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Living in the era of Big Data, one may advocate that the additional synthetic

generation of data is redundant. However, to be able to truly say whether it

is valid or not, one needs to focus more on the meaning and quality of data

than on the quantity. In some domains, such as biomedical and translational

sciences, data privacy still holds a higher importance than data sharing. This by

default limits access to valuable research data. Intensive discussion, agreements,

and conventions among di�erent medical research players, as well as e�ective

techniques and regulations for data anonymization, already made a big step

toward simplification of data sharing. However, the situation with the availability

of data about rare diseases or outcomes of novel treatments still requires

costly and risky clinical trials and, thus, would greatly benefit from smart data

generation. Clinical trials and tests on animals initiate a cyclic procedure that

may involve multiple redesigns and retesting, which typically takes two or three

years for medical devices and up to eight years for novel medicines, and costs

between 10 and 20 million euros. The US Food and Drug Administration (FDA)

acknowledges that for many novel devices, practical limitations require alternative

approaches, such as computer modeling and engineering tests, to conduct large,

randomized studies. In this article, we give an overview of global initiatives

advocating for computer simulations in support of the 3R principles (Replacement,

Reduction, and Refinement) in humane experimentation. We also present several

research works that have developed methodologies of smart and comprehensive

generation of synthetic biomedical data, such as virtual cohorts of patients, in

support of In Silico Clinical Trials (ISCT) and discuss their common ground.
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In SilicoClinical Trials, Computer-Aided Clinical Trials, Virtual Clinical Trials, virtual cohort
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1. Introduction

Due to the variety of regulations tightly coupled with country-specific legislation, the

process of bringing novel medical devices to market presents significant challenges from

both engineering and legal perspectives. However, there are constant attempts to harmonize

compliance standards with the aim of facilitating market access for medical devices at the

international level while preserving consumer safety. Thanks to this harmonization, some of

the essential steps of the authorization procedure are common across many countries. For

example, medical devices are generally classified into low-, medium-, or high-risk classes,

which define the authorization pathway to be taken by small or medium enterprises. The

regulatory pathway required for medium-to-high and high-risk medical devices demands

scientific evidence of their safety and efficacy, which is usually built within Clinical Trials

(CTs).

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1085571
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1085571&domain=pdf&date_stamp=2023-08-15
mailto:alena.simalatsar@hevs.ch
https://doi.org/10.3389/fdata.2023.1085571
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1085571/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Simalatsar 10.3389/fdata.2023.1085571

CTs are a cyclic procedure that may involve multiple redesigns

and retesting. Typically, CTs for medical devices take 2 or 3 years

and cost between 10 and 20 million €(VanNorman, 2016). The

global medical device market is estimated to be $495.46 billion

in 2022 and is expected to grow up to $718.92 billion by 2029

at a CAGR of 5.5% in forecast period1, where Western EU and

North US markets account for one third each of the global market.

The Swiss medical device market is smaller and was valued at

$23 billion in 2021. However, Switzerland is also less populated

than its neighboring Western EU countries with only ∼9 million

residents. Nevertheless, Swiss medical device manufacturers are

competitive in the global marketplace and almost three times

more medical devices are exported than imported.2 According

to Akpinar (2018) clinical trials for medical devices contribute to

4% of the device’s total cost. This way we can estimate that about $20

billion worldwide is spent only for clinical trials, while this estimate

does not include salaries and person-months spent for this activity.

In the Swissmedic annual report for 2017 (Swissmedic, 2017),

it was stated that the Agency Council is currently working on

developing strategies to deal with “the rapid pace of transformation

in sciences and technologies" in the coming years. At the same time,

the US Food andDrug Administration (FDA) acknowledges (Owen

and Jeffrey, 2017) that practical limitations formany devices require

alternative approaches. They believe that computer modeling and

engineering tests will help to conduct large randomized studies for

high-risk medical devices, such as closed-loop drug delivery pumps

or pacemakers. Therefore, in 2020, the FDA created aDigital Health

Center of Excellence to align and coordinate digital health work

across the FDA and keep pace with rapidly evolving digital health

research and innovation. The straightforward idea behind the use

of computer modeling in place of randomized studies would be to

replace real individuals participating in CTs with a virtual cohort of

patients and perform in-silico CTs (ISCT). However, even though

this idea has been around for many years, the full-scale adoption of

ISCT is far from reality due to the high complexity of regulatory

procedures on one side and the high level of sophistication of

computational models in this research domain on the other side.

Within this paper, we address this two-fold problem and show

how the generation of synthetic Big Data can be used in place of

CTs. First, we present a coherent view of the regulatory pathways of

medical devices to market. Further, we give an overview of several

medical domains where computational approaches involving the

generation of synthetic biomedical data are currently being applied

or have a high potential to be applied in the near future. While

the core of our paper is a detailed discussion of ISCT adoption for

three examples of high-risk medical devices safety and performance

testing.

The paper is organized as follows. We begin Section 2 with a

description of general initiatives advocating for the use of ISCT

with the aim to apply the Replace, Reduce, and Refine (3Rs)

principles in humane and animal experimentation. In Section 2.1,

we provide a generalized and simplified overview of the medical

1 https://www.fortunebusinessinsights.com/industry-reports/medical-

devices-market-100085

2 https://www.trade.gov/country-commercial-guides/switzerland-

healthcare

device regulatory pathways to market. Further, we give a definition

of Medical Cyber-Physical Systems (MCPS) in Section 2.2 followed

by Section 2.3 where we focus on essential elements of ISCT

for high-risk Physiological Closed-Loop Control (PCLC) medical

devices, a subclass of MCPS. In Section 3 we discuss three examples

of adoption of ISCT for devices testing at different stages of their life

cycle, while the discussion of their common ground is presented in

Section 4. The conclusion is drawn in Section 5.

2. Data generation to create virtual
patients for clinical trials

The idea of using patient-specific computational models in the

development, evaluation, and testing of drugs, medical devices, or

evenmedical interventions has been around for quite a long time in

different research domains. For example, in the domain of medical

imaging, the first virtual patient models, such as 3D graphical

models of the brain, were introduced in the late 1990s (Collins et al.,

1998). There also exist various Computational Human Phantoms

(CHPs) with virtual organ models, as well as techniques and

semi-automated segmentation tools allowing fast development of

CHPs (Kainz et al., 2019). All of these synthetic models have been

created to replace often expensive or hard-to-realize MRI and

radiology experiments needed for testing novel diagnostic devices,

software, or procedures involving medical imaging. In the domain

of medical imaging, the use of graphical phantoms for regulatory

evaluation is referred to as “Virtual Clinical Trials.”

In 2007, the first idea of creating a European non-

profit organization focused on the development of Virtual

Physiological Humans (VPH) was published by the consortium

of the STEP project in a consensus document entitled “Seeding

the EuroPhysiome: A Roadmap to the Virtual Physiological

Human” (STEP, 2007). In 2009, it was proposed again and, after

the great success of a public petition organized to verify the

community’s support for the creation of a VPH institute, it was

officially incorporated in 2011 in Belgium. The creation of the

VPH institute, which unified research from different biomedical

modeling domains, led to an even larger initiative: the creation of

the Avicenna Alliance.3

In 2013, the European Commission funded the Avicenna

Action, whose purpose was to elaborate a general roadmap for

using physiology-based human models for the medical product

regulatory process with the goal of Reducing, Refining, or Replacing

the number of animals and humans used in experimental CTs. This

action initially brought together around 200 experts represented by

researchers, biomedical industries, clinical trials service providers,

and regulators and almost tripled this number within two years.

As a result of this action, the non-profit Avicenna Alliance was

created in 2016 with the mission of large-scale adoption of

computer modeling and simulation in place of human and animal

experiments, calling such an approach “In Silico Clinical Trial”

or ISCT. Multiple positioning papers have been published since

then, among which we would like to mention one summarizing

the results of the Avicenna Action (Viceconti et al., 2016), and two

more (Pappalardo et al., 2018, 2022) that continue to communicate

3 https://avicenna-alliance.com/
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the idea and challenges of ISCT within the research community.

These publications include a very large set of references to works

where computational models in biomedical research could or were

used to support the ISCT approach.

Within the same decade, from 2010 to 2020, several groups

of computer scientists outside Europe presented their approaches

for testing the performance and safety of several medical

devices (Kovatchev et al., 2009; Man et al., 2014; Ivanov et al.,

2015; Jiang et al., 2016), including drug delivery devices, such

as the Generic Infusion Pump (GIP) initiative (Kim et al., 2011;

Murugesan et al., 2017) involving multiple US players, the artificial

pancreas (Kovatchev et al., 2009; Man et al., 2014), and the closed-

loop anesthesia delivery pump (Simalatsar et al., 2018a,c), often

referring to the approach of generating a virtual cohort of patients

using specific computational models as “Computer-Aided Clinical

Trials” or CACT.

Three of the terms, Virtual Clinical Trials, CACT, and ISCT,

have a common meaning behind them that incorporates the

idea of using patient-specific computational models to generate

a virtual cohort of patients in the development or regulatory

evaluation phase of medical devices. Respecting the Avicenna

action, which has the most ambiguous goal of generalizing the use

of computational models in the regulatory pathway, within this

paper, we will stick to their term—“In Silico Clinical Trials (ISCT).”

The greatest advantages of using ISCT are obvious:

• It allows for the generation of a larger virtual cohort of

patients, far exceeding the number of patients that can be

involved in real clinical studies.

• The results are easily reproducible at no additional cost.

The idea of generating a synthetic cohort of patients has been

around for many years, and numerous papers have been published

describing the use of computational models for the discovery,

design, development, and testing of medical devices, as well as

for statistical testing of endpoints for market approval (Kovatchev

et al., 2009; Man et al., 2014; Viceconti et al., 2016; Pappalardo

et al., 2018, 2022). However, the full-scale adoption of ISCT

is still far from reality. Several factors are preventing the use

of ISCT in place of CTs. Firstly, the regulatory procedures are

challenging for representatives of the research and development

community to comprehend. Researchers are often focused on

non-profit goals, with mostly social impact, and in the best-case

scenario, potential market size for their innovation, neglecting the

endpoints that must be proven in CTs for successful market entry.

Furthermore, biomedical computational models are often complex

and challenging for regulators to understand. It is challenging

to imagine how these models could be used to prove the safety,

robustness, security, and efficacy of novel medical devices that are

increasingly based on software technologies.

To address these challenges, several initiatives have recently

emerged. Among them, wewould like tomention first and foremost

the Digital Health Center of Excellence4, which is a part of the US

FDA. It was launched in September 2020 in order to keep pace with

the rapid evolution of information technologies in the biomedical

4 https://www.fda.gov/medical-devices/digital-health-center-excellence

domain. Among other things, they provide scientific expertise

across the FDA and transparently share resources for developers,

thus providing a comprehensive approach to the adoption of digital

health technology for both internal and external FDA stakeholders.

We would also like to mention the novel Biomedical

Data Science Center (BDSC)5, which was created in Lausanne,

Switzerland, in 2021 as a joint effort of the University of Lausanne

and CHUV, the largest public hospital in Lausanne. The main

objective of the center is to promote the use of biomedical big data

to enable personalized medicine by generating synthetic medical

data.

In full support of all the above-mentioned activities, in this

paper we will first attempt to simplify the understanding of

regulatory procedures for the research community, providing the

level of detail that should be enough to raise awareness that even at

the research stage of product development, scientists may already

envision potential endpoints of clinical trials.

2.1. Medical device pathway to market

One of the main and oldest globally recognized agencies

responsible for the authorization of novel medical devices entering

the market is the United States Food and Drug Administration

(FDA or USFDA)6 federal agency. In the European Union (EU),

this function is taken on by the European Commission and

European Medicines Agency (EMA).7 Switzerland, a country with

a large medical devices market geographically located in Europe,

but not a member of the EU, has the Swiss Agency for Therapeutic

Products (Swissmedic)8 that plays the role of surveillance authority

for medicines and medical devices.

Due to the variety of regulations tightly coupled with country-

specific legislation, which are often changed according to novel

economic and political agreements, the process of bringing a

novel medical device to market presents significant challenges from

both engineering and legal perspectives. Already, the definition of

medical devices as well as their classification varies across different

countries.

To facilitate market access for medical devices at the

international level, the European Commission, EMA, FDA, and

Swissmedic work together to share best practices in compliance

standards, aiming to reduce duplication of inspections on each

other’s territory while preserving consumer safety (Castle et al.,

2017; EMA, 2022). Such harmonization at the international

level requires internal alignment of country legislation regarding

medical products, and externally, the signing of bilateral mutual

recognition agreements (MRAs) between countries’ authorities

concerning the conformity assessment of regulated products.

Recently, complete alignment of Swiss medical device

legislation according to the EUMedical Devices Regulation (MDR)

and In Vitro Diagnostic Medical Devices (IVMD) took place on

26 May 2021 and 2022, respectively. However, they failed to sign

5 https://www.chuv.ch/en/bdsc/

6 www.fda.gov/

7 www.ema.europa.eu

8 www.swissmedic.ch/
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a bilateral agreement, and therefore, from a legal point of view,

Switzerland has been classified as a third country in relation to

those regulations, implying the need for manufacturers to mandate

an authorized representative in another respective EU member

state.

Nonetheless, continuous efforts toward harmonization of

compliance standards enable us to view the various agencies

responsible for authorizing new medical devices as part of a

global entity, where the best practices of one agency can be

adopted by another eventually. Therefore, in this section, we will

provide a generalized overview of the medical device authorization

procedure, based on commonalities among most agencies, without

claiming complete accuracy in legal details. We will also interpret

the regulations’ statements regarding new approaches aimed at

improving consumer safety, and focus on the 3R principles in

human and animal experimentation, which are shared by all

agencies.

Let us consider any device intended to be used for medical

purposes as a medical device. The pathway to the market of any

medical device depends on its classification. In the US, medical

devices are classified into three groups: low (Class I), medium

(Class II), and high-risk (Class III) devices. In Europe, medical

devices are classified into four classes: low (Class I), medium (Class

IIa), medium-to-high (Class IIb), and high-risk (Class III) devices.

Japan also has four classes ranging from insignificant to high-

risk that could cause life-threatening harm, while the rest of the

world’s classifications are usually similar to those three. The class

assignment to a particular medical device is based on estimations of

the potential severity, reversibility/non-reversibility, and duration

of harm that malfunctioning of the device can cause.

The regulatory control procedures can be generally divided into

three types:

1. General control, which includes mostly legal formalities

regarding product registration. This is applied to low-risk Class

I medical devices.

2. Special control, whichmay include special labeling requirements,

mandatory performance standards, and post-market

surveillance. This procedure is usually applied to medium-risk

Class II medical devices.

3. Premarket approval, a procedure based on scientific review with

the aim to ensure the device’s safety and effectiveness, applied to

medium-to-high and high-risk Class IIb and Class III medical

devices.

The scientific evidence of the safety and efficacy of a novel

medical device, or drug, is investigated during premarket approval.

Clinical trials are designed to test hypotheses and rigorously

monitor and assess trial results on humans. Thus, they must be

approved by a supervising ethics committee of relevant countries

before permission to run the trial is granted. The goal of clinical

trials is not only to ensure scientific validity but also reproducibility

of the results. Therefore, the trials can be seen as an application of

a scientific approach, the experimental step especially.

Most commonly, CTs are run on drugs, medical devices, and

medical procedures and follow the roadmap of three phases: phase

I—testing with a small group of people, phase II—testing on

a large group of people, and phase III—post-marketing studies,

representing surveillance during the lifetime of use/application of

a drug, medical device, or procedure (FDA, 2018). However, while

the steps taken to go through CT phases are well-defined and

clear for the pharmaceutical domain, they are not standardized

for medical devices and are case-by-case based. This opens the

doors to the use of alternative scientific approaches, such as

ISCT, involving computer modeling and engineering tests to help

perform randomized studies.

On average, the whole cycle of premarket phases of CTs

for drugs takes eight years, while for medical devices it can be

significantly shorter, mostly due to the fact that novel medical

devices are mostly incremental developments and innovation often

only affects a few elements. In recent years, the idea of drug

repurposing has gained a lot of attention (Roy et al., 2021), since

it can drastically reduce the costs of drug discovery by taking an

incremental or pivotal path in CTs similar to medical devices.

2.2. Medical cyber-physical systems

Medical devices from medium-to-high and high-risk groups

are often represented by complex Cyber-Physical Systems (CPS),

increasingly based on software technologies, that can be classified

as Medical Cyber-Physical Systems (MCPS). MCPS is a distinct

class of CPS (Lee et al., 2012) with a primary focus on the medical

domain, which combines embedded software, control devices, and

the complex physiological dynamics of patients. The “physical"

part refers to humans or individual organs under treatment,

the physiological state of which is defined by the value(s) of

physiological variables. The “cyber" part, in turn, is represented by

software, such as digital target therapy controllers, decision-making

algorithms, medical alarms, or even computational platforms for

medical device interoperability. Within this paper, we focus on

MCPS with digital target therapy controllers, which are algorithms

that make decisions about the treatment of the target state/disease

based either on a predictive computational model (i.e., open-

loop controller, see Figure 1A), or on feedbacks–the measured

physiological values–themselves or mixed with computational

models (i.e., closed-loop controller, see Figure 1B). The principal

difference between the two systems is the presence or absence of

the feedback loop.

Both approaches include the controller component, separated

from the actuator since these two components represent different

functionality. The controller makes a decision about the treatment

that needs to be provided, and the actuator ensures that this

treatment is possible within the given constraints of the system.

For example, in a drug delivery system, the controller will make

a decision about the delivery rate of intravenously (IV) injected

medication. The actuator will adapt the speed and verify if such a

speed is within the physiological limits of IV injection, and raise an

alarm if the syringe with the medication is about to be empty and

needs to be refilled.

In the open-loop cyber-physical systems (see Figure 1A) the

controller component makes a decision about the treatment based

only on an average computational model. Let us consider an

infusion pump, a medical device that delivers fluids, such as
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FIGURE 1

(A)Open-loop controller, where the controller makes decisions based on some average model, not allowing personalization. (B) Closed-loop

controller, incorporates real-time measurements of the patient’s state into the decision-making, allowing personalization.

nutrients and medications, into a patient’s body in controlled

amounts. The class of computational models used in infusion pump

controllers are predictive models built based on medical evidence,

such that they are able to predict the outcome of the treatment for

the whole spectrum of possible treatments. Therefore, the task of

the controller here is to choose the desirable outcome and send

a command to the actuator. The quality of the decision depends

only on the quality of the average predictive model, since no actual

feedback on the effect of the treatment performed by the actuator

on the patient is available. Open-loop controllers can be a good

fit for systems performing low-risk treatments, such as delivering

medical substances with a large therapeutic range, e.g., vitamin C

or paracetamol, where the use of only an average computational

model is safe and effective.

For medical substances with a narrow therapeutic range,

such as anesthetics or cancer drugs, using only the average

population model can result in imprecise treatment for a large

group of individuals. For example, the widely used Orchestra

Base Primea target-controlled infusion (TCI) system of Fresenius

for intravenous (IV) anesthesia delivery uses a classic open-loop

algorithm (Shafer and Gregg, 1992) based on average population

Pharmacokinetic (PK) models for the anesthetic propofol. The

inaccuracy of concentration prediction by the algorithm can reach

up to 100% for certain individuals (Eleveld et al., 2014), a fact that

is well illustrated in Figure 6.

Thus, if one aims to build a device that provides a certain

level of treatment personalisation, it requires the introduction of

a feedback loop, i.e., closing the control loop of the device, which

falls into the class of physiological closed-loop control (PCLC)

systems (see Figure 1B). PCLC is a medical device that, in addition

to the controller and actuator, includes sensors that can measure

physiological variables. The controller must include a feedback

loop mechanism, such as an algorithm, which can either simply

manipulate the physiological variables through direct activation of

therapy or by personalizing the computational model in use.

Considering the variability of medical devices capable of

measuring specific physiological parameters and making decisions

about patient treatment based on their values, it is hard to have an

effective benefit-risk evaluation of such complex medical systems.

One of the main reasons for that is the absence of a systematic

classification of such critical care devices as well as a framework

for their level of automation.

To facilitate the development of autonomous medical devices

involved in patient treatment, in 2015 FDA organized a workshop

to discuss the main problems and tendencies in the development

of novel PCLC devices (Parvinian et al., 2018). Among the target

devices classified as PCLC, the FDA listed:

1. Automatic anesthesia delivery;

2. Fluid resuscitation/vasopressor delivery, and

3. Mechanical ventilation.

The FDA also recognizes that since the physical

implementation of PCLC devices involves both hardware

and software components, it is essential to extend standard safety

considerations for medical devices, such as biocompatibility,

sterility, and electrical safety, to include those related to

• hardware limitations (e.g., sensors and actuators) and

• software robustness (digital controllers),

as well as stable interoperability among all the aforementioned

components. Further classification and specification requirements

are necessary to ensure the safe and effective use of these devices.

2.3. Generalized classification of PCLC
devices

The first two device classes listed by the FDA (Parvinian et al.,

2018)—automatic anesthesia and fluid resuscitation/vasopressor

delivery—fall into a more general class of closed-loop drug

delivery devices that can also include the delivery of analgesics,

myorelaxants, chemotherapy during cancer treatment, or even

hormone delivery devices. The most vivid example of closed-loop

drug delivery is the case of the Artificial Pancreas (AP), which

is used to treat diabetes. All of these pharmacological treatments

require either continuous injection during a certain period of time

with real-time delivery rate adaptation or a series of continuous

injections with a fixed rate, while the dose is adapted from one

series to another. The difference in approach depends on how fast

the drug is being eliminated by the body, with real-time delivery

rate adjustment being required for drugs with fast clearance of the

medication. The third class, mechanical ventilation devices, may

seem to fall into a separate class of medical devices. However, we

can view oxygen as a chemical substance the delivery of which is

regulated in real-time based on indirect SpO2 measurement.

This way, all of the three device classes mentioned above can be

classified as non-implantable Substance Delivery Devices (SDDs).
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Some SDDs are only used for short-term treatment and therefore

will remain non-implantable, while the size, safety, connectivity,

and usability properties of others will continue to improve. Some

devices, such as artificial pancreas, are currently non-implantable

or only partially implantable due to the high risks associated with

closed-loop delivery and the need to refill reservoirs. However, once

these challenges are solved, we may see an implantable version of

the AP.

There are also PCLC devices built using hardware and software

components that cannot go through the non-implantable phase of

tests and adaptations and must be implanted from the first day

of their development, such as Implantable Cardio Defibrillators

(ICD). ICDs are electronic devices that are usually placed near the

heart and connected to it to detect and treat chaotic fibrillation by

delivering an electric shock to restore normal heart rhythm. The

increased risks associated with the necessity of surgical operation

for device implantation and the absence of a possibility to quickly

extract the device and replace it with an alternative efficient

treatment in case of malfunctioning raise the demand for device

safety and efficacy compared to non-implantable PCLC devices.

3. In-Silico Clinical Trials case studies

In this section, we will present case studies to illustrate how

computational models can generate virtual cohorts of patients

and be used for testing medical devices, with a focus on ISCT

for evaluating the safety and efficacy of novel PCLC medical

devices. We will start with a series of research works on the

application of ISCT for ICDs. In this case, ISCT was applied to

previously approved devices, allowing for a comparison of efficacy

with regular CTs, as well as proposing a mixed approach where

prior information about clinical trials was included in the ISCT

process. Our second example is an ISCT performed for a closed-

loop anesthesia delivery device still in the development stage, where

some components were not fully available. Finally, we will present a

famous example of a T1DM simulator for artificial pancreas ISCT,

which represents an example of the early adoption of a medical

device based solely on ISCT simulations.

3.1. Implantable cardio defibrillators

According to clinical trials conducted from 2005 to 2010, it was

found that ICDs had a high rate of inappropriate therapies (Gold

et al., 2012). These electric shocks were delivered in cases where

the arrhythmia was not critical and therapy was not necessary,

leading to increased patient stress and morbidity. Organizing

clinical trials for an implantable device is a complex process that

carries significant risks for the intervention group, i.e., patients who

receive treatment with an untested device. Additionally, since there

are different types of arrhythmias, it is challenging to have a large

cohort of patients with a statistical distribution that corresponds to

the actual statistical accuracy of various types of arrhythmias.

In their work (Jiang et al., 2016), the authors proposed an

approach for in-silico testing of such devices, which can be used for

early, affordable, and reproducible evaluations, allowing for testing

of assumptions made in clinical trials. The schematic overview of

this in-silico trial is presented in Figure 2 and is composed of:

1. A physiological model. The model is based on Electrophysiology

(EP) studies. The topology of the electrical conduction system of

the heart is represented by the nodes and paths of cooperating

automata that model the timing of generation and blocking of

electrical events. Thus, tachycardia ismodeled as high-frequency

events generated by specific nodes.

2. A sensor model. To detect the event of tachycardia, the

classification algorithm of the ICD uses the timing and

morphology of the electrical activity of the signal slice under

evaluation. To generate realistic electrogram (EGM) signals,

the sensor model selects a signal morphology from a set of

10 available templates corresponding to one of 10 different

activation paths overlaid with the timing sequence of electrical

events.

3. Cohort of patients. A large (>11,000) virtual cohort of patients

was generated, covering 19 common arrhythmic conditions as a

combination of timing and morphology.

4. Device testing. Two algorithms of ICD devices discriminating

fatal Ventricular Tachy-arrhythmias (VT) and non-fatal Supra-

Ventricular Tachy-arrhythmias (SVT) were tested in terms of

evaluating the rate of inappropriate therapies applied, which

grossly confirmed the results of the clinical trials performed for

these devices earlier.

In addition to the classical advantages of ISCT application

in this case, ISCT also allowed for sensitivity and specificity

analysis of algorithms. This analysis determined which types of

arrhythmia caused the most false-positive classifications, leading

to inappropriate therapies. As a result, possible improvements

for the algorithms were suggested. For example, it also allowed

the study of the effect of parameter values that can be tuned

before device implantation on the discrimination capabilities of

the algorithm. Such analysis would have been impossible within

regular CTs.

The limitation of the study presented above lies in the fact

that the generated cohort of patients was homogeneous with

respect to different heart conditions. In reality, some types of

heart arrhythmia appear more frequently than others. Therefore, in

the follow-up work (Abbas et al., 2018), the authors incorporated

prior knowledge from real patients involved in real CTs about

the distribution of various arrhythmia types, as well as other key

parameters captured by the computational model, following a

Bayesian approach. A similar Bayesian approach for integrative CTs

using both virtual and real patients was applied in a successful

mock submission to the FDA describing CTs on fatigue fracture in

a hypothetical next-generation ICD lead (Haddad et al., 2017).

In the next paper of this series (Jang et al., 2019), the authors

presented a robustness evaluation statistical framework that allows

for the evaluation of how the outcome of CTs would change with

respect to how many patients with certain types of arrhythmia

participated in the studies. This answered questions about the

necessary composition of the potential real cohort of patients to be

recruited.
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FIGURE 2

Overview of in-silico trials (Jiang et al., 2016).

3.2. Feedback loop control for general
anesthesia

The closed-loop delivery of general anesthesia is a complex

example of ISCT performed for a PCLC device (Simalatsar et al.,

2016, 2018a,b,c). The global view of closed-loop general anesthesia

delivery with all potential feedback loop information is presented

in Figure 3.

As we can see from this figure, general anesthesia

is a leveraged delivery of anesthetics, such as propofol,

analgesics, like remifentanil, myorelaxants, such as recuronium,

and medicaments to lower blood pressure, for example,

dobutamine/sodium nitroprusside, each affecting vital signals

including Electroencephalogram (EEG), Electrocardiogram

(ECG), Electromyogram (EMG), respiratory rate (RR)/oxygen

level (SpO2), in an interfering manner. The state variables such as

Depth of Anesthesia (DoA) index, pain index, muscle activity, or

drug concentrations that can be fed to a digital controller can be

derived either from one vital signal or from their combination. Full

automation of anesthesia delivery would require reliable patient

state variables and a digital controller able to personalize the drug

delivery rates based on those variables and a physiological model,

which is a very complex task. Only partial solutions for safe general

anesthesia automation have been presented so far in scientific

literature. For example, closed-loop delivery based on DoA indexes

and measurements of anesthetic concentration in plasma, as they

are the most direct measures of drug-induced DoA.

3.2.1. Closing the loop with DoA index
The early attempts to close the general anesthesia loop were

based on the Depth of Anesthesia (DoA) index (Drover et al., 2002;

Kreuer et al., 2003), which provides a statistically derived numerical

value ranging from 0 (equivalent to EEG silence) to 100 (awake

patient). In particular, there was an attempt to build a closed-

loop controller based on EEG-based bispectral index (BIS) (Liu

et al., 2011). However, it has been recently proven that existing

DoA indexes actually provide an unspecific picture of the brain’s

responses to anesthetic drugs (An et al., 2017). Therefore, the

accuracy of such indexes has been debated as they oversimplify

the EEG signal. We can see this as an example of unsuccessful

market adoption due to unreliable physiological signal processing

algorithms.

Moreover, since the algorithms for existing DoA index

computation are proprietary, it is not possible to work on their

improvement. Therefore, one needs to start from scratch, which

drastically slows down the research and innovation cycle. Hence,

there has been an initiative to build a graphical tool (Fluck

et al., 2021) that enables quick analysis of EEG signals with a

comprehensive set of classical signal processing algorithms. The

goal is to speed up research and innovation in domains where EEG

signal processing plays a central role.

3.2.2. Closing the loop with medicaments’ plasma
concentration

Another approach to improving the precision of anesthesia

delivery is based on realizing a feedback loop with sensors that

can provide real-time measurements of the concentration of

the anesthetic, such as propofol, in body fluids. Anesthetics are

hypnotic agents widely used for the induction and maintenance

of general anesthesia. They are usually short-acting intravenously

administered drugs with a high elimination rate and are subject

to large inter- and intra-patient variability. The therapeutic

application of anesthetics requires an ensured multi-step gradation

of the effect intensity, i.e., DoA, correlated with the plasma drug

concentration. This requires not only continuous injection of the

drug but also real-time delivery rate adjustment to keep the drug

concentration within a therapeutic range corresponding to the

chosen target of DoA and to avoid both patient intoxication and

awareness.

Today, anesthetics are often injected using target-controlled

infusion (TCI) systems, which can adjust the delivery rate using a

classic open-loop algorithm (Shafer and Gregg, 1992) to target a

fixed level of plasma or effect site drug concentration. The standard

TCI systems only support population (average) pharmacokinetic

(PK) models of propofol, which were initially represented by those

of Marsh et al. (1991) and Schnider et al. (1998, 1999), and only

recently by Eleveld et al. (2014)9 models. The decision about the

target drug concentration is left to the anesthesiologist.

9 https://www.arcomed.com/infusion-pumps/anesthesia/
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FIGURE 3

Global view of the components and signals that could potentially help to close the loop for a general anesthesia delivery system.

TCI pumps for anesthesia delivery have not been approved

for use by FDA as yet and therefore are being widely used only

in Europe and Switzerland. At the moment of the FDA’s decision

sufficient scientific evidence either proving or disproving TCI safety

has not yet been available. Therefore, the rejection of the TCI pump

by the FDA cannot be evaluated as evidence-based. It is only with

the development of PK models based on much larger statistics and

providing not only an average population model but also inter-

and intra-individuals variability (Eleveld et al., 2014) it became

possible to demonstrate that inaccuracy in drug concentration

prediction for certain individuals can reach up to 100% if we

only account for inter-individual (between-subject) variability, see

Figure 6. Even though the potential error looks dramatic, the

advantage of using TCI pumps during anesthesia is still important.

Thanks to being representatives of open-loop systems, they allow

anaesthesiologists to interfere in the delivery process and adjust the

target concentration based on patient vital parameters, while still

providing a precious level of drug delivery automation.

Let us look at how one can build scientific evidence about a

closed-loop drug delivery device, when sensor technology is not

mature enough to build an actual system, with an example of a TCI

pump for propofol delivery. The core element of the approach is the

physiological model, that in the domain of drug delivery devices

will be represented with a drug-specific PK model.

3.2.2.1. Physiological model

The pharmaceutical industry has a wealth of PK models for

different drugs. PK modeling is based on an understanding of

the physiology of drug absorption, distribution, metabolism, and

elimination by the body, which defines the structure of the model.

However, the parameters of the models as well as their inter-

and intra-individual variability have a statistical nature and are

FIGURE 4

Schematic representation of the 3-compartment PK model

extended with the virtual e�ect site compartment (Simalatsar et al.,

2018c).

based on real drug concentration measurements for individuals

administered with certain doses of the studied drug, using a

Bayesian approach at the model development stage. To give an idea

about PK modeling, we will present the PK model of propofol, as

shown in Figure 4.

The PK model of propofol is usually described by a

three-compartment model extended with a fourth virtual

compartment representing the effect site, i.e., brain. The system

of compartments can be seen as four communicating vessels,

where each compartment is characterized by its volume (Vi) and

clearance (Qi, or CL in the case of the central compartment) that

are used to model the drug’s distribution and its further release

into and by various tissues, regulated by k12, k21, k13, and k31,

which are first-order transfer rate constants from compartment

i to compartment j (see Figure 4). The micro-constants driving

central/effect compartments exchange are defined as k41 = ke0
and k14 = ke0/10000, where ke0 is the effect site elimination rate
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constant. The central compartment represents the plasma to which

the drug is delivered at a rate of U (controlled and changing over

time) and is cleared from it with the elimination rate k10, which is

defined as CL/V1.

The system of differential equations—Eqs 1–3,—

describes the evolution of drug amounts in the three

compartments and concentration in the fourth effect

compartment—Eq. 4:

dA1

dt
= A2k21 + A3k31 − A1(k10 + k12 + k13)+ U(t) (1)

dA2

dt
= A1k12 − A2k21 (2)

dA3

dt
= A1k13 − A3k31 (3)

dC4

dt
= (C1 − C4)ke0 (4)

whereAi represents the amount of drug in compartments, while Ci

represents the drug concentration. To obtain the concentration in

a compartment, the amount must be divided by the corresponding

volume of distribution (Ci = Ai/Vi). The principal difference

between different PK models for propofol, e.g., (Marsh et al.,

1991; Schnider et al., 1998, 1999; Eleveld et al., 2014), lays in the

way the population PK parameters PARk, i.e., CL, Vi, and Qi,

are computed based on patients’ demographic characteristics. This

difference leads to different sets of kij constants used in differential

equations for patients with identical demographic characteristics.

In turn, this results in different Concentration-Time (CT) profiles

for identical delivery ratesU. The earlier models (Marsh et al., 1991;

Schnider et al., 1998, 1999) provide only equations to compute

PARk, e.g., only population models and inter-individual variability.

Only Eleveld’s recent model (Eleveld et al., 2014) provides inter-

and intra-individual variability.

3.2.2.2. Inter-individual variability

Inter-individual variability, accounts for the difference among

individuals with identical demographic parameters, and is typically

described assuming a log-normal distribution for a given PK

parameter:

PAR
j

k
= PARk ∗ e(η

j

k
) (5)

where PAR
j

k
is one (kth) PK parameters out of CL, Vi, and Qi, of

the jth individual, PARk its average population value and η
j

k
is the

kth individual component of the inter-individual random effect,

an independent, normally distributed variable with mean 0 and

variance ω2
k
. The inter-individual variability is estimated as ωk.

3.2.2.3. Intra-individual variability

Intra-individual variability accounts for measurement errors in

data used duringmodel elaboration, biological fluctuations over the

observation period, and inaccuracies inherent to models. The intra-

individual variability is more exhaustively described by a combined

additive and proportional error model:

Y
j
n = C

j
n +

√

(prop2 ∗ (C
j
n)2 + add2) ∗ ǫ

j
n (6)

where Y
j
n is the plasma concentration measured at step n for the jth

individual, C
j
n is the corresponding predicted concentration, prop

and add are the proportional and additive error terms and ǫ
j
n is

the jth component of the random effect, an independent, normally

distributed variable with mean 0 and variance 1. A simple additive

error model is obtained with prop = 0, while a simple proportional

error model with add = 0.

3.2.3. In Silico Clinical Trials for closed-loop
propofol delivery

The schematic representation of the ISCT trials performed

on the case of closed-loop delivery of anesthetic propofol is

summarized in Figure 5. This figure represents only a part of

the ISCT performed for the case of the system application

for individuals with identical demographic characteristics (pth

individuals), as presented in Simalatsar et al. (2018a,b,c). In the

figure, we can see that the physiological model (1) is parameterized

with a set of pth individual average (e.g., population) parameters

PARk (1
st), thus providing a pth population PKmodel used in cohort

generation (2), as well as used by the controller (4) for Model-based

Predictive Control (MPC).

1. Cohort generation (2): A virtual cohort of 1,000 36-year-old

women, each with a weight of 70 kg and height of 170 cm

(denoted as pth type of individuals) was generated using the

inter-patient variability of PK parameters presented above and

the values reported in Eleveld et al. (2014). This means that

1,000 new sets of PAR
j

k
, corresponding to the jth individual

(j ∈ [1, 2, ...., 1, 000]), subject to inter-patient variability,

were generated. For individuals with different demographic

characteristics, the set of population parameters PARk will be

different and, therefore, will require similar testing with the

generation of a new cohort of individuals.

2. Sensor measured values generation (3): In order to evaluate

the performance and robustness of a closed-loop controller

(4) under realistic conditions, the intra-individual variability of

the Eleveld et al. (2014) model was used to generate statistically

sound virtual sensormeasurements (Simalatsar et al., 2018a,b,c).

Thus, PAR
j

k
was used to compute the plasma concentrations

C
j
n at step n for each jth individual administered with a

personalized delivery rate computed by the controller. Those

plasma concentrations were further modified following the

intra-individual variability described above, to emulate sensor

measurement Y
j
n at step n for each jth individual.

3. Controller (4): Within this ISCT, the performance and

robustness of two MPC controllers adjusting the delivery rate

in a personalized manner based on occasional measurements

of plasma drug concentration and the propofol population PK

model were evaluated (Simalatsar et al., 2018a).

4. Actuator (5): In this closed-loop system, the actuator ensured

that the delivery rate set by the controller is actually achievable,

taking into account both the limitations of physiology and the

delivery mechanism, e.g., the maximum allowed delivery rate.

PARk was used to compute the plasma concentrations C
j
n at

step n for each jth individual, i.e., patient-specific CT profiles, for

identical delivery rates computed with the classical algorithm used
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FIGURE 5

The general flow of ISCT for closed-loop propofol TCI pump.

FIGURE 6

Plasma and brain Concentration-Time (CT) profiles for 1,000 similar individuals with physiological parameters varying following inter-patient

variability of Eleveld’s model (Eleveld et al., 2014). Each CT distribution is represented with median CT profiles and 95% predictions interval after

propofol injection with a delivery rate computed using an open-loop algorithm of standard TCI pumps.

by the standard TCI pump for the pth individual. This allowed

for the evaluation of potential under- and over-dosing for certain

individuals of this virtual cohort, as shown in Figure 6. Such

evaluation allowed us to prove the importance of personalization

of propofol delivery.

The construction of CT profiles for the whole virtual

cohort administered with personalized delivery rates

allowed performing a robustness analysis of the controller,

taking into account several potential sensor technology

limitations, thus also imposing requirements for such

a technology:

1. Noise, defined using proportional (prop) and additive (add)

terms of the PK model intra-individual variability.

2. Measurement period, the time between two consecutive

measurements (tn − tn−1).
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3. Measurement delay, the time required to perform one

physiological measurement (Y
j
n−τ ).

Their performance (i.e., the precision of target achievement)

was compared to that of the standard TCI pump, demonstrating

a significant improvement in the precision of target achievement

for closed-loop delivery personalized with MPC algorithms

and occasional plasma concentration measurements. Specifically,

Figure 7 presents a scenario where the target brain concentration

is set at 6 mg/L and compares the area of the 95% prediction

interval after propofol injection with the delivery rate computed

using the open-loop algorithm of standard TCI pumps and with the

personalized delivery rate when MPC was given one measurement

every 30 s, with a value delay of 15 s, and with measurement noise

distributed with intra-individual variability for the selected cohort

of individuals.

In the example above, we have presented only the use of the

PK model, however, the pharmacodynamic (PD) model (Eleveld

et al., 2018), which links drug concentration to the actual effect

(DoA), has a potential to build and perform ISCT on closed-loop

controller based on both DoA index and plasma concentration

measurements.

3.3. Model predictive control design for
artificial pancreas

The classical therapy of type 1 diabetes mellitus (T1DM)

consists of a predefined daily schedule of subcutaneous injections

of insulin. In 1999, the first commercial Continuous Glucose

Monitoring (CGM) system was introduced by MiniMed. Since

then, there has been a lot of research done in order to personalize

insulin injections with the use of the so-called artificial pancreas,

an autonomous system for glycemic control aimed at delivering

the amount of insulin based on CGM. This example is similar to

the closed-loop propofol delivery with TCI pump presented above,

where insulin is a medication the delivery rate of which must be

controlled based on a sequence of measured glucose levels.

The first version of the type 1 diabetes mellitus (T1DM)

simulator of the University of Virginia/Padova was introduced

in 2008 (Kovatchev et al., 2009). This simulator included three

cohorts of individuals: 100 in-silico adults, 100 adolescents, and 100

children, where each subject was modeled as a vector of subject-

specific parameters with joint parameter distribution, i.e., inter-

patient variability, covering the variability of parameters observed

in real-life. For themoment, an artificial pancreas can be considered

an exemplary case study of ISCT performed for a PCLC system.

This simulator was approved by the FDA as a substitute for

preclinical trials for insulin injection pumps driven by closed-

loop algorithms and was used in several closed-loop algorithm

simulation studies (Lee et al., 2009; Kovatchev et al., 2010; Toffanin

et al., 2013) that helped many developers to receive rapid FDA

approval of their closed-loop algorithms. An updated version of the

T1DM simulator that included a model of counter-regulation and

a new description of glucose dynamics in hypoglycemia has been

presented in 2013 (Man et al., 2014) and was also approved by the

FDA.

In parallel with this research and probably partially based on

these results, in November 2012 the FDA issued a guidance for

Industry and Food and Drug Administration Staff–The Content of

Investigational Device Exemption (IDE) and Premarket Approval

(PMA) Applications for Artificial Pancreas Device systems. The

interesting part of this guidance is that it suggests that AP

systems consist of a number of device components, i.e., glucose

monitoring, control algorithm and signal processing, infusion

pump, and communication pathways functional components, that

all together form a complete system conforming with technological

specifications, e.g., the listing of functional components, their

interoperability, details of technical features, and clear statement

of intended use, defined in the system-level device description.

According to the FDA guidance on AP (FDA, 2012), the testing of

the control algorithm and signal processing functional component

for artificial pancreas solutions should be provided, which currently

can be done using the T1DM simulator mentioned above.

4. Discussion and common ground

Synthetic big data in the form of virtual cohorts of patients

and sensor measurements help to address the problems of safety,

efficacy, robustness, and trustworthiness of PCLC at each point of

its life cycle, from the early design phase up to CTs. Clearly, the

physiological model is a key component used to not only generate a

cohort of patients but also to build a sensor model, as described

in Sections 3.2.3. It is hard to imagine, but not impossible, that

one day we will have a complete physiological model of a human

or any other animal, including not only the visual representation

but also the mechanical, electrical, and metabolic aspects within

one system model. However, for the moment, when we talk

about physiological models, we have in mind a domain-specific

representation of several aspects of human or animal anatomy,

physiology, or, consequently, pathology. Physiological modeling in

the pharma domain has been receiving a lot of financial support

and is, therefore, represented by a large number of different quite

elaborate PK/PD models for different drugs, providing not only

average population models but also statistical inter- and intra-

patient variabilities. Physiological models outside of the pharma

domain are less elaborated (Jiang et al., 2012, 2016; Ivanov et al.,

2015).

In the case of PK/PD models, which are built on

measurements of real patient responses to treatment, such

as plasma concentrations after certain doses, the statistical

distribution of patient parameters and measurement imprecision

are represented by inter- and intra-individual variabilities,

respectively. Other models, such as those used in Jiang et al.

(2016) and Haddad et al. (2017), integrate prior knowledge

about the statistics/frequency of physiological responses as a

second stage of model development using the Bayesian approach.

However, they do not differentiate between inter- and intra-patient

variability, thus mixing both effects in one variability. The artificial

pancreas simulator (Kovatchev et al., 2009) also relies only on

inter-individual variability.

To determine the extent to which differentiation between

inter- and intra-individual variabilities is needed, one needs to

perform sensitivity analysis for each particular case, which will be

conditioned by how significant the statistical variability is and how

it is used in PCLC design, development, and testing. In the case of

general anesthesia, combined inter- and intra-individual variability
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FIGURE 7

PI95% for e�ect site and median CT profiles for individuals under the dose regimen computed by standard TCI (larger gray area) and feedback loop

algorithm with Bayesian inference (more narrow area around 10% accuracy area). Computations with measurement period of 15 s and delay of 30

s (Simalatsar et al., 2018a).

is large. In addition, the use of only intra-individual variability

for emulation of sensor measurements for a fixed individual is

more realistic, since inter-individual variability is conditioned by

parameters that do not change within one individual in one instant,

such as organ sizes, for example.

Let us look at the four key components of PCLC devices shown

in Figure 1B. Each of these componentsmay be a potential source of

failure, errors, or unpredictable behaviors. Therefore, each of them

must address specific requirements and go through validation steps:

4.1. Sensors and cohort generation

In all the above-presented examples, sensor models and cohort

generation have slightly different meanings. Sensors are themedical

device components able to measure physiological signals and either

provide them as the raw input to the digital controller or in the form

of a time series of measurements as an input to a signal processing

or machine learning algorithm to produce some unified variable, an

index to be used by the digital controller. In case the physiological

signal is directly used by the controller, the variable may be affected

by external environmental or physiological disturbances resulting

in short-term failure in physiological signal monitoring, which can

be referred to as statistical error. Without the ability to recognize

and correctly treat these failures, the PCLC device may enter into

a potentially hazardous state. When clinical staff are included in

the loop, they may recognize and ignore these sensing anomalies.

However, in a closed-loop controller configuration, these failures

will be accepted by the controller and, therefore, may affect the

therapy being delivered.

The theory of faults/anomalies detection in dynamic systems

is vast (Willsky, 1976; Chandola et al., 2009). On the other hand,

statistical sensor failures can be seen as medical alarms, while the

detection of alarms in medical environments has also received a

lot of attention (Burgos et al., 2010; Jiang et al., 2010; Saria et al.,

2010; Ghorbani and Bogdan, 2013). The most common detectors in

clinical environments are based on sensor threshold alarms when a

single physiological value is monitored. Once the threshold of this

sensor value is surpassed, an alarm is generated. Such an approach

is subject to a high rate of false alarms. On the other hand, if, in

certain situations, alarms are not generated, it can lead to multiple

adverse events, including death (Bach et al., 2018). Recently, a

novel approach for alarm detection based on a parameter-invariant

design was proposed (Weimer et al., 2015) and applied to the

detection of clinical pulmonary shunts in infants (Ivanov et al.,

2015).

In case the physiological signal is first processed by an

intermediate algorithm, the algorithm may take care of

statistical errors, though the level of reliability, robustness,

and trustworthiness of such algorithm plays a crucial role. A

wrongly developed algorithm can introduce a systematic error

to the final variable, which may not be noticed even by medical

personnel, for example in the case of DoA index computation (An

et al., 2017).

All three examples have their own way of building a sensor

model. In the ICD example, the sensing model is represented by
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a set of EGM signatures and therefore resembles more of the

population PK model of the anesthesia case. However, the “timing

model instances" and further integration of prior statistics help

to enrich this average model with inter-patient variability. Such

modeling is essential for testing and evaluating discrimination

algorithms, however, it will not allow to model and test cases of

statistical sensor failures.

In the anesthesia case, in addition to inter-individual variability

of physiological parameters used to generate a virtual cohort, it also

provides the statistical measurement noise model in the form of

intra-individual variability. It models only statistical measurement

imprecision, however, the separation of the sensor and cohort

generation model allows the introduction of occasional sensor

failures outside of noise statistical distribution and thus evaluating

system fault tolerance.

The strongest argument for using simulation of a representative

cohort of patients to exhaustively test a closed-loop algorithm

instead of performing animal testing is that the closed-loop

algorithm is based on a predictive model developed using

parameters of human beings, and therefore testing it on animals

cannot be considered conclusive. This is true for all devices where

decisions are taken on predictive models developed on human

statistics, such as, for example, medication infusion pumps that are

using human PK models.

4.2. Closed-loop controller

Basing the controller model solely on sensor measurements is

not fully reliable, since measurements will be affected by noise and

breakdowns.Moreover, an individual patient is subject to intra- and

inter-individual variability. This, in turn, affects the physiological

response, which requires that the controller performs over a wide

range of uncertain conditions and therefore may lead to instability

if the controller design is not sufficient for the expected range

of physiological conditions. Moreover, the physiological response

may come with certain delays, periods (depending on the sensing

technologies), measurement errors, or external disturbances that

will certainly add instability to controller performance.

Therefore, it is advisable to develop a closed-loop algorithm

incorporating predictive physiological models and sensor

measurements, such as Model Predictive Control (MPC)

approaches. This way, in cases when MPC techniques are used to

implement digital controllers, population physiological models are

an essential derivative of the general physiological model.

4.3. Actuator

At first glance, the task of actuator modeling looks simple.

However, here we must address such questions as limitations of the

actuator imposed by:

• Human physiology: for example, the infusion rate of an IV drug

delivery devicemust be limited to prevent harm to the patient’s

veins.

• Limitations of the device itself, such as the limitation of delivery

speed adaptation or limited supply of resources, e.g., the

limited volume of a syringe.

• Clinical settings, including human factor considerations and

the user interface.

4.4. System components interoperability

PCLC devices that combine sensors, actuators, and controllers

for patient treatment may have issues arising from interoperability

among these system components, as well as their interaction

with the environment. It is therefore important to provide a

detailed specification of each system component, including their

interaction model with the neighboring components in order to

allow the detection of potential system failures. To fully address this

question, one must refer to multiple already existing methodologies

for system component-based design, such as formalization of

system-level specification (Bauer et al., 2012) and the theory of

contracts (Benveniste et al., 2018).

5. Conclusion and future work

Ensuring the safety, efficacy, and robustness of PCLC is not

the only challenge that can be addressed by synthetic biomedical

data generation and their application in ISCT. Multiple biomedical

research domains would benefit from ISCT, which requires new

model development. Generalization of the ISCT approach is also

possible and can be seen as the ultimate goal of the ISCT efforts,

however, a critical mass of relevant ISCT case studies still needs to

be reached.

The experience of the pharma domain has shown that the

development of new drugs has resulted in more strict regulatory

requirements that, in the end, have become affordable only to big

industries. As a result, Novartis is one of the biggest representatives

of the pharma industry in the market, while small pharmacists had

to stop the research and development of their proprietary drugs

because they could not afford the competition.

Can the early adoption of physiological models and the

performance of ISCT at all stages of the medical device life

cycle allow for lowering the cost of design, development, and

registration of novel PCLC medical devices and thus prevent the

monopolization of the market? That remains to be seen. However,

it can only be seen if an attempt toward the development of ISCT

based on the generation of big synthetic biomedical data is made.
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