7 ± 17.3 0.659 12.3 ± 63.2 8.5 ± 19.2 0.815 13.8 ± 71.0 8.3 ± 19.8 0.660

HPV 357 ± 552.6 596.4 ± 699.3 0.029* 499.1 ± 664.5 771 ± 861.4 0.182 470.7 ± 607.1 848.9 ± 860.2 0.159

MRI findings

Diameter, cm 3.7 ± 1.3 4.2 ± 1.3 0.039* 3.6 ± 1.3 4.4 ± 1 0.011* 3.2 ± 0.8 3.8 ± 0.8 0.044*

FIGO stage <0.0001* <0.0001* 0.016*

IB1 16 3 12 0 7 0

IB2 54 8 22 4 24 6

IB3 11 0 4 0 0 0

IIA1 12 5 5 3 8 4

IIA2 9 4 2 2 2 3

IIB 22 2 7 1 0 1

IIIC1p 0 15 0 3 0 0

IIIC2p 0 1 0 3 0 0

Pathological

Diameter, cm 2.5 ± 1.4 2.8 ± 1.4 0.283 2.5 ± 1.3 3.6 ± 1.1 0.003* 2.9 ± 1.0 3.5 ± 0.9 0.071

Depth of invasion 0.890 0.027* 0.042*

0 6 1 2 0 0 0

1 34 9 16 1 0 0

2 39 13 19 4 26 8

3 45 15 15 11 14 6

LVSI 2 2 1.000 3 2 0.723 2 6 0.949

Histotypes, n. (%) 0.307 0.674 /

(Continued)
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construct the Radscore_Clinical model (Rad_clin model). All the

mean and standard deviation of features for the constructed

Radscore_CET1WI are shown in Table 3.
3.5 Radscore-clinical integrated model

We constructed an integrated diagnosis model using a multiple

logistic regression model in combination with clinical variables.

After calculating the odds ratio (OR) of the clinical variables,

lymphocyte (OR=1.91, 95% confidence interval [CI]: 1.18–3.35,

P=0.015), blood platelet (OR=1.008, 95% CI: 1.00–1.01, P=0.001),

SCC_Ag (OR=1.06, 95% CI: 1.00–1.12, P=0.021), CEA (OR=0.998,

95% CI: 0.986–1.00, P=0.663), HPV (OR=1.0006, 95% CI: 1.0001–

1.0006, P=0.035), tumor diameter on MRI (OR=1.330, 95% CI:

1.01–1.77, P=0.044), and FIGO stage (OR=1.56, 95% CI: 1.29–1.91,

P<0.0001) were maintained. Based on the minimum AIC,

lymphocyte, blood platelet, HPV, and FIGO type were

incorporated into the Rad_clin model constructed using

Radscore_CET1WI. The Hosmer–Lemeshow test in the Rad_clin

model revealed no significant differences in the goodness of fit for

the training (P=0.594) or test cohort (P=0.748, Equation 5). We also

calculated the discriminatory efficiency of the clinical parameters

(diameter of the tumour_MRI), Radscore, and Rad_clin model
Frontiers in Oncology 08
using ROC analysis (Table 4; Figures 5A–D). The Rad_clin model

yielded the largest AUC values in the training (0.890) and test

(0.839) cohorts (Table 4). The DeLong test revealed no significant

d i ff e r en c e s i n d i a gno s t i c p e r f o rmanc e among th e

Radscore_CET1WI, Clinical, and Rad_clin models (Pradscore vs

Clinical_train=0.662, Pradscore vs Clinical_test=0.904, PRad_clin_model vs

Clinical_train=0.015, PRad_clin_model vs clinical test =0.609, PRad_clin_model

vs radscore_train=0.003, PRad_clin_model vs radscore test=0.229). The

Rad_clin model was visualized using a nomogram (Figure 6A).

The diagnostic performance of the Rad_clin model was 0.852 in the

external validation cohort (Figure 6B).

The results of the DCA analysis for the Radscore_CET1WI,

Clinical, and Rad_clin models in the training and test cohorts are

displayed in Figure 6C. The DCA analysis yielded a clinical risk

threshold in the range of 0–0.8, which could benefit from the

Rad_clin model.
4 Discussion

Researchers have increasingly focused on the capacity of

radiomics to predict LNM before surgery in patients who have

not received NACT, chemotherapy, or radiotherapy. However,

given the advancements in medical technology, a single
TABLE 2 Continued

Training cohort

P value

Test cohort

P value

External validation
cohort

P value
NLM
n=124

LNM
n=38

NLM
n=52

LNM
n=16

NLM
n=42

LNM
n=14

Squamous cell carcinoma 110 (88.7) 30 (78.9) 44 (84.6) 15 (93.8) / /

Adenocarcinoma 10 (8.1) 7 (18.4) 8 (15.4) 1 (6.2) / /

Adenosquamous carcinoma 4 (3.2) 1 (2.6) 0 (0.0) 0 (0.0) / /
fron
BMI, body mass index; SCC_Ag, squamous cell carcinoma-associated antigen; CEA, carcinoembryonic antigen; HPV, human papilloma virus; MRI, magnetic resonance imaging; FIGO,
International Federation of Gynaecology and Obstetrics; LVSI, lymph vascular space invasion; DSI, depth of stromal invasion; *P<0.05, indicates a significant difference.
B C DA

FIGURE 1

Texture reduction and selection through least absolute shrinkage and selection operator (LASSO) regression according to the minimum l with 10-
fold cross-validation. The Y-axis indicates binomial deviances, while the X-axis indicates the number of radiomics features based L (A) T1-weighted
imaging (T1WI); (B) T2-weighted imaging (T2WI); (C) contrast-enhanced T1WI (CET1WI); (D) diffusion-weighted imaging (DWI).
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treatment plan is no longer used in clinics. For instance, a

previous study noted that NACT can reduce the rate of LNM in

some patients who cannot undergo direct surgical treatment

(5). In the present study, we progressively optimized a single-

sequence Radscore to obtain a superior diagnostic performance

for distinguishing between NLM and LNM in patients with

cervical cancer, which was observed with CET1WI. Joint

analysis of a patient’s Radscore and clinical variables may be
Frontiers in Oncology 09
of great significance in the differential diagnosis of other

diseases that are difficult to distinguish.

Radscore showed a significant correlation with height,

weight, neutrophils, monocytes, serum albumin, SCC_Ag,

HPV, tumor diameter on MRI, FIGO stage, depth of stromal

invasion, and LVSI (Supplementary Table 1). However, the

correlation values for these variables with Radscore were

relatively low, suggesting a need for further investigation into
B

C D

A

FIGURE 2

Coefficients of radiomics features used to construct the radiomics signatures of all four sequences. (A) T1-weighted imaging (T1WI); (B) T2-weighted
imaging (T2WI); (C) contrast-enhanced T1WI (CET1WI); (D) diffusion-weighted imaging (DWI).
EQUATION 1
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the relationship between radiomics features and histological

features or other clinical variables.

Additionally, we observed that the incidence of LNM in the

NACT group was significantly lower than that in the surgery

group (P=0.007) in this study. The rate of positive lymph nodes

in patients receiving NACT plus surgery was lower than that in

patients undergoing surgery alone (3, 8, 9). Several studies have

demonstrated the diagnostic performance of radiomics for

predicting LNM. However, in these studies, patients were
Frontiers in Oncology 10
excluded if they had received preoperative chemotherapy,

radiation therapy, or NACT (11, 18, 19). Furthermore, these

studies focused on the prediction of LNM before surgery

because their purpose was to aid in treatment-related

decision-making and evaluate the prognosis of patients with

cervical cancer. Therefore, these models are only applicable to

patients undergoing surgery alone. However, preoperative

NACT has been confirmed to provide an increased survival

benefit for patients with cervical cancer (4, 20). The NCCN
EQUATION 2
EQUATION 3
EQUATION 4
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suggested that patients with cervical cancer may receive NACT

followed by RH (3). Therefore, we built a Radscore to predict

LNM in patients who received NACT before surgery.

Increasing evidence indicates that radiomics analysis

exhibits good performance in predicting tumors, especially

when the Radscore is built using MRI (21). Nonetheless, the

reproducibility and comparability of radiomics research can be

improved via the normalization of imaging protocols, especially

for mpMRI, which involves multiple parameters and sequences

(9, 22). There are several ways to build a Radscore using MRI,

such as the use of multiple sequences combined (21); however,

we constructed four single-sequence-based Radscores using
Frontiers in Oncology 11
T1WI, T2WI, CET1WI, and DWI sequences separately.

Radscore_CET1WI (AUCtrain=0.800 vs. AUCtest=0.797) was

found to have the highest AUC value among all sequences,

although there were no significant differences among the four

sequences. We selected Radscore_CET1WI to be combined with

other demographic and clinical variables to reduce the

complexity of research operations and to construct the

Rad_clin model. Li et al. also reported a Radscore based on

CET1WI for predicting LVSI (23).

Since an increasing number of MRI-based radiomics studies

have been conducted, it is necessary to consider the issue of

wasting medical resources. According to the guidelines, mpMRI
B C D

E F G

A

H

FIGURE 3

Differences in Radscore between patients with non-lymphatic metastasis (NLM) and lymphatic metastasis (LNM). The radiomics signatures of all four
sequences differed significantly between patients with NLM and LNM (P<0.05) in the training cohort (A) T1-weighted imaging [T1WI]; (B) T2-
weighted imaging [T2WI]; (C) contrast-enhanced T1WI [CET1WI]; and (D) diffusion-weighted imaging [DWI] and test cohort (E) T1WI; (F) T2WI; (G)
CET1WI; and (H) DWI.
BA

FIGURE 4

Diagnostic performance and DeLong test of Radscore in single-sequence models. (A) the diagnostic performance of the single-sequence Radscore
in the training cohort. (B) the diagnostic performance of the single-sequence Radscore in the test cohort.
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provides information regarding lesions and information on

tumor cellularity and proliferation (24, 25). Contrast-

enhanced MRI can also be used to non-invasively assess

microcirculatory perfusion and vascular permeability of the

tumor (26).

We constructed the Rad_clin model with superior diagnostic

discrimination (AUCtrain=0.891, AUCtest=0.802) by combining

Radscore_CET1WI with clinical features.

We found that a larger diameter on MRI (P=0.039) and

higher FIGO stage (P<0.001) were common in patients with

LNM in the training set and that a larger diameter on MRI and

higher FIGO stage (P<0.001) were also common in patients

with LNM in the test set. Lymphocytes, blood platelets,

SCC_AG, and HPV were also higher in LNM than in NLM.

Nonetheless, it is important to incorporate clinical variables in

the radiomics analysis , where imaging is intended to

complement and supplement rather than replace clinical

decision-making. After calculating the variance inflation
Frontiers in Oncology 12
factor and AIC, lymphocyte, blood platelet, HPV, and FIGO

type were included in the combined model. A recent study (27)

reported that the tumor diameter on MRI may be a risk factor

for predicting pathological LNM, which was not included in our

Rad_clin model based on minimum AIC (15, 28). Previous

studies have shown that blood platelet and lymphocyte are risk

factors for LNM in patients with cervical cancer. Tumor-

infiltrating CD4+ T cells and reversed CD4/CD8 ratios have

been significantly associated with LNM in cervical cancer,

indicating higher levels of lymphocytes and blood platelets,

which aligns with our findings (29). Additionally, HPV and

FIGO type have been identified as significant predictors of

relapse and LNM in cervical cancer, especially correlating

with poor prognosis, which is consistent with our results (30).

We used the external validation data to validate the diagnostic

performance of the Radscore, clinical model, and Rad_clin model to

reduce overfitting and improve repeatability. The Rad_clin model

also showed a high AUC (0.852). It is worth noting that we did not
TABLE 3 Mean and standard deviation of the features.

NLM LNM

mean SD mean SD

wavelet_HHH_glszm_SmallAreaHighGrayLevelEmphasis 60.739 92.077 95.784 126.678

wavelet_LHH_glrlm_RunLengthNonUniformityNormalized 0.882 0.556 0.949 0.541

log_sigma_4_0_mm_3D_glszm_ZoneVariance 491.755 916.639 567.653 697.310

log_sigma_5_0_mm_3D_glcm_Correlation 0.709 0.518 0.680 0.216

origil_glcm_Imc2 4.126 10.328 1.932 3.266

wavelet_LLH_glcm_ClusterShade 17.786 293.155 54.743 213.037

wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis 8.887E+07 5.571E+08 1.214E+07 3.217E+07

log_sigma_2_0_mm_3D_gldm_HighGrayLevelEmphasis 1.444E+09 1.282E+10 2.673E+07 1.068E+08

log_sigma_3_0_mm_3D_glcm_ClusterShade -897.132 8932.455 -717.314 4720.700

wavelet_HHL_firstorder_Median 0.190 0.601 0.084 0.473

wavelet_LLH_glcm_Contrast 18.586 26.117 16.748 12.261

log_sigma_3_0_mm_3D_firstorder_RobustMeabsoluteDeviation 56.667 131.415 60.741 242.450

wavelet_HHL_gldm_LargeDependenceHighGrayLevelEmphasis 4.842E+03 8.278E+03 3.101E+03 3.625E+03

wavelet_LHH_glszm_HighGrayLevelZoneEmphasis 73.940 93.012 86.618 87.475

origil_glrlm_RunVariance 0.105 0.525 0.057 0.094

log_sigma_3_0_mm_3D_firstorder_Skewness 0.009 0.345 0.088 0.361

wavelet_LHH_glcm_ClusterShade 0.511 2.887 1.480 3.883

log_sigma_5_0_mm_3D_glcm_ClusterShade 1.048E+03 1.122E+04 -6.486E+02 4.953E+03

wavelet_LLH_firstorder_Skewness 0.522 0.901 0.699 0.749
fro
NLM, non-lymphatic metastasis; LNM, lymph node metastasis; SD, standard deviation.
EQUATION 5
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TABLE 4 Diagnostic performance of Radscore in the combined models.

Cohort AUC
95% CI Accuracy 95% CI

Sensitivity Specificity PPV NPV
Lower Upper Lower Upper

Radscore_CET1WI
Training 0.800 0.731 0.873 0.691 0.614 0.761 0.921 0.621 0.427 0.962

Test 0.797 0.670 0.934 0.676 0.552 0.784 0.812 0.635 0.406 0.917

Clinical
Training 0.824 0.741 0.902 0.765 0.692 0.828 0.763 0.766 0.500 0.913

Test 0.808 0.683 0.931 0.691 0.567 0.798 0.687 0.692 0.407 0.878

Rad_clin model
Training 0.890 0.844 0.939 0.802 0.733 0.861 0.816 0.798 0.553 0.934

Test 0.839 0.728 0.954 0.750 0.630 0.847 0.481 0.927 0.812 0.731
F
rontiers in Oncology
 13
 frontier
AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; CET1WI, contrast-enhanced T1-weighted imaging.
B

C D

A

FIGURE 5

Diagnostic evaluation and test of the nomogram for the prediction of non-lymphatic metastasis (NLM) and lymphatic metastasis (LNM). The receiver
operating characteristic (ROC) curves of Radscore_CET1WI, clinical parameters, and the nomogram in the (A) training cohort and (B) test cohort.
Calibration curves for the nomogram in the (C) training cohort and (D) test cohort.
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normalize the images between the different centers. At the same

time, the images from the different centers were scanned using

different MRIs (21), which also yielded high AUC except for the

clinical model. We believe that imaging over-processing should

be avoided.

In advanced cervical cancer, radiochemotherapy, including the

combination of external beam radiotherapy (EBRT) and

brachytherapy (BRT) (31), can deliver high doses to the target

lesion with good clinical outcomes and reduced adverse events.

EBRT and BRT are considered the most important treatments for

cervical cancer. Short-term treatment appears feasible; however,

long-term outcomes should be advocated. Radiomics offers a non-

invasive method for disease evaluation, making it a potential tool

for predicting outcomes in patients undergoing EBRT and BRT.

There are some limitations to our study. The amount of data

required is an ongoing topic in radiomics research. Our study

included a small sample size; a larger sample size will make the

model more stable and provide more reliable information. Most

patients underwent MRI before NACT, and some patients

received adjuvant chemotherapy after NACT. Furthermore,

more cases across multiple centers should be included to

verify the repeatability of this model. Lastly, the retrospective

nature of our study allowed for the introduction of selection

bias, limiting the potential generalizability of our results.
5 Conclusion

The Radscore provided by CET1WI, which included tumor

diameter on MRI, may achieve high diagnostic performance in

predicting LNM after NACT in patients with cervical cancer.

Superior performance was observed using the Rad_clin model,

which was constructed using the CET1WI-based Radscore and

clinical/demographic variables.
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