
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jinming Han,
Capital Medical University, China

REVIEWED BY

Sebastian Thams,
Karolinska Institutet (KI), Sweden
Leon Smyth,
Washington University in St. Louis,
United States
Benjamin Murdock,
University of Michigan, United States
Caroline Perner,
Universitätsmedizin Greifswald, Germany

*CORRESPONDENCE

Dongsheng Fan

dsfan2010@aliyun.com

RECEIVED 24 June 2023

ACCEPTED 02 August 2023

PUBLISHED 16 August 2023

CITATION

Cao W and Fan D (2023)
Neutrophils: a subgroup of
neglected immune cells in ALS.
Front. Immunol. 14:1246768.
doi: 10.3389/fimmu.2023.1246768

COPYRIGHT

© 2023 Cao and Fan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 16 August 2023

DOI 10.3389/fimmu.2023.1246768
Neutrophils: a subgroup of
neglected immune cells in ALS

Wen Cao1,2,3 and Dongsheng Fan1,2,3*

1Department of Neurology, Peking University Third Hospital, Beijing, China, 2Beijing Key Laboratory of
Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China, 3Key
Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University,
Beijing, China
Amyotrophic lateral sclerosis (ALS) is a chronic, progressive neurodegenerative

disease characterized by the loss of motor neurons. Dysregulated peripheral

immunity has been identified as a hallmark of ALS. Neutrophils, as the front-line

responders of innate immunity, contribute to host defense through pathogen

clearance. However, they can concurrently play a detrimental role in chronic

inflammation. With the unveiling of novel functions of neutrophils in

neurodegenerative diseases, it becomes essential to review our current

understanding of neutrophils and to recognize the gap in our knowledge about

their role in ALS. Thus, a detailed comprehension of the biological processes

underlying neutrophil-induced pathogenesis in ALS may assist in identifying

potential cell-based therapeutic strategies to delay disease progression.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized

by progressive degeneration of upper and lower motor neurons (1). Clinical phenotypes of

ALS exhibit heterogeneity, including muscle atrophy, weakness, spasticity and pyramidal

syndrome, progressive dysphasia, and dysarthria. The average incidence of ALS is

estimated to be 1.5 to 2 per 100,000 personyears, with increased incidence observed

worldwide over the past decade (2, 3). Several pathological events, including excitotoxicity

resulting from excessive glutamate levels, oxidative stress damage, protein misfolding,

disruption of the blood-brain barrier (BBB), and reduced energy metabolism, have been

hypothesized to contribute to the neurodegenerative process in ALS. TDP-43 is an RNA-

binding protein mainly found in the nucleus and plays an important role in RNA cleavage,

transport, translation, and stability (4, 5). 95% of ALS patients exhibit abnormal

localization of TDP43 in the cytoplasm, which leads to serious consequences such as

miscleavage of RNA in the cytoplasm, decreased translation efficiency, and loss of stability,

which may be the main cause in ALS (with the exception of SOD1 mutations) (4, 5).

However, the exact pathogenesis of ALS remains unclear to date.

Compelling evidence has revealed dysregulated peripheral immunity as a pathological

factor of ALS. Whereas the central nervous system (CNS) has traditionally been considered
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an immune-privileged tissue due to the selective permeability of the

blood-brain barrier (BBB), however, a growing number of studies

have revealed functional crosstalk between peripheral immune cells

and the CNS (6). The peripheral immune system comprises the

innate immune system, with neutrophils as its core components, and

the adaptive immune system, with lymphocytes as its core

components. Different subpopulations of immune cells display

different functions in the progression of ALS. For instance, Tregs

have shown a protective role (7), while inflammatory monocytes and

CD8+ T cells may be destructive (8–10). As the key component of

innate immunity, neutrophils act as front-line defenders against

pathogens by being stimulated and recruited to affected sites

through chemotaxis and engaging in degranulation to eliminate

pathogens. However, excessive neutrophil activity can result in

significant collateral tissue damage. In ALS, researchers mainly

focus on monocytes or T cells previously, while potential effects

and mechanisms of neutrophils in the pathogenesis of ALS remain

neglected. Modulation of peripheral immune cells has been shown to

delay the progression of ALS in mouse models (11, 12), offering a

feasible and less invasive intervention strategy than modulation of

immune cells in CNS and making peripheral immune cells an

attractive therapeutic target in ALS treatment (13–15). For

example, pharmacological treatment with masitinib delayed

peripheral motor pathway degeneration (axonal pathology,

secondary demyelination, and the loss of type 2B myofibers) by

preventing mast cell infiltration (11). Garofalo et al. found antibody

for the a4 integrin, Natalizumab, prolonged the survival time of ALS

mice by blocking the extravasation of immune cells in the central

nervous system (12). Thereby, searching for precise immunotherapies

targeting specific subsets of peripheral immune cells holds great

promise in ameliorating immune-mediated pathological

deterioration in ALS, and has great benefits in treating ALS. This

review aims to summarize the role of neutrophils in ALS in terms of

their origin, activation, and functions in ALS, with a specific emphasis

on the impacts of the neutrophil granules on ALS, shedding light on

the overlooked contributions of neutrophils in ALS and providing a

theoretical basis for potential precise immunotherapy.
2 A clinical perspective on the linkage
between neutrophil counts and ALS

In recent years, the potential link between circulating neutrophil

counts and ALS disease progression has been proposed (Table 1). In

2017, Murdock et al. investigated the longitudinal association between

changes in peripheral immune markers and ALS disease progression.

They found that an early elevation of neutrophils was associated with

accelerated disease progression reflected by the change in the Revised

Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R)

(17). However, Cui et al. revealed a different conclusion. They found

that neutrophil counts increased gradually over time following ALS

diagnosis and were negatively correlated with ALSFRS-R score but

didn’t find an association between neutrophil changes and ALS

progression (9). In 2020, increased expression of CD16 on the
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surface of neutrophils was observed, which is considered a marker of

oxidative stress and phagocytic activity of neutrophils (25) that is

associated with ALS disease progression, indicating a highly-activated

state of neutrophils in rapidly progressing ALS (20). In 2021, Murdock

et al. conducted a prospective cohort study to explore the association

between baseline neutrophil counts and ALS survival. The results

showed that higher baseline neutrophil counts are associated with

reduced survival in ALS. Furthermore, the effect appeared to be sex-

dependent, with a more pronounced hazard ratio in females (19),

suggesting a potential role of sex hormones in neutrophil activity.

However, evidence from mendelian randomization analysis showed

that a genetically determined increased neutrophil count was associated

with a reduced risk of ALS (95% CI: 0.858-1.000, P: 0.049) (18). The

controversial conclusions between mendelian randomization and

observational studies may be attributed to two factors: firstly, the

effect of neutrophils on ALS in mendelian randomization is weak

and could be influenced by confounding biases; secondly, previous

observational studies mainly focused on the link between neutrophils

and ALS after diagnosis, while mendelian randomization analysis

revealed the causal relationships between neutrophils and ALS

incidence. These inconsistent findings also suggest that neutrophils

may play both detrimental and protective roles for neurons at different

stages of diseases. To date, no positive immunosuppressive drugs for

ALS patients have been identified in clinical trials (26). More attention

should be paid to applying precise immunotherapy in different disease

stages and specific subpopulations.

The neutrophil-derived metric, neutrophil to lymphocyte ratio

(NLR), which reflects the balance of peripheral innate and adaptive

immunity, has also been indicated as a promising biomarker for ALS

disease progression and prognosis. As early as 2009, low-grade systemic

inflammation, characterized by an elevated wide-range C-reactive

protein (wrCRP), fibrinogen, erythrocyte sedimentation rate (ESR),

and NLR, has been proposed as a hallmark of ALS. This correlation

was consistently observed in repeated blood draws over time (21). In

2020, research conducted in South Korea divided ALS patients based

on their baseline NLR into three groups and revealed that the patients

with a high NLR had faster disease progression and shorter survival

(22). These findings were subsequently confirmed by a single-center

cohort fromChina and a multicenter cross-sectional cohort study from

Italy (23, 24), suggesting that the balance between innate and adaptive

immunity plays an important role in ALS progression.
3 The production and release
of neutrophils

Neutrophils constitute 50-70% of total leukocytes, making them

the most abundant leukocytes in circulation (27). They are

polymorphonuclear leukocytes originating from myeloid precursors

in the bone marrow (BM), characterized by lobulated or rod-shaped

nuclei and large cytoplasm of neutral granules (28). These granules

primarily consist of lysosomes containing rich enzymes, such as

myeloperoxidase (MPO) and neutrophil elastase (NE), which play

crucial roles in the phagocytic functions of neutrophils.
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Under physiological conditions, neutrophils are generated and

differentiated from stem cells to neutrophil precursors in the BM.

Upon stimulation, neutrophil precursors can be mobilized from BM

into the circulation (29), which is regulated by the interplay between

the C-X-C chemokine receptors (CXCRs) family and C-X-C

chemokine ligands (CXCL) family (29).

Neutrophils remain in the BM when their surface receptor

CXCR4 binds to CXCL12, which is produced by hematopoietic

stem cells and BM stromal cells (BMSC). Granulocyte colony-

stimulating factor (G-CSF) serves as a major regulator of

neutrophil homeostasis (30, 31). When external stimulation

occurs, G-CSF can shift CXCR4 on neutrophils to CXCR2,

thereby inducing neutrophil mobilization and release.

As the principal regulator of neutrophil biology, G-CSF, a

19.6kd hematopoietic cytokine, has garnered significant attention

in the field of ALS. However, clinical and pre-clinical studies yielded

inconsistent conclusions regarding the effect of neutrophils
Frontiers in Immunology 03
increment. Clinical observations have suggested that higher

neutrophil level is associated with accelerated ALS disease

progression and higher mortality rate (9, 17, 19, 22). Assuming

that G-CSF-induced neutrophilia is detrimental to ALS patients,

increased expression of G-CSF would be expected to accelerate the

disease progression. However, the results of pre-clinical studies do

not support the assumption. Animal studies have demonstrated

that G-CSF has neuroprotective effects by suppressing endoplasmic

reticulum stress and inhibiting pro-apoptotic proteins (32–34). In

SOD1G93A transgenic mice, continuous subcutaneous delivery or

CNS-targeted overexpression of G-CSF can inhibit the apoptosis of

motor neurons (35). The inconsistency may arise from two aspects.

First, the effects of G-CSF were complex, with dual roles in both the

hematopoietic and nervous systems. Systemic delivery of G-CSF

can stimulate the proliferation and differentiation of white blood

cells, potentially playing a detrimental role in ALS progression.

However, G-CSF receptors are highly expressed in motor neurons
TABLE 1 Previous clinical studies on neutrophil counts and ALS disease progression.

Indicator Duration Participant Outcomes Conclusions Reference

Neutrophils 2011.3-
2014.5

44 control
patients and 90
patients with
ALS.

ALSFRS-R ALS patients exhibited a significant increase in the percentage of
neutrophils compared to controls. However, the increase was
not correlated with the ALSFRS-R score.
NMR was significantly increased in patients with ALS and was
correlated with disease progression.

(16)

2014.6-
2016.5

35 controls and
119 participants
with ALS

change in ALSFRS-R score Participants with ALS had increased neutrophil counts
compared to healthy controls.
Early changes in neutrophil counts had a significant correlation
with the changes in the ALSFRS-R.

(17)

– Mendelian
randomization

– Increased neutrophil count was suggestive association with
reduced ALS risk.

(18)

2011.6-
2019.10

269 patients with
ALS

mortality rate Participants with higher early neutrophil counts had a higher
mortality rate compared to those with a lower neutrophil count.
This effect was more pronounced in females.
ALS participants had increased neutrophil presence in cervical
and thoracic spinal cord segments compared with control
participants.

(19)

2017.3-
2018.8

23 healthy
controls and 48
patients with
ALS

ALSFRS-R, bulbar subscore of
the ALSFRS-R, change in
ALSFRS-R, respiratory function

CD16 expression on neutrophils was associated with greater
disease severity and faster rate of disease progression in patients
with ALS

(20)

2015-2020 288 ALS patients Primary outcome: risk of death
after diagnosis of ALS
Secondary outcomes: functional
status and disease progression
rate.

Neutrophils increased over time since diagnosis and were
negatively correlated with ALSFRS-R score but not associated
with risk of death or the disease progression rate.

(9)

NLR – 80 patients with
ALS and 80
matched controls

ALSFRS-R NLR was significantly elevated in patients with ALS compared
with controls.

(21)

2012.1-
2017.8

194 patients with
ALS

ALSFRS-R; survival time A high baseline NLR was associated with a shorter survival
period in patients with ALS.

(22)

2012.1-
2018.12

1030 patients
with ALS

ALSFRS-R Higher NLR in patients with sporadic ALS was associated with
faster disease progression rates and shorter survival period.

(23)

2016.3-
2020.1

146 patient with
ALS

The rate of disease progression
(DFS score)

NLR positively correlated with DFS values.
The DFS score progressively increased from the lowest to the
highest NLR tertile.
The mortality rate of patients with a higher NLR value was
twice that of the patients with a lower value.

(24)
f
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(35, 36), and their effect on motor neurons is primarily responsible

for their neuroprotective role. As a result, researchers are exploring

methods to enhance the central neuroprotective effects of G-CSF

while minimizing its peripheral effects. In 2011, Henriques et al.

found that intraspinal injection of G-CSF AAV significantly delayed

the onset of hindlimb paralysis and prolonged 10% survival in

SOD1G93A mice (37), which is improved compared with systemic

injections. Second, G-CSF mobilizes neutrophil production but also

modifies their activation. It is possible that the action of G-CSF is

due to enhancing beneficial/pro-resolution processes in neutrophils

(29). Neutrophil infiltration without degranulation may stimulate

efferocytosis and repair processes (29).

Although G-CSF treatment has shown potential neurotrophic

effects in both pre-clinical and clinical studies of ALS, it is important

to consider its significant systemic effects, particularly its impact on

neutrophilia. Researchers are currently exploring strategies to

mitigate potential peripheral effects of G-CSF by administering it

intrathecally in ALS, however, the harmful effects due to its invasive

nature should not be ignored.
4 Potential functions of neutrophils
in ALS

As key effector of innate immunity, neutrophils trigger host

tissue damages through three major pathways (Figure 1): (1)

Phagocytosis: neutrophils can directly phagocytose foreign

pathogens and self-components; (2) Degranulation: neutrophils

secrete cytotoxic particles during maturation affecting the
Frontiers in Immunology 04
immune response. The main components of these particles are

enzymes, such as MPO, NE, lactoferrin, and metalloproteinases

(MMPs) (38); (3) Activated neutrophils can form neutrophil

extracellular traps (NETs), which are composed of chromatin

components, MPO and NE attached DNA fibers. (4) Neutrophils

may crosstalk with other cells, such as microglia and astrocytes. The

exact roles of neutrophils playing in ALS pathology and the

underlying mechanisms are still unclear. In this section, we

describe the three major roles of neutrophils in ALS and propose

potential mechanisms by which they contribute to the disease.
4.1 Phagocytosis

Whether neutrophils can directly phagocytose healthy motor

neurons is not yet clear, while invading to the brain parenchyma is

the prerequisite for their phagocytic function. Although it was

believed that the BBB provides a privileged immune environment

for the brain by blocking peripheral immune infiltration, the

current understanding is that the immune privilege in

neurodegenerative diseases is relative. Disruption of BBB

contributes to the infiltration of peripheral immune cells (39). In

disease models of multiple sclerosis (MS) and Alzheimer’s disease

(AD), neutrophils have been confirmed to be infiltrated into the

CNS (40, 41). Adhesion receptors on endothelial cells, known as

integrins, undergo an activation process in response to various

stimuli and recruit and promote the attachment of neutrophils to

the inflamed endothelium (42). Concurrently, the glycocalyx, a

proteoglycan structure, prevents the interaction of surface
FIGURE 1

The potential mechanisms of neutrophils in the progression of ALS. Neutrophils contribute to host tissue damage through three major strategies: 1)
Phagocytosis. Neutrophils can cross the BBB and directly phagocytose self-components; 2) Degranulation. Neutrophils secrete cytotoxic particles
during maturation affecting the immune response. The main components of these particles are enzymes, such as MPO, NE, NGAL, and MMPs; (3)
Activated neutrophils can form neutrophil extracellular traps, consisting of chromatin components, MPO and NE attached DNA fibers.
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molecules (43). Once neutrophils adhere to the vasculature, the

interaction of endothelial membrane protrusions, containing

multiple adhesion molecules, facilitates the migration of immune

cells into the brain parenchyma (44). In 2002, Scali et al. reported

that peripheral blood neutrophil integrin CD11b was upregulated in

AD patients (45). Increased expression of CD11b, which mediates

neutrophil adhesion and migration, was positively correlated with

AD severity (45). In 2004, Baik et al. showed dynamic imaging of

neutrophils entering into brain parenchyma in AD mice, but no

such migration was found in wild-type mice (46). In 2015, Zenaro

et al. demonstrated that the binding of LFA-1, an integrin expressed

on neutrophils, to adhesion molecules expressed on endothelial cells

mediated the infiltration of neutrophils into the brain parenchyma

(47). Depletion of neutrophils or LFA-1 improved cognitive

function and reduced microglia proliferation in AD mice (47).

However, whether limiting neutrophil migration and infiltration

can delay neurodegeneration in ALS is still unknown.

Figueroa-Romero et al. and Trias et al. showed increasing

infiltration of neutrophils with time in ALS mouse models in the

spinal cord or the peripheral motor pathway (11, 48). However,

previous studies have only demonstrated that neutrophils can be

accumulated in the spinal cords of late-stage ALS mice (48) and

ALS autopsy (19). It remains unclear whether the accumulation of

neutrophils worsens neuronal degeneration or it is a byproduct of

neuronal degeneration. There are no studies showing the access of

neutrophils into the CNS in ALS mice or patients at the early stage

of the disease. Meanwhile, neutrophils are smaller than motor

neurons, with a diameter 10 ~12mm. We thus proposed that the

neutrophils don’t play a direct phagocytosis role in motor

neuron degeneration.
4.2 Degranulation of neutrophils

The function of neutrophils relies heavily on the release of

cytoplasmic granules. Neutrophils mainly contain three types of

cytoplasmic granules. Primary granules, also known as azurophilic

granules, are the largest and earliest-formed granules containing

proteolytic and bactericidal proteins, including MPO, NE, and

arginase-1 (ARG1) (49). Secondary and tertiary granules, also

known as specific and gelatinase granules, are enriched with

enzymes involved in extracellular matrix (ECM) degradation and

regulation, such as the lactoferrin, neutrophil gelatinase-associated

lipid transport protein (NGAL) and MMPs (38).

The mobilization of neutrophils depends on the fusion of

cytoplasmic granules with the plasma membrane (exocytosis) and

endocytose vacuoles (endocytosis). Neutrophil degranulation plays

an important role in chronic inflammation (50, 51), which is

potentially linked to ALS disease progression.

4.2.1 MPO
MPO is primarily contained in the azurophilic granules of

myeloid cells (mainly neutrophils and monocytes), which are

among the last to exocytose (52), serving as a specific marker for

myeloid cells. MPO can be rapidly released from neutrophils into

the circulation in response to the inflammation occurrence. In vivo,
Frontiers in Immunology 05
MPO converts H2O2 and Cl- to H2O and hypochlorous acid

(HOCl) (53). The MPO-HOCl system plays a dual role, serving

as a defense mechanism against invading pathogens while also

potentially causing tissue damage. MPO has attracted considerable

attention from researchers in neurodegenerative diseases, including

AD, Parkinson’s disease (PD), and multiple system atrophy (MSA)

(54, 55). MPO can be detected in both peripheral blood circulation

and CSF. In patients with AD and PD, serum MPO is found to be

higher than in healthy controls, making it a possible diagnosis

biomarker and indicator of therapeutic effects (56, 57). The elevated

expression of serum MPO indicates the activation of circulating

neutrophils, suggesting the participation of innate immunity in

neurodegeneration. In the CNS, highly expressed MPO were

observed in both CSF and postmortem brain tissues from patients

with AD and PD 48,49, while the origin of central MPO is still

debated: 1) Studies have suggested that microglia, astrocytes, and

neurons in the CNS can release MPO (58, 59), therefore high

expression of MPO in the CNS may not solely be attributed to

neutrophils; 2)Smyth et al. found that, in brain tissues of AD mice,

MPO is highly expressed and originated from neutrophils that

infiltrated into the CNS (60). Another research demonstrated that

neutrophil-specific MPO-deficient AD mice perform better in

spatial learning and memory than controls (61); 3) Another

possible mechanism is that the disruption of BBB allows

peripheral MPO to invade the brain parenchyma.

To our knowledge, MPO has not been detected in both plasma

and CSF in patients with ALS. However, HOCl was elevated in ALS

patients, suggesting a potential pathogenic role of MPO in ALS. In

SOD1G93A mice, activated MPO/HOCl has been found in motor

neurons, and the systemic inhibition of MPO has been shown to

inhibit motor neuron apoptosis and ferroptosis and improve motor

functions in these mice (62). However, the specific role of

neutrophil-derived MPO in ALS is still unclear.

MPO can mediate neurodegeneration through multiple

mechanisms: 1) Oxidative stress. HOCl, as the downstream

product of MPO, has potent oxidative activity and can induce

serious oxidative damage to motor neurons; 2) Disruption of the

BBB. MPO-derived oxidants could induce BBB dysfunction in vitro

and in vivo (63). Other oxidant species produced by MPO, HOSCN,

have been shown to reduce the barrier function of cerebral

endothelial cells in vitro (64). Disruption of the BBB is an early

event in ALS, while BBB hyperpermeability is involved in the late

stage of ALS, which has been linked to motor neuron degeneration

(65); 3) Induction of inflammatory cytokines release. In addition to

its oxidative activity, HOCl can diffuse through the cell membrane

and modify proteins (66) and regulate cellular apoptosis (67); 4)

Disruption of energy metabolism. MPO/HOCl inhibits intracellular

NAD levels, thereby reducing mitochondrial respiration as well as

the production of ATP, NAD, and glutathione (68). High

concentrations of HOCl can also directly interact with ATP and

disrupt energy metabolism (69). 5) Axonal degeneration. HOSCN

can act as a switch to trigger necroptosis (70), which also

contributes to axonal degeneration in ALS (71).

Due to strong oxidative capacity and cytotoxicity, MPO has

emerged as a promising strategy for the treatment of

neurodegenerative diseases. Verdiperstat is an MPO inhibitor that
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has been granted orphan drugs and fast-track designations for the

treatment of MSA by the Food and Drug Administration (FDA)

and European Medicines Agency. In addition, FDA has approved

Verdiperstat in the clinical trials in the HEALEY ALS platform,

providing a novel therapeutic option for ALS patients.

4.2.2 NE
NE is a serine protease mainly released from distributed in the

azurophilic granules of neutrophils (72), and plays roles as

substrates of ECM, ezymogens, adhesion molecules, signaling

receptors, cytokines, and so on (52). It removes invading

pathogens and inhibits inflammatory responses caused by

bacterial infections. At the same time, persistent secretion of NE

may lead to tissue damage. In the extracellular environment, NE is

capable of cleaving chemokines and cytokines, leading to their

activation or inactivation. NE has also been demonstrated to

efficiently cleave Ab1-42 and is closely associated with the

inhibition of Ab1-42 aggregation (73). However, the correlation

between NE and ALS remains unclear.

4.2.3 Neutrophil gelatinase-associated lipid
transport protein

NGAL, also known as Lipocalin 2 (LCN2), is a 25kd

glycoprotein identified as an acute phase protein stored and

secreted by neutrophils. Given its stability and the nature of easy

detection in the CSF, plasma, and urine, LCN2 is recognized as a

suitable diagnostic and prognostic biomarker for neurological

disorders such as AD and MS (74–76). Studies have found a high

expression of LCN2 in plasma and postmortem brain tissues of ALS

patients (77, 78). Additionally, the analysis of ALS patient data from

the ALS Knowledge Portal (ALS KP) and Project MinE has led to

the identification of 13 genetic variants of LCN2, thereby supporting

the potential contribution of LCN2 variants to the pathology of ALS.

Although it’s believed that plasma LCN2 is mainly derived from

neutrophils (79), it can also be expressed in other organs and cells,

such as kidneys, endothelial cells, liver, smooth muscle cells, and

various immune cells (80). In the CNS, LCN2 is mainly expressed in

neurons and glial cells, and its expression increases in response to

injury or inflammation (81, 82). Recent in vitro and in vivo studies

have reported that LCN2 induces neurodegeneration via several

pathways: 1) LCN2 is neurotoxic in ALS. In rodent models of ALS,

TDP-43 mutation leads to the release of LCN2 from activated

astrocytes. Reduction of LCN2 in astrocytes reduced neuronal death

by regulating apoptosis and iron homeostasis (83, 84); 2) Promotion

of inflammation. The concentration of LCN2 is correlated with a

significant increase in pro-inflammatory cytokines and chemokines

both in vivo or in vitro in a dose-dependent manner (83, 85, 86); 3)

Promotion of pro-inflammatory microglial polarization (87, 88).
4.2.4 Matrix metalloproteinases
MMPs represent zinc-dependent proteases mainly produced by

neutrophils (89), characterized by digesting components of ECM.

MMPs are classified into five subgroups based on their localization
Frontiers in Immunology 06
and substrate specificity: collagenases, gelatinases, matrix lysins,

membrane-type matrix metalloproteinases, and enamel lysins (90).

MMP-9, primarily released by neutrophils and macrophages, is

among the most extensively studied MMPs in ALS research (91, 92).

When activated, MMP-9 hydrolyzes a wide variety of substrates,

including ECM proteins (collagen, fibronectin, laminin,

thrombospondin, and tendon in C), non-ECM substrates (TNFa,
IL-1b, TGFb, and CXC motif ligands), and neo-substrates (CD36

and citrate synthase).

In MMP-9 polymorphism, the C (-1562) T variant with higher

promoter activity in the T allele compared to the C allele has been

demonstrated to increase the risk of developing sALS nearly 2.2-

fold in the Chinese population (93), suggesting the pathogenic

effects of MMP-9 in ALS.

Beuche et al. reported that the levels of MMP-9 were

persistently increased in the serum of ALS patients compared to

healthy controls. Subsequently, Demestre et al. released that MMP-

9 activation in ALS serum occurs prior to the onset of muscular

atrophy or peripheral nerve degeneration, suggesting that MMP-9

activation is not merely a byproduct of nerve injury (94). However,

the MMP-9 levels in the CSF of ALS patients have been subject to

controversy. Two clinical cohorts from Poland showed significantly

decreased MMP-9 levels in the CSF of ALS patients (95, 96), while

another study reported an elevated level of MMP-9 (97)

MMP-9 appears to play dual roles in ALS. Dewil et al. found

that the deletion of MMP-9 accelerated ALS progression and

significantly reduced the survival of SOD1G93A mice, suggesting a

protective role of MMP-9 in ALS (98). However, subsequent

research by Lorenzl et al. reported that MMP inhibitor prolonged

the SOD1G93A mice survival compared to control (99), suggesting a

detrimental effect of MMP-9 on ALS. Mechanically, MMP-9 may

play a neuroprotective role in ALS by promoting injured neuron

regeneration and elongation via its interaction with the Schwann

cell basal lamina, which is essential for creating a passage for

sprouting axons. While several studies also proposed the

possibility that MMP-9 might aggravate the progression of ALS:

1) Interruption of the BBB integrity. Neutrophil-derived MMP-9 is

implicated in exacerbating BBB leakage, inflammatory cytokine

infiltration, and brain injury (100); 2) Induction of axonal dieback

in fast motor neurons. MMP-9 can break the ECM and disrupt the

NMJ structure. Downregulation of MMP-9 in lumbar spinal

neurons has been shown to delay axonal dieback and ameliorates

motor neuron degeneration in ALS mice (101); 3) Amplification of

the inflammatory response. MMP-9 may promote the cleavage of

TNF-a and pro-inflammatory cytokines, leading to motor neuron

apoptosis (102).

Interestingly, selective neuron death seems to be associated with

the MMP-9 gene in both ALS mice models and patients. Kaplan

et al. compared the expression profiles of distinct subpopulations of

motor neurons using the microarray and found that the expression

of MMP-9 in fast vulnerable motor neurons is significantly higher

than that in the slow motor neurons. Moreover, MMP-9 was

reported to be highly expressed in SOD1G93A mice before disease

onset, while no MMP-9-positive motor neurons were detected at
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the end-stage of SOD1G93A mice, suggesting thatMMP-9 is a major

pathological factor in ALS progression. In addition, significantly

delayed muscle denervation and motor function loss were recorded

in genetic ablation of MMP-9 in SOD1G93A mice, and these mice

demonstrated increased survival times compared to the control

(103), further implying a substantial role of MMP-9 in

ALS progression.
4.3 NETs

Highly-active neutrophils can release NETs, which are

extracellular, web-like chromatin structures attached with

cytosolic granule enzymes and histones on a scaffold of

decondensed chromatin (104). The process of NET formation,

known as NETosis, is functionally distinct from apoptosis and

necrosis. NETs trap, neutralize and eliminate invading pathogens,

including bacteria, viruses, and parasites. However, overactivated

NETs contribute to the pathogenesis of neurodegenerative diseases.

Recently, NETs have been observed within the cerebral

vasculature and parenchyma of AD models and AD patients,

suggesting that NETs can potentially harm the BBB integrity and

neural cells (47).

Circulating NETs may be a key factor in BBB collapse. During

inflammation, Mac-1 and LFA-1, two forms of integrins, mediate

the adhesion of neutrophils to vascular ICAM-1 (105, 106). Recent

studies have shown that neutrophil adhesion, via Mac-1 or LFA-1,

without transmigration, is sufficient to trigger the NET formation

and subsequent BBB breakdown (107–109). Zenaro et al. proposed

the formation of intravascular NETs as a mechanism of neutrophil-

dependent BBB breakdown using two AD models (47). In addition

to AD, NETs have also been proposed to contribute to BBB

breakdown in stroke models and cerebral malaria (110,

111). Mechanically, intravascular NETs have a direct toxic effect

on endothelial cells by releasing proteins such as NE and MPO.

NETosis, a process of neutrophil death, further facilitates the release

of enzymes mentioned above. NE increases endothelial cell

permeability, while MPO and histones induce endothelial cell

death (112) and endothelial barrier dysfunction (113). Several

lines of evidence indicate that neutrophils can promote vascular

damage and BBB breakdown (113).

NETs have also been found in brain parenchyma, which may

play a deleterious role in neurons in neuronal diseases (114). NET

components can enzymolyze extracellular matrix proteins and

activate inflammasome pathways and mitochondrial apoptosis

pathways (115, 116). Therefore, the involvement of NETs has

been proposed as a novel mechanism for neutrophil-mediated

neurotoxicity and neurodegeneration.

Neutrophils in the neuromuscular junction (NMJ) of ALS mice

and patients have been found to form NETs, as demonstrated by

extracellular web-like fibers of DNA fibers attached with MPO and

NE, implying a high cytotoxic potential towards surrounding tissues

(11). In the CNS, NETs have been found in the cerebral cortex in

AD mice due to the disruption of BBB. However, as of now, no

studies have demonstrated the formation of NETs around motor

neurons in ALS.
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4.4 Crosstalking with other cells

In addition to the direct phagocytosis role, neutrophils can

interact with multiple cell types in the brain to exert toxic or

beneficial effects.

Microglia are the innate immune cells of the brain. Neutrophil-

microgial interactions affect microglia reactivity. Neutrophils

release inflammatory factors to activate microglia, such as ROS,

LCN2, and MMP9 (87, 117). Moxon et al. showed that a decrease in

neutrophils reduces the number of microglia and decreases the

activation marker CD68 on microglia after cerebral hemorrhage

(118). The main component of NETs, LL37, an agonist of the P2X7

receptor, is highly expressed on the cell membrane of microglia

which can promote the activation and proliferation of microglia in

TBI, ischemic brain injury, and Alzheimer’s disease (119). At the

same time, activated microglia produce large amounts of

inflammatory cytokines and chemokines that reciprocally

promote the recruitment of peripheral neutrophils to the central

nervous system (120). In stroke models, reactive microglia engulfed

the infiltrated neutrophils around ischemic core (121). Dedepletion

of microglia by CSF1R inhibitors increased the number of

neutrophils and aggravated ischemic injury (121).

During the inflammatory response, reactive astrocytes can form

perivascular scars, thus limiting the spread of neutrophils from

damaged to healthy tissues (122). In vitro, Xie et al. (123) found that

astrocytes inhibited neutrophil apoptosis and degranulation and

increased neutrophil phagocytosis and pro-inflammatory cytokine

expression (123). Neutrophil-astrocyte interactions also affect

astrocyte reactivity. Treatment of mice with anti-Ly6G antibody

inhibited astrocyte proliferation (124). In another in vitro study,

Hooshmand et al. found that neutrophils can induce astrocyte

formation by producing C1q and C3a (125).

The above data suggest that neutrophils and astrocytes and

microgl ia are the main sources of cytokines during

neuroinflammation and may promote neurodegeneration by

interacting with each other to promote the inflammatory cascade

response. In the field of ALS, astrocytes and microglia in different

stages of the disease play a very different role, in the early stages of

the disease the two kinds of cells seem to play protective roles,

contribute to the compensatory response of early neuron death, but

with the disease progressing, glial cells shit to a neurotoxicity

phenotype and cause further deterioration of the disease (126).

Whether neutrophils can interact with microglia and astrocytes in

ALS and the underlying mechanisms remains largely unknown.

From the above studies in other disease models (87, 117), 118, 123),

we speculated that neutrophils may aggravate neurodegeneration by

activating microglia and astrocytes and translating them into a

deleterious phenotype.
5 Concluding remarks and
future directions

Research on the role of neutrophils in ALS is still in its early

stages, and there are many intriguing areas yet to be explored.
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Firstly, in other neurodegenerative disease animal models, such as

AD and PD, neutrophils have been shown to infiltrate into the brain

due to the disruption of BBB (47, 127, 128). Although the presence

of neutrophils in the spinal cord and NMJ of SODG93A mice is

documented, their ability to cross the BBB at the early stage of ALS

remains uninvestigated. Secondly, neutrophil depletion may

improve the cognitive function of AD mice (47), while its role in

ALS is not yet known. Thirdly, neutrophils exhibit diverse

phenotypes, including a subpopulation known as low-density

neutrophils (LDN), which has been reported in a variety of

disease conditions (129–131). Investigating the potential role of

neutrophil subpopulations in ALS is a promising direction. Lastly,

ALS is a highly heterogeneous disease, displaying different levels of

innate immunity. Establishing an immune stratification based on

neutrophils for ALS patients could pave the way for more precise

immunotherapy tailored to distinct patient groups. Further research

in these areas will advance our understanding of ALS and the

contribution of neutrophils to its pathogenesis and progression.
Author contributions

DF andWC contributed to conception and design of the review.

WC wrote the first draft of the manuscript. All authors contributed

to manuscript revision, read, and approved the submitted version.
Frontiers in Immunology 08
All authors contributed to the article and approved the

submitted version.
Funding

This research was funded by the National Natural Science

Foundation of China (81873784, 82071426).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al.
Amyotrophic lateral sclerosis. Lancet (2022) 400(10360):1363–80. doi: 10.1016/S0140-6736
(22)01272-7
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