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Coat color is an important phenotypic characteristic of the domestic rabbit 
(Oryctolagus cuniculus) and has specific economic importance in the Rex 
rabbit industry. Coat color varies considerably among different populations of 
rabbits, and several causal genes for this variation have been thoroughly studied. 
Nevertheless, the candidate genes affecting coat color variation in Chinese Rex 
rabbits remained to be investigated. In this study, we collected blood samples from 
250 Chinese Rex rabbits with six different coat colors. We performed genome 
sequencing using a restriction site-associated DNA sequencing approach. A total 
of 91,546 single nucleotide polymorphisms (SNPs), evenly distributed among 
21 autosomes, were identified. Genome-wide association studies (GWAS) were 
performed using a mixed linear model, in which the individual polygenic effect 
was fitted as a random effect. We  detected a total of 24 significant SNPs that 
were located within a genomic region on chromosome 4 (OCU4). After re-
fitting the most significant SNP (OCU4:13,434,448, p  =  1.31e-12) as a covariate, 
another near-significant SNP (OCU4:11,344,946, p  =  7.03e-07) was still present. 
Hence, we conclude that the 2.1-Mb genomic region located between these two 
significant SNPs is significantly associated with coat color in Chinese Rex rabbits. 
The well-studied coat-color-associated agouti signaling protein (ASIP) gene 
is located within this region. Furthermore, low genetic differentiation was also 
observed among the six coat color varieties. In conclusion, our results confirmed 
that ASIP is a putative causal gene affecting coat color variation in Chinese Rex 
rabbits.
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Introduction

Among all farm animals, modern rabbits (Oryctolagus cuniculus) are among the most 
recently domesticated species, although the exact domestication date of the species remains 
controversial when examined on the basis of archeological records and genetic evidence (1, 2). 
However, it has been widely acknowledged that modern rabbits have a single domestication 
origin, resulting in lower genetic variation in comparison with other farm animals (3–5). More 
than 200 rabbit breeds have been officially registered in the Domestic Animal Diversity 
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Information System (DAD-IS),1 and these show considerable 
morphological variation, such as in body size, coat color, and hair 
phenotype (6, 7). Among them, the Rex rabbit is well known for its 
short, dense, and smooth hair. This Rex rabbit phenotype is believed 
to have genetically originated from normal hair (8). Coat color is an 
important phenotypic trait in the fur industry, and at least 16 color 
varieties of Rex rabbits have been recognized by the American Rabbit 
Breeders Association (ARBA);2 however, the preferred coat color 
differs between different markets.

Coat color in mammals is determined by the relative amounts of 
eumelanin and phaeomelanin in melanocytes, and many studies have 
been conducted to identify coat-color-associated genes and causal 
mutations in domestic animals during the past two decades (9). In 
domestic rabbits, melanocortin 1 receptor (MC1R) is the first gene to 
have been thoroughly studied, and several causal mutations have been 
successfully identified as affecting coat color (10, 11). As a competitive 
ligand to MC1R in the melanin synthesis pathway (12), a premature 
stop mutation of the agouti signaling protein (ASIP) gene has been 
reported to be  responsible for the non-agouti black coat color in 
rabbits (13). Additionally, a premature stop mutation of the tyrosinase-
related protein 1 (TYRP1) gene is associated with brown coat color in 
rabbits (14). Based on the gene expression patterns observed in Rex 
rabbits of various colors, it has been suggested that the POU class 2 
homeobox 1 gene (POU2F1) affects fur color formation in Rex rabbits 
(15). The variability of the tyrosinase (TYR) gene has been studied in 
domestic and wild European rabbits; this work has confirmed the 
effects of missense mutations on coat colors (16). The genetic 
polymorphisms of five candidate genes were genotyped to investigate 
their associations with different coat colors in rabbits (17). In addition 
to loci determining different coat colors, it was found that both 
eumelanic and pheomelanic pigmentations can be  further diluted 
more or less under genetical control of the dilute locus: for example, 
black can be diluted to gray. Fontanesi et al. (18) successfully mapped 
the dilute locus of rabbits to the melanophilin (MLPH) gene and 
identified a frameshift mutation associated with the dilute coat color.

Due to the wide application of high-throughput sequencing 
technologies, large numbers of genome-wide variants can now 
be discovered and genotyped at an affordable cost (19). Among these 
technologies, restriction-site-associated DNA sequencing (RAD-seq) 
is a cost-efficient approach for investigating genome-wide variants, 
especially in non-model species (20); the approach was first proposed 
in 2008 and is characterized by sequencing of small genomic 
fragments that are randomly digested by restriction enzyme (s). The 
RAD-seq approach has been widely used for population genetics and 
genome-wide association studies (GWAS) [such as by (21–24)]. In 
rabbits, genetic diversity and population structure have been 
investigated using genome-wide single nucleotide polymorphisms 
(SNPs) that have been generated using the RAD-seq approach (25, 
26). In this study, we similarly employed the RAD-seq approach to 
identify genome-wide SNPs, which we subsequently used for GWAS 
with six coat color varieties of Chinese Rex rabbits. The results could 
help us to better understand the underlying genetic basis of coat colors 
in Chinese Rex rabbits.

1 https://www.fao.org/dad-is

2 www.arba.net

Materials and methods

Animals and genomic DNA

Venous blood was collected from the marginal ear veins of 250 
Rex rabbits raised at the Research Farm of Sichuan Academy of 
Grassland Sciences. The rabbits consisted of six coat color varieties: 40 
White Rex (WT), 42 Californian Rex (CL), 42 Black Rex (BL), 42 
Chinchilla Rex (CC), 42 Dark Chinchilla Rex (DC), and 42 Light 
Chinchilla Rex (LC). Among these varieties, WT, CL, BL, and CC 
exhibit different coat colors, and there are two varieties of CC with a 
darker (DC) and lighter (LC) coat color, respectively (Figure 1). There 
was no genetic relationship within three generations among any of the 
sampled animals according to pedigree information. Genomic DNA 
was extracted using the Axy-Prep Genomic DNA Miniprep Kit 
(Axygen Bioscience, USA).

Genome sequencing

Based on preliminary investigation on the reference genome 
sequences of rabbits, the restriction enzyme EcoRI (NEB, Beijing) was 
successfully used to digest genomic DNA (~1 μg per sample used). 
Sequencing libraries were constructed according to the recommended 
pipeline (20). In brief, P1 adapter sequence was first added to the 
digested fragments; this was followed by sequential steps of sample 
pooling, random shearing, and fragment size-based selection using 
agarose gel. Subsequently, DNA was ligated to a second adapter (P2) 
with divergent ends. DNA fragments of ~400 bp in length were 
selected to construct the sequencing libraries. Finally, the libraries 
were sequenced on an Illumina HiSeq platform and 150 bp paired-end 
reads were generated (Novogene Co. Ltd., Beijing).

Reads mapping and SNP genotyping

After the initial sequencing images were converted into sequence 
files in the FASTQ format using a standard pipeline, we  first 
investigated the Qphred value-based error rate. Using the fastp software 
package (27), low-quality reads were discarded according to three 
criteria (26): (1) reads containing adaptor sequences, (2) reads 
containing ambiguous bases for more than 10% of the total length, 
and (3) reads containing low-quality bases (Qphred value <5) for more 
than 50% of the total length. If either member of the paired reads was 
marked as low quality, both pairs were discarded. After these steps, 
we obtained clean reads and subjected them to the following analyses.

All clean reads were mapped to a rabbit reference genome (UM_
NZW_1.0) using the BWA software with default parameters (28). 
Subsequently, we employed the GATK toolkit v3.8 (29) for discovery 
and genotyping of small variants (SNPs and InDels) among all samples 
according to GATK Best Practices recommendations (30, 31); in this 
process, the duplicate removal, realignment, and hard filtering steps 
were performed with default parameters. After exclusion of all InDels, 
a raw set of SNPs was obtained. SNPs were removed if they had a 
coverage depth < 3, calling rate < 90% for the genotypes or individuals, 
minor allele frequency (MAF) < 0.05, and extreme deviation from 
Hardy–Weinberg equilibrium (HWE, p < 10−8). Finally, we extracted 
biallelic SNPs and generated a clean set of SNPs. The missing 
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genotypes were further imputed using the Beagle software package 
v5.4 with default parameters (32).

Population and association analyses

We investigated the genomic distribution of clean SNPs and the 
transition/transversion ratio using the ANNOVAR software package 
(33). Nucleotide diversity (π) for each locus was calculated using the 
vcftools software package (34). The PopSc toolkit (35) was used to 
calculate the polymorphism information content (PIC), inter-variety 
Wright’s FST, and intra-variety Wright’s FIS (36). The pairwise 
p-distances among all samples were calculated from all SNPs using the 
TreeBeST software package (TreeSoft) and then subjected to the 
construction of a phylogenetic tree according to the neighbor-joining 
method (37); this phylogenetic tree was visualized using the ggtree R 
package (38).

In GWAS, the six coat color varieties of Rex rabbits were arbitrarily 
coded using the ordinal values of WT = 1, LC = 2, CC = 3, DC = 4, 
CL = 5, and BL = 6. To avoid potential bias arising from the arbitrary 
coding of coat colors, the reverse order was employed in independent 
repeat performance of GWAS. The effect of each SNP was estimated 
using a mixed linear model implemented in the GCTA software 
package (39):

 = + β+ µ+y 1 eZ W

where y  is the vector of coat colors coded above; 1 is the mean 
term; β  is the fixed effect of the SNP tested for association; Z  is a 
vector containing the genotype score for the tested SNP; µ  is the 

vector of individual random polygenic effects with ( )σµ 2~ 0,G uN , 
where G is the genomic relationship matrix and σu

2  is the additive 
genetic variance; W  is the incidence matrix for µ ; and e is a vector of 
random residual effects with e ,I~ N e0 2σ( ) , where I is an identity 
matrix and σe

2  is the residual variance. After estimation of the SNP 
effects, the most significant SNP was selected and further added as a 
covariate to the mixed linear model described above. A Bonferroni 
approach was used for correction of multiple comparisons in the 
GWAS results (40).

Results

Sequencing and SNPs

We obtained 208.51 Gb raw paired-end reads (approximately 1.5 
billion reads) across all the sequenced samples, from which 208.48 Gb 
clean reads (0.83 Gb per sample) were generated after the quality 
control steps. On average, 98.9% of the clean reads were successfully 
aligned against the reference genome. A total of 5,162,522 raw SNPs 
were generated on 21 autosomes, and we finally obtained 91,546 high-
quality biallelic SNPs according to our custom filtering process. These 
SNPs were distributed across the whole genome, and an average of 
42.3 SNPs per Mb genomic region was comparably observed among 
all autosomes (Figure 2A). The mean MAF was ~0.25 (Figure 2B). 
There were 64,311 transitions and 27,235 transversions (transition/
transversion ratio = 2.36). Using the reference annotation of the rabbit 
genome (UM_NZW_1.0), we inferred the locations of the SNPs. SNPs 
were distributed within exons (N = 1,648), introns (N = 34,037), 1 kb 
upstream/downstream regions of genes (N = 1,411), and intergenic 
regions (N = 54,450).

FIGURE 1

Phenotypes of the six coat color varieties of Rex rabbit included in this study.
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Genetic diversity and population structure

Among all clean SNPs, the distribution density of nucleotide 
diversity exhibited a single peak close to 0.5, and a similar pattern was 
also observed for PIC (Figure 2C). The median and mean values for 
nucleotide diversity across the six coat color varieties were 0.3518 and 
0.3185, respectively (Table 1); among these, the Black Rex showed the 
highest degree of nucleotide diversity, with a median of 0.3672 and a 
mean of 0.3340. The Black Rex and Californian Rex had the highest 
and lowest PIC, with mean values of 0.2649 and 0.2440, respectively. 
Furthermore, there were no obvious differences among the coat color 
varieties in relation to genetic diversity.

The highest and lowest degrees of inter-variety differentiation 
were observed between the Dark Chinchilla Rex and the Californian 
Rex (FST = 0.0962), and between the Chinchilla Rex and the Dark 
Chinchilla Rex (FST = −0.0002), respectively (Figure 3A). Intra-variety 
inbreeding coefficients (FIS) ranged from −0.1221 in the Californian 
Rex to −0.0522 in the Black Rex. According to the phylogenetic tree 
for all samples (Figure 3B), both the White Rex and the Californian 
Rex formed their own clusters and were separated from the other 
breeds. Next, most of the Black Rex rabbits were clustered together 
and were almost distinguishable. However, there was no obvious 
clustering pattern among the Chinchilla Rex and the other two breeds.

Association with coat colors

The association analysis results are shown in Figure 4. A total of 
24 SNPs were detected as statistically significant; all of these were 

located within a 3.01-Mb genomic region on chromosome 4 (OCU4). 
After fitting the most significant SNP (OCU4:13,434,448; p = 1.31e-12) 
as a covariate, the association signal within this region noticeably 
decreased, but it still almost reached the threshold for significance 
(OCU4:11,344,946; p = 7.03e-07). The allelic frequencies of the two 
SNPs within each population are shown in Table  2; notably, 
OCU4:13,434,448 was completely fixed in the three non-Chinchilla 
populations. When both SNPs (OCU4:13,434,448 and 
OCU4:11,344,946) were simultaneously fitted as covariates, there was 
no longer any significant association signal within this region. Upon 
reverse-coding of the coat color, the association results did not change 
noticeably (Supplementary Figure S1).

We further investigated the annotated genes within this candidate 
genomic region (including 500 kb upstream of OCU4:11,344,946 and 

FIGURE 2

Genomic distribution and genetic diversity of SNPs. For all clean SNPs, we investigated the genomic distribution (A), minor allele frequencies (B), and 
the density distribution of nucleotide diversity and polymorphism information content (C).

TABLE 1 Nucleotide diversity (π) and polymorphism information content 
(PIC) in different coat color varieties of Rex rabbit.

Coat color 
variety

π PIC

Median Mean Median Mean

White Rex 0.3532 0.3236 0.2879 0.2575

Californian Rex 0.3408 0.3069 0.2800 0.2440

Black Rex 0.3672 0.3340 0.2970 0.2649

Chinchilla Rex 0.3543 0.3169 0.2888 0.2520

Dark Chinchilla Rex 0.3408 0.3116 0.2800 0.2478

Light Chinchilla Rex 0.3543 0.3179 0.2888 0.2526

Overall 0.3518 0.3185 0.2871 0.2531
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FIGURE 3

Genetic structures among the six coat color varieties of Rex rabbit. The matrix (A) shows pairwise Wright’s FST values in the lower triangle and FIS values 
in diagonal cells. The phylogenetic tree for all 250 animals is shown in (B). WT, White Rex; CL, Californian Rex; BL, Black Rex; CC, Chinchilla Rex; DC, 
Dark Chinchilla Rex; LC, Light Chinchilla Rex.

FIGURE 4

Genome-wide association with coat colors of Chinese Rex rabbits. After testing all SNP effects with a mixed linear model (top panel), the most 
significant SNP (OCU4:13,434,448) was fitted as a covariate for re-testing of SNP effects (middle panel). Both significant SNPs (OCU4:13,434,448 and 
OCU4:11,344,946) were simultaneously fitted as covariates for re-testing of SNP effects (bottom panel). The dashed line represents the genome-wide 
significance threshold.
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500 kb downstream of OCU4:13,434,448), identifying 51 positional 
candidate genes in total. Among these genes, the well-studied ASIP 
gene, which is significantly associated with agouti coat color in rabbits, 
was located 150  kb upstream of the most significant SNP 
(OCU4:13,434,448). However, the second-most independently 
significant SNP (OCU4:11,344,946) was located at a large distance, 
1.7 Mb upstream of the ASIP gene. Besides ASIP, no other known 
coat-color-associated gene was found within this candidate 
genomic region.

Discussion

Coat color is an important phenotypic characteristic in 
domestic animals and has been directly subjected to artificial 
selection (41). It has also been proposed that hundreds of loci/
genes play a role in affecting coat color, which (in combination 
with diverse selection preferences among humans) has ultimately 
resulted in considerable variation in a wide range of domestic 
animals (9). In addition to being farmed for the production of 
meat, wool, and fur, modern rabbits have been kept as a pet animal 
worldwide, with specific emphasis on the subjective selection of 
coat color. Therefore, rabbits could represent an ideal case for the 
identification of candidate genes and causal mutations affecting the 
expression of different coat colors. With the use of a cost-efficient 
method, genome-wide genetic variants could be  discovered de 
novo through implementation high-throughput surveys, such as 
GWAS, for economically important traits and for the investigation 
of population genetic structures. In this study, we collected six coat 
color varieties of Rex rabbits raised in China and employed a high-
throughput approach to successfully identify genome-wide and 
evenly distributed SNPs.

Coat color in mammals is generally considered to be a qualitative 
trait, although the phenotypic variations are genetically determined 
by polygenes. Therefore, the genome-wide scanning approach has 
been increasingly widely used to reveal coat-color-associated 
candidate genes and causal mutations. For example, Li et  al. (42) 
genotyped ~50 k SNPs and employed a GWAS approach to identify 
three known pigmentation genes in sheep. In the Iranian Markhoz 
goat, a total of six genes have been identified as being associated with 
black, brown, and white coat colors using a GWAS approach (43). 
Based on the newly discovered SNPs in this study, we also conducted 
the first GWAS for coat color in Chinese Rex rabbits. Our results 
revealed that a 2.1-Mb genomic region (OCU4:11,344,946 – 
13,434,448) containing ASIP, which has been shown in previous 
studies to be  significantly associated with coat color (13), is also 

significantly associated with coat color in Rex rabbits. In a previous 
study of Rex rabbits with different coat colors, Yang et al. (44) found 
that ASIP had three alleles and was extensively expressed in all 
analyzed tissues. Recently, an 11-kb deletion spanning the promoter 
and first exon of ASIP has been suggested to be the most likely causal 
variant for the black-and-tan phenotype in rabbits (45). In the present 
study, we confirmed that ASIP is a putative causal gene affecting coat 
color in Chinese Rex rabbits. In the melanocytes of the hair follicle, 
ASIP encodes a paracrine signaling molecule that promotes the 
synthesis of pheomelanin (46). However, further studies are needed 
to explore whether the two candidate SNPs identified in this study are 
causal variants or not; although both of them are located more than 
100 kb away from ASIP (upstream and downstream), possible roles 
for these SNPs in regulating gene expression cannot be excluded. 
Another possibility is that the two candidate SNPs are closely linked 
to the potential causal variant(s).

In addition to the discovery of coat-color-associated candidate 
genes, both genetic diversity and population structures among the six 
coat color varieties of Rex rabbits were investigated using the set of 
genome-wide SNPs generated in this study. Our results revealed the 
differential genetic diversity among these coat color varieties, with the 
highest genetic diversity observed in the Black Rex. This result is 
consistent with those presented in a previous report on genetic 
diversity patterns among 29 domestic and wild rabbit populations, 
examined using microsatellite markers (47). Liu et  al. (25) also 
investigated population structure among eight Chinese rabbit breeds 
(not including the Rex rabbit), whose FST values were significantly 
higher than our estimates in this study; this may suggest that genetic 
differentiation among different populations of Rex rabbits is relatively 
low in comparison with other indigenous breeds. In accordance with 
this possibility, less inter-variety genetic differentiation was observed, 
with lower Fst values, than in former reports (47, 48). Meanwhile, our 
clustering analysis revealed that only individuals of the White and 
Californian Rex rabbit varieties could be  clustered together and 
distinguished from individuals of other varieties. Overall, our results 
revealed using genome-wide SNP information that there is low genetic 
differentiation among different coat color varieties of Chinese 
Rex rabbits.

Conclusion

In this study, we discovered a genome-wide set of SNPs for 
Chinese Rex rabbits and used these to perform association 
analyses for the coat color phenotype. Our results revealed a single 
genomic region that is significantly associated with Rex coat color, 

TABLE 2 Frequencies of reference alleles for the two (near-) significant SNPs.

Coat color variety OCU4:13,434,448 (T  >  A) OCU4:11,344,946 (G  >  A)

White Rex 1.00 0.64

Californian Rex 1.00 0.98

Black Rex 1.00 0.82

Chinchilla Rex 0.73 0.45

Dark Chinchilla Rex 0.92 0.44

Light Chinchilla Rex 0.55 0.54
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and confirmed that the previously known coat-color-associated 
gene ASIP is a putative causal gene affecting coat color variation 
in Chinese Rex rabbits. Furthermore, low genetic differentiation 
was revealed among the six coat color varieties of Rex 
rabbit studied.
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