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Dual graph convolutional
networks integrating a�ective
knowledge and position
information for aspect sentiment
triplet extraction

Yanbo Li, Qing He* and Damin Zhang

College of Big Data and Information Engineering, Guizhou University, Guiyang, China

Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in natural language

processing (NLP) that aims to extract triplets from comments. Each triplet

comprises an aspect term, an opinion term, and the sentiment polarity of the

aspect term. The neural network model developed for this task can enable robots

to e�ectively identify and extract the most meaningful and relevant information

from comment sentences, ultimately leading to better products and services

for consumers. Most existing end-to-end models focus solely on learning the

interactions between the three elements in a triplet and contextual words,

ignoring the rich a�ective knowledge information contained in each word and

paying insu�cient attention to the relationships between multiple triplets in

the same sentence. To address this gap, this study proposes a novel end-to-

end model called the Dual Graph Convolutional Networks Integrating A�ective

Knowledge and Position Information (DGCNAP). This model jointly considers both

the contextual features and the a�ective knowledge information by introducing

the a�ective knowledge from SenticNet into the dependency graph construction

of two parallel channels. In addition, a novel multi-target position-aware function

is added to the graph convolutional network (GCN) to reduce the impact of

noise information and capture the relationships between potential triplets in

the same sentence by assigning greater positional weights to words that are in

proximity to aspect or opinion terms. The experiment results on the ASTE-Data-V2

datasets demonstrate that our model outperforms other state-of-the-art models

significantly, where the F1 scores on 14res, 14lap, 15res, and 16res are 70.72, 57.57,

61.19, and 69.58.

KEYWORDS

aspect-based sentiment analysis, aspect sentiment triplet extraction, a�ective

knowledge, position-aware function, graph convolutional network (GCN)

1. Introduction

In recent years, significant advancements in deep learning have been attributed to the

development of more efficient algorithms, advancements in hardware capabilities, and the

availability of extensive datasets. These progressions have paved the way for the emergence

of diverse types of dynamic neural networks (DNN) tailored to address specific challenges

across various domains. For instance, deep learning has been instrumental in surface defect

recognition in the realm of computer vision (Shi et al., 2023), Artificial Intelligence (AI)

systems based on deep learning algorithms can effectively detect and analyze arc faults in
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electrical systems (Tian et al., 2023) and recurrent neural

networks (RNN) are designed to capture temporal dependencies

and sequential patterns, thus making them well suited for

tasks involving gesture recognition and classification. Moreover,

the utilization of graph structures for learning purposes has

demonstrated tremendous potential in various fields. For example,

in the domain of blockchain technology, graph structure learning

methods have been employed to enhance the analysis of transaction

networks and identify the characteristics of the transaction (Wang

et al., 2023). Additionally, improved graph structure learning

methods (Liu et al., 2023) based on the foundational graph neural

network (GNN) have been proposed in order to further enhance

the capabilities of graph-based learning.

In the field of natural language processing (NLP), comments of

consumers serve as a valuable resource for gathering information

that can aid in enhancing the performance of robots and their

associated products or services. With the proliferation of social

media communities, the availability of consumer-generated

content has expanded significantly, presenting an opportunity to

leverage this data for insights and improvements. By employing

methods designed for text information, robots can significantly

enhance their ability to understand the intent and meaning

behind a comment of consumer. These methods enable robots to

extract the most valuable information from user input, leading

to more accurate and meaningful interactions. Aspect Sentiment

Triplet Extraction (ASTE) (Peng et al., 2020) is concerned with

identifying the triplets from a given comment. Each triplet

includes an aspect term, corresponding opinion term, and the

sentiment polarity of this aspect term. For instance, in Figure 1,

this comment from restaurant domain comprises two triplets:

(menu, limited, negative) and (dishes, excellent, positive). Aspect

sentiment triplet extraction plays a crucial role in enabling a

more fine-grained understanding of text by capturing sentiments

toward specific aspects or features. This capability facilitates

context-aware analysis, supports decision-making processes,

analyzes customer feedback, and aids in brand monitoring and

reputation management.

Aspect Sentiment Triplet Extraction (ASTE) is a fine-grained

task of Aspect-based Sentiment Analysis (ABSA) (Pontiki et al.,

2014). ABSA aims to extract aspect terms and identify the

corresponding sentiment polarity from a given sentence. It typically

FIGURE 1

An example of ASTE. The aspect terms are highlighted in red. The

terms in blue are opinion terms and the origin words that denote

their sentiment polarity. All triplets are shown in the yellow box.

includes subtasks such as Aspect Terms Extraction (ATE) (Yin

et al., 2016; Xin et al., 2018; Wu et al., 2020b), Opinion Terms

Extraction (OTE) (Jebbara and Cimiano, 2017; Jordhy et al., 2019;

Li et al., 2019), and Aspect-based Sentiment Classification (ASC)

(Tang et al., 2016; Ma et al., 2017; He et al., 2018). ASTE is the

combination of these subtasks and initially proposed in the study by

Peng et al. (2020) with a two-stage pipeline approach. This method

predicts all aspect terms, opinion terms, and sentiment polarities

in the first stage. In the second stage, aspect terms are paired

with their corresponding opinion terms to obtain triplets. However,

this approach is susceptible to error propagation. To overcome

this limitation, Xu et al. (2020) propose a position-aware tagging

scheme and develop a union model that uses sequence labeling

to extract triplets. This method is the first end-to-end model in

the ASTE task. Similarly, Wu et al. (2020a) present a grid tagging

scheme named GTS that uses a unified grid markup task to extract

triplets in an end-to-end manner.

During sentiment analysis, it is observed that every word in a

sentence possesses a unique emotional intensity. For instance, while

words such as “likable” and “charming” both convey a positive

sentiment polarity, their degrees of positivity differ. However, it has

been noted that current networks relying on graph convolutional

network tend to utilize solely syntactic dependencies for graph

construction, thereby ignoring the commonsense knowledge

information (Erik et al., 2009) associated with each word.

Furthermore, such models typically overlook the relationships

between multiple triplets present in the same sentence.

To overcome the aforementioned limitations of existing

models, this study presents a novel approach that takes into account

both affective knowledge information and the implicit relationship

between different potential triplets in the same sentence. The

proposed method employs a part-of-speech (POS) based approach

to identify potential aspect terms and opinion terms within

sentences, then formulates a fresh approach for generating an

adjacency matrix, which fuses the affective score of each word

from SenticNet (Ma et al., 2018) with the syntax dependency in

two parallel modules, leading to the generation of a potential

aspect terms enhanced adjacency matrix and a potential opinion

terms enhanced adjacency matrix. These adjacency matrices are,

then, input into a graph convolutional network (GCN) (Kipf

and Welling, 2016) to extract features separately. GCN is a

neural network architecture that has the ability to extract both

contextual and syntactic representations from the adjacency matrix

by aggregating the features of neighboring nodes. Additionally,

this study utilizes a multi-target position-aware function in each

GCN module, which assigns different weights to all words based

on the position of potential aspect words or opinion words.

This facilitates interaction between different potential triplets in

a sentence and reduces interference from other words on triplet

extraction. Finally, the hidden representations produced by the

encoder layer, and two GCN modules are used via GTS for triplet

extraction.

The main contributions of our study can be summarized as

follows:

• We propose an innovative Dual Graph Convolutional

Networks Integrating Affective Knowledge and Position
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Information (DGCNAP) for the ASTE task in an end-to-end

manner.

• We conceive a novel method to introduce affective knowledge

information into the adjacency matrix generated by sentences

in the ASTE task.

• We design a multi-target position-aware function in the GCN

layer to reduce interference and capture the associations

between different potential triplets in the same sentence.

• Our experimental results on four benchmark datasets

demonstrate the effectiveness of our model in the ASTE task.

2. Related work

Unlike traditional sentiment analysis that aims to identify the

sentiment polarity of the whole document or sentence, ABSA

aims to predict sentiment polarity of specific aspect terms. In

recent research, most models use attention mechanisms. Wu et al.

(2022) proposed a phrase dependency graph attention network

to aggregate directed dependency edges and phrase information.

Liang et al. (2022) adopted a graph convolutional network based

on affective knowledge to leverage the affective dependencies of

the sentence; thus, both the dependencies of contextual words and

aspect words and the affective information between opinion words

and the aspect are considered.

To establish a comprehensive solution for ABSA, ASTE aims

to complete multiple subtasks of ABSA simultaneously. In the

ASTE task, existing methods can be divided into two types: pipeline

methods and end-to-end methods. Peng et al. (2020) are the first

to propose a complete solution for the ASTE task, employing a

two-stage pipeline approach. However, models constructed using

this pipeline approach are rather simple and are easily affected

by error propagation. To avoid this problem, end-to-end models

have been proposed and can be summarized as follows. Xu et al.

(2020) first developed an end-to-end method named position-

aware tagging scheme. Similarly, Wu et al. (2020a) proposed grid

tagging scheme to extract triplets simultaneously. Considering

ASTE is the combination of all basic tasks of ABSA, Chen et al.

(2022) proposed an end-to-end approach which decomposes ASTE

into three subtasks, namely, target tagging, opinion tagging, and

sentiment tagging. Chen et al. (2021) proposed a novel method

which transforms ASTE task into a multi-turn machine reading

comprehension task and propose a bidirectional MRC framework

to address this challenge. Another end-to-end method (Dai et al.,

2022) proposed a sentiment-dependence detector based on a dual-

table structure that starts from two directions, aspect-to-opinion

and opinion-to-aspect, to generate two sentiment-dependence

tables dominated by two types of information. Shi et al. (2022)

proposed an interactive attention mechanism to jointly consider

both the contextual features and the syntactic dependencies in an

iterative interaction manner. Previous tag-based joint extraction

methods have been observed to struggle with effectively handling

one-to-many and many-to-one relationships between aspect terms

and opinion terms within sentences. This limitation has motivated

researchers to explore alternative approaches, such as those that

operate at the span level rather than relying on tagging schemes.

A tagging-free approach (Mukherjee et al., 2021) is proposed to

capture the span-level semantics while predicting the sentiment

between an aspect-opinion pair. Li et al. (2022) proposed a

span-sharing joint extraction framework to extract aspect terms

and their corresponding opinion terms simultaneously in the

last step, thereby avoiding error propagation. Hu et al. (2023)

used a span GCN for syntactic constituency parsing tree and

a relational GCN (R-GCN) for commonsense knowledge graph

to build an end-to-end model for the ASTE task. Moreover,

a double-embedding mechanism-character-level and word-vector

embeddings are introduced for the first time. Zhang et al. (2022)

propose a dual convolutional neural network with a span-based

tagging scheme to extract multiple entities directly under the

supervision of span boundary detection.

3. Approach

Existing models have achieved good performance on the ASTE

task. However, a significant number of these methods disregard

the abundant affective knowledge present in individual words of

a sentence, as well as the interdependence of various triplets.

To address this limitation, we introduce affective knowledge

information in our framework while constructing the dependency

graph. Additionally, we utilize a multi-target position-aware

function to capture the interdependence of multiple triplets in the

same sentence, and it can also mitigate the adverse effects of noisy

words.

This section commences with a definition of the ASTE

task followed by an elaborate elucidation of our proposed

methodology, Dual Graph Convolutional Networks Integrating

Affective Knowledge and Position Information (DGCNAP), for the

ASTE task.

3.1. Definition of ASTE

Given an n-word sentence S = {w1,w2, ...,wn}, the ASTE

task aims at identifying all sentiment triplet sets T = {at, ot, s},

where “at” denotes the aspect term, “ot” denotes the opinion term,

“s” denotes the sentiment of the aspect term in this set, and s ∈{
positive, negative, neutral

}
.

3.2. The DGCNAP framework

The overall architecture of DGCNAP model is shown in

Figure 2. The model takes two parallel channels to joint potential

aspect term and potential opinion term enhanced features

extraction, leveraging affective knowledge, graph convolutional

network, and multi-target position-aware function to improve

accuracy and capture the complex relationships between aspect and

opinion terms in sentences.

3.3. Embedding and encoding layers

In this study, we employ two types of encoders to learn hidden

representations: the first is the Bi-directional Long Short-Term

Memory (Bi-LSTM) (Hochreiter and Schmidhuber, 1997) network
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FIGURE 2

Architecture of DGCNAP.

and the second is the pre-trained language model BERT (Devlin

et al., 2019).

For the Bi-LSTM-based encoder, we utilize double embedding

to obtain the initial word representation and capture the contextual

meaning of words in a specific domain. The specific-domain

embedding was pre-trained based on the skip-gram model, where

each word is represented as a bag of character n-grams. A vector

representation is associated with each character n-gram; words are

represented as the sum of these representations. We concatenate

the 300-dimension general-domain embedding Ew ∈ R
n×dw and

the 100-dimension specific-domain embedding Es ∈ R
n×ds to form

the final word representation E ∈ R
n×(dw+ds), where dw and ds

denote the dimensions of word embedding. After that, we input the

embedding matrix into a Bi-LSTM to obtain the hidden contextual

representationsHc = {h1, h2, ..., hn} ∈ R
n×dI of the input sentence,

where dI denotes the hidden state dimension of Bi-LSTM:

Hc = Bi− LSTM(E) (1)

For the BERT-based encoder, we first add the [CLS] token at the

beginning of the sentence and the [SEP] token at the end. Next, we

feed the sequence into BERT for context encoding by converting it

into a vector that sums its token embedding, segment embedding,

and position embedding. Finally, we input the vector v into the

transformer encoder (Vaswani et al., 2017), to obtain the hidden

contextual representation Hc = {h1, h2, ..., hn} ∈ R
n×dI :

Hc = BERT(v) (2)
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FIGURE 3

An example of part-of-speech tagging.

3.4. Generate enhanced graph

Part-of-speech (POS) is a linguistic concept that categorizes

words based on their grammatical roles and syntactic functions

within a sentence. Each word in a sentence is assigned a specific

part-of-speech tag, which provides information about its linguistic

characteristics and relationships with other words. As shown in

Figure 3, the aspect terms “menu” and “dishes” are both annotated

as nouns, and the opinion terms “limited” and “excellent” are

both annotated as adjectives. In the proposed approach, nouns are

considered as potential aspect terms, while adjectives are identified

as potential opinion terms.

Dependency graph is a useful way to represent the grammatical

relationships between words in a sentence. We use the dependency

tree of each input sentence to construct a unidirectional

dependency graph with self-loop. D ∈ R
n×n denotes the adjacency

matrix obtained from the graph:

Di,j =

{
1 if wi and wj contains dependency

0 otherwise
(3)

Because the parent node is also affected by the child node,

Dj,i = Di,j.

To incorporate affective knowledge into the construction of

the dependency graph, we take the absolute value of the SenticNet

affective score and use it as a weight for the corresponding edge

in the adjacency matrix. By doing so, we can assign more weight

to words with stronger sentiment intensity when computing the

graph convolution operation, and our model can learn meaningful

information from words containing emotionally intense, thereby

contributing to increased accuracy in predicting sentiment polarity

corresponding to aspect terms:

Si,j = |SenticNet(wi)| + |SenticNet(wj)| (4)

where SenticNet(wi) ∈ [−1, 1] denotes the SenticNet affective score

of word wi. When SenticNet(wi) approaches -1, the word conveys a

strong negative sentiment. Conversely, as SenticNet(wi) approaches

1, the word expresses a strong positive sentiment. In cases where

SenticNet(wi) is equal to 0, the word wi is considered neutral or

is not included in the SenticNet database. We exploit SenticNet 6,

which contains 200,000 concepts. Some examples of SenticNet are

shown in Table 1.

To enhance the sentiment dependencies that exist between

potential aspect words and contextual words, as well as between

potential opinion words and contextual words, we incorporate

potential aspect word weights and potential opinion word weights

as the target score into the generation of the adjacency matrix:

Ta
i,j =

{
1 if wi or wj is a potential aspect word

0 otherwise
(5)

TABLE 1 Examples of SenticNet.

Word SenticNet(word)

Distrustful -0.93

Undesirable -0.35

Likable 0.301

Charming 0.885

To
i,j =

{
1 if wi or wj is a potential opinion word

0 otherwise
(6)

To learn the syntactic information features enhanced by aspect

words and opinion words, respectively, we employ two parallel

channels. The first channel generates an adjacency matrix that

has been augmented by both aspect words and SenticNet affective

score, whereas the second channel generates an adjacency matrix

that has been enhanced by both opinion words and SenticNet

affective score. To effectively integrate the SenticNet affective score

with the aspect word weight or opinion word weight, we use the

following formula to generate the final enhanced adjacency matrix

Aa
i,j and Ao

i,j:

Wa
i,j = Di,j + Si,j + Ta

i,j (7)

Aa
i,j =

1− e
−2×Wa

i,j

1+ e
−2×Wa

i,j
+ 0.23841 (8)

Wo
i,j = Di,j + Si,j + To

i,j (9)

Ao
i,j =

1− e
−2×Wo

i,j

1+ e
−2×Wo

i,j
+ 0.23841 (10)

When encountering a word that is neither a potential aspect

word nor a potential opinion word, and its corresponding

SenticNet affective score is 0, the utilization of the bias value of

0.23841 results in an output of 1, with consideration to the precision

of five decimal places.

3.5. Feature extraction layer

A two-layer GCN is utilized for contextual feature extraction

in each channel. The syntactic dependencies for the potential

aspect words or opinion words are captured by feeding the

enhanced adjacency matrix Aa ∈ R
n×n and the hidden contextual

representations Hc ∈ R
n×dI into the GCN module in the left

channel. Additionally, the enhanced adjacency matrix Ao ∈ R
n×n

and the hidden contextual representations Hc ∈ R
n×dI are input

into the GCNmodule of another channel. Inspired by (Zhang et al.,

2019), prior to this convolution, we utilize the hidden contextual

representationsHc ∈ R
n×dI as input into the multi-target position-

aware function F a and F o to augment the importance of context

words close to the potential aspect words or opinion words in two
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separate channels. Considering that there may bemultiple potential

aspect terms and opinion terms in one sentence, the function is as

follows:

qti =





1− τ+1−i
n 16i<τ + 1

0 τ + 16i6τ +m

1− i−τ+1−m
n τ +m <i6n

(11)

F
a(hli) =

{
q1i +q2i +...+qti

t hli if wi is not a potential aspect word

0 otherwise

(12)

F
o(hli) =

{
q1i +q2i +...+qti

t hli if wi is not a potential opinion word

0 otherwise

(13)

where qti ∈ R is the position weight to i-th token for the t-

th potential aspect term or opinion term in the sentence in two

parallel channels, respectively. This function enables the model

to effectively avoid noise generated during dependency parsing,

resulting in improved performance and more accurate capture of

the relevant syntactic dependencies.

The process of GCN is as follows:

hli = ReLu(Agl−1
i W l + bl) (14)

gl−1
i = F (hl−1

i ) (15)

where hli denotes the output of the l-th GCN layer. The output

of potential aspect term-enhanced GCN layer is Ha ∈ R
n×dI ,

and the output of potential opinion term-enhanced GCN layer is

Ho ∈ R
n×dI . After that, the final output of Features Extraction

Layer H can be computed as follow:

H = Hc +Ha +Ho = {h̃1, h̃2, ..., h̃n} (16)

3.6. Triplet extraction layer

In previous research (Wu et al., 2020a), GTS has been

demonstrated to be a highly effective module for extracting triplets

from the ASTE task. Therefore, in this study, we have adopted GTS

as the decoding algorithm in our proposedmodel. The output of the

Features Extraction Layer is passed through a self-attention layer to

extract high-level features. The resulting output is, then, fed into

the GTS module. In the GTS module, the relation of two words of

the sentence is tagged by set
{
A,O, Pos,Neu,Neg,N

}
. Specifically,

the symbols “A” and “O” indicate that the two terms belong to the

same triplet, and that they are an aspect term and an opinion term,

respectively. The tags “Pos,” “Neu,” and “Neg” denote the sentiment

polarity of the triplet. The symbol “N” represents that there is no

association between the two words.An example of the GTS tagging

scheme is shown in Figure 4. The following inference strategy is

used to predict probability distribution pij
t of word pair (wi,wj) as

follows:

pt−1
i = maxpooling(pt−1

i,: ) (17)

pt−1
j = maxpooling(pt−1

j,: ) (18)

qt−1
ij = [zt−1

ij ; pt−1
i ; pt−1

j ; pt−1
ij ] (19)

ztij = Wqq
t−1
ij + bq (20)

ptij = softmax(Wsz
t
ij + bs) (21)

whereWq,Ws, bq, and bs are learnable parameters, pt−1
i represents

all predicted probability between the word wi and other words,

t denotes the t-th inference, and [.; .] represents the vector

concatenation operation. The first three equations are used to

observe the probability distribution characteristics of each word

pair itself and between word pairs. The initial predicted probability

p0ij and representation z0ij of word pair (wi,wj) are set as follows:

p0ij = softmax(Wsr
t
ij + bs) (22)

z0ij = rij (23)

where rij = [h̃i; h̃j]. Finally, the prediction of the last round

is used to extract triplets. The decoding algorithm first predicts

aspect terms and opinion terms based on the tags on the main

diagonal. It, then, determines whether there are any terms among

them that can form a pair. Finally, the most predicted sentiment

tag is selected as the sentiment polarity of the pair, and the

resulting pair and sentiment polarity are combined to form

a triplet.

3.7. Loss function

We use the loss function which defined as cross entropy loss

between the real label and the predicted label of all word pairs, and

the training goal is to minimize it as follows:

L = −

n∑

i=1

n∑

j=1

∑

k∈c

I(yij = k)log(PLi,j|k) (24)

4. Experiments

4.1. Datasets

In this study, we have conducted experiments on three

public benchmark datasets from the restaurant domain and a

public benchmark dataset from laptop domain named ASTE-

Data-V2 mentioned in the study by Xu et al. (2020), all of

which have been sourced from the SemEval Challenges and

contain 5,989 different comments. Additionally, we have also

carried out experiments on the ASTE-Data-V1 datasets mentioned

in the study by Wu et al. (2020a) and report the results of

these experiments. The details of these datasets are shown in

Tables 2, 3.
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FIGURE 4

A tagging example with GTS.

TABLE 2 Statistics of the ASTE-Data-V1 datasets.

Datasets 14res 14lap 15res 16res

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Sentences 1,259 315 493 899 225 332 603 151 325 863 216 328

Triplets 2,356 580 1,008 1,452 383 547 1,038 239 493 1,421 348 525

TABLE 3 Statistics of the ASTE-data-V2 datasets.

Datasets 14res 14lap 15res 16res

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Sentences 1,266 310 492 906 219 328 605 148 322 857 210 326

Triplets 2,338 577 994 1,460 346 543 1,013 249 485 1,394 339 514

4.2. Evaluation metrics

To ensure the accuracy of the model’s performance, Precision

(P), Recall (R), and F1 Score (F1) are selected as the evaluation

metrics, consistent with prior research in this field:

P =
TP

TP + FP
(25)

R =
TP

TP + FN
(26)

F1 =
2× P × R

P + R
(27)

where “TP” denotes the number of the positive cases correctly

predicted, and “TN” represents the number of negative cases

correctly predicted. By contrary, “FP” represents the number of

negative cases incorrectly predicted, and “FN” refers to the number

of positive cases incorrectly predicted. Notably, the evaluation

of extracted triplets is contingent upon the correct prediction of

these three components, and any incorrectness in any of these

components will render the triplet as incorrect.
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4.3. Experiments settings

For the purpose of comparison with previous research, for

the Bi-LSTM contextual encoder, following the design of GTS,

we use a 300-dimension general-domain embedding from GloVe

(Pennington et al., 2014) with 840 billion tokens and a 100-

dimension specific-domain embedding from fastText (Bojanowski

et al., 2017) to initialize the word embeddings. The hidden state size

of the Bi-LSTM is 300, and the dimension is set to 50. The dropout

rate of embedding is set to 0.3. For the BERT-based encoder, the

bert-base-uncased is used as encoder, and it contains 12 attention

mechanism heads, 12 hidden layers, and 768 hidden units. For these

two types of encoders, we set Adam optimizer (Kingma and Ba,

2014) to optimize networks with an initial learning rate of 0.001

for the Bi-LSTM contextual encoder and 5e-5 for the BERT-based

encoder. The hidden state size of the GCN is set to 300, and the

depth of GCN layer is 2. The batch size is set to 32. We conducted 5

independent runs with randomized initialization and reported the

experimental results as the average of these five runs.

4.4. Baselines

To evaluate the effectiveness of DGCNAP in the ASTE task, we

present other state-of-the-art models in this task for comparison.

These models can be categorized into end-to-end models and

pipeline models.

Pipeline models

• CMLA+ (Peng et al., 2020) is a two-stage model based on

CMLA (Wang et al., 2017). In the first stage, it extracts aspect

terms, opinion terms, and sentiment polarities through a

multi-layer attention network. In the second stage, it generates

possible triplets based on the output of the first stage, then

utilizes a binary classifier to filter out invalid triplets.

• RINANTE+ (Peng et al., 2020) is a two-stage model based

on RINANTE (Dai and Song, 2019). The only difference

between RINANTE+ and CMLA+ is that RINANTE+ extract

aspect terms, opinion terms, and triplets through dependency

parsing.

• Li-Unified-R (Peng et al., 2020) is a two-stage framework

based on Li-Unified (Li et al., 2019). In the first stage, it uses

a customized multi-layer LSTM network to extract targets,

opinions, and sentiments. The second stage is similar to

CMLA+.

• Peng + PD (Peng et al., 2020) is a pipeline model. It first

predicts all possible triplets, then utilize a MLP classifier to

judge the rationality of each triplet.

• Peng + LOG (Wu et al., 2020a) is a pipeline model. The

author add a model proposed in the study by (Fan et al., 2019),

after the model proposed in the study by (Peng et al., 2020).

• IMN-IOG (Wu et al., 2020a) is the combination of the IMM

(He et al., 2019) and IOG (Fan et al., 2019) to generate triplets.

End-to-end models

• OTE-MTL (Zhang et al., 2020) is a model that splits the ASTE

task into multiple subtasks, then generate triplets through a

bi-affine scorer.

• JET (Xu et al., 2020) is a unified framework based on the

position-aware tagging scheme to generate triplets through an

LSTM layer and a CRF layer.

• GTS (Wu et al., 2020a) is a model that generates triplets by

a unified tagging scheme, and the authors design an effective

inference strategy to exploit mutual indication between

different opinion factors for more accurate extractions.

• PASTE (Mukherjee et al., 2021) is a tagging-free solution built

on an encoder–decoder architecture to produce all triplets.

• UniASTE (Chen et al., 2022) is a multi-task learning

framework which decompose ASTE into three subtasks.

• GCN-EGTS (Hu et al., 2023) is an end-to-end model

which is an enhanced Grid Tagging Scheme (GTS) for

ASTE, leveraging syntactic constituency parsing tree and a

commonsense knowledge graph based on GCNs.

• DGEIAN (Shi et al., 2022) is a framework with an interactive

attention mechanism. In addition, the authors add different

part-of-speech categories in embedding layer.

4.5. Experimental results

The results of our proposed model in the ASTE task are

presented in Tables 4, 5. From the results, it is clear that DGCNAP

significantly outperforms all other models in terms of F1 score

on all datasets. The observations in Table 4 represent that our

DGCNAP also performs better than other baseline models on

ASTE-Data-V1 datasets. Ourmethod outperformsDGEIAN on the

four datasets and acquires 2.36, 1.12, 0.54, and 2.05 improvements

in the F1, respectively. Additionally, we observe that the end-to-end

model achieves better performance than the pipeline model. For

the Bi-LSTM-based encoder, as shown in Table 5, when compared

with the best pipeline model, Peng + PD, DGCNAP achieves F1

scores that are more than 10 percentage points higher in three

out of the four datasets. On the other hand, in comparison with

the model, our proposed model outperforms it by 2.83, 3.7, 1.55,

and 3.62 F1 points on the respective datasets. For the BERT-based

encoder, DGCNAP also performs well. From the Table 4, it can

be observed that the DGCNAP outperforms by 0.06, 4.16, 0.82,

and 3.19 F1 points on four datasets when compared with GTS.

Our method outperforms the best BERT-based baseline model

UniASTE by 1.63, 1.06, 2.14, and 2.36 F1 points, as shown in

Table 5. The comparisons presented above demonstrate that our

model effectively leverages the affective knowledge information

of individual words, leading to improved model’s performance in

handling sentences with multiple triplets.

4.6. Ablation study

To investigate the effectiveness of the various components in

our proposed model, we conducted a series of ablation experiments

on the ASTE-data-V2 datasets using the Bi-LSTM encoder. The

results of the ablation experiments are presented in Table 6. “w/o

SN” refers to the adjacency matrix that is generated only by

sentence dependency syntax, without adding SenticNet affective

score to the adjacency matrix, and “w/o PA” indicates the model

without the multi-target position-aware function in the GCN layer.
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TABLE 4 Statistics of the ASTE-Data-V1 datasets.

Encoder Methods 14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1

Bi-LSTM Peng + LOG† 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67

IMN + IOG† 59.57 63.88 61.65 49.21 46.23 47.68 55.24 52.33 53.75 - - -

GTS-CNN† 70.79 61.70 65.95 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73

GTS-BiLSTM† 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56

GCN-

EGTS(CNN)

68.74 62.07 65.72 55.94 45.25 49.89 61.54 51.29 55.97 63.73 63.86 63.77

DGEIAN 71.03 62.63 66.55 60.74 45.56 51.72 64.87 52.75 57.11 69.07 65,64 67,30

DGCNAP 74.51 64.10 68.91 62.02 46.09 52.84 64.82 51.92 57.65 73.97 65.29 69.35

BERT GCN-

EGTSBERT

70.14 68.07 69.20 54.54 52.27 53.64 59.23 58.15 58.84 66.89 65.86 66.28

GTSBERT 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58

DGCNAPBERT 71.83 68.77 70.26 63.91 54.34 58.74 62.03 57.18 59.49 69.39 72.20 70.77

The best results are in bold. The results with “†” are retrieved from the study by Shi et al. (2022), others are retrieved from the original studies.

TABLE 5 Statistics of the ASTE-Data-V2 datasets.

Encoder Methods 14res 14lap 15res 16res

P R F1 P R F1 P R F1 P R F1

Bi-LSTM CMLA † 39.18 47.13 42.97 30.39 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72

RINANTE +† 31.42 39.38 34.95 21.72 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87

Li-unified-R† 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31

Peng + PD† 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21

OTE-MTL† 63.00 55.10 58.70 49.20 40.50 45.10 57.90 42.70 48.90 60.30 53.40 56.50

JET(M=6)† 61.50 55.13 58.14 53.03 33.89 41.35 64.37 44.33 52.50 70.94 57.00 63.21

PASTE-AF† 62.40 61.80 62.10 53.70 48.60 51.00 54.80 53.40 54.10 62.20 62.80 62.50

PASTE-OF† 63.40 61.90 62.60 59.70 48.10 50.00 54.80 52.60 53.70 62.30 63.60 62.90

UniASTE 70.23 56.82 62.73 55.64 40.91 47.11 63.09 48.37 54.73 66.34 59.26 62.58

DGEIAN 71.68 61.62 66.26 60.15 43.44 51.14 61.84 50.99 55.89 69.40 60.15 64.37

DGCNAP 74.43 64.49 69.09 64.32 47.84 54.84 66.73 50.43 57.44 72.37 64.13 67.99

BERT JET(M =

6)BERT

70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

UniASTEBERT 72.14 66.30 69.09 62.24 51.77 56.51 64.83 54.31 59.05 69.06 65.53 67.22

DGCNAPBERT 72.90 68.69 70.72 62.02 53.79 57.57 62.23 60.21 61.19 69.75 69.44 69.58

The best results are in bold. The results with “†” are retrieved from the study by (Shi et al., 2022), others are retrieved from the original studies.

“w/o AE” and “w/o OE” correspond to the models without the

aspect words-enhanced GCN channel and the opinion words-

enhanced GCN channel, respectively.

Based on the results of the ablation experiments presented

in Table 6, we can draw the following conclusion. First, the

SenticNet affective score is a crucial component in enhancing

the representation of the dependency graph. The utilization

of only the adjacency matrix generated from the dependency

syntax tree, without incorporating the SenticNet affective score

for enhancement, leads to a reduction in the model’s ability

to predict sentiment polarity. Second, the multi-target position-

aware function is another critical module in our proposed

model. The removal of this function leads to a significant

decrease in the F1 score, the F1 score drops the most to 5.32

on the 14lap dataset, further highlighting the importance of

this function in our model. Finally, the ablation experiments

reveal that both the aspect terms-enhanced features and the

opinion terms-enhanced features are important for model learning.

The removal of either of these two channels leads to an

average decrease by 0.76 and 1.13 F1 points, emphasizing
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TABLE 6 Results of ablation study under the metric of F1.

Model 14res 14lap 15res 16res

DGCNAP 69.09 54.84 57.44 67.99

w/o SN 68.17 52.07 56.98 66.76

w/o PA 64.59 49.52 56.03 64.73

w/o AE 68.59 53.84 57.02 66.89

w/o OE 68.35 53.49 56.57 66.43

TABLE 7 Results of the di�erent usage of SenticNet e�ective score under

the metric of F1.

Model 14res 14lap 15res 16res

DGCNAP 69.09 54.84 57.44 67.99

w/o SN 68.17 52.07 56.98 66.76

DGCNAP-

ADD

67.70 51.80 55.96 65.51

their contribution to the overall performance of the DGCNAP

model.

4.7. Impact of SenticNet e�ective score

To investigate the impact of incorporating SenticNet affective

score, a series of experiments are conducted on all four ASTE-

data-V2 datasets using Bi-LSTM encoder. Specifically, the aim is

to explore the impact of using different strategies for incorporating

SenticNet effective score. Furthermore, “DGCNAP-ADD” denotes

that we generate the final weight of the enhanced graph which

is generated by adding the weight of the adjacency matrix to the

target score and the absolute value of the SenticNet affective score.

The results of the experiments are presented in Table 7, and the

corresponding F1 scores are plotted in Figure 5. The experimental

results reveal that direct addition of the three values without

proper processing during the generation of the final dependency

matrix lead to overemphasis of the target words and words with

strong emotions. Consequently, the model disregarded the impact

of syntactic dependencies and semantic information, leading to

undesirable side effects, and resulting in lower performance than

the result before adding target weight and SenticNet effective score.

Therefore, it is concluded that the incorporation of SenticNet

affective score should be carried out with caution as inappropriate

usage could have a negative impact on the performance of the

model.

4.8. Impact of position-aware function

To evaluate the effectiveness of the multi-target position-

aware function in sentences with multiple triplets, we conduct

experiments on sentences with varying numbers of aspect terms

on ASTE-data-V2 datasets using Bi-LSTM encoder. Since the

number of sentences with multiple aspect terms in the lap14,

res15, and res16 datasets is limited, we conduct experiments on

FIGURE 5

F1 scores for di�erent use methods of SenticNet e�ective score on

ASTE-data-V2 datasets.

TABLE 8 Results of the impact of position-aware function study under

the metric of F1.

Model Number of aspect terms

1 2 3 4

DGCNAP 66.26 61.70 65.42 43.77

w/o PA 64.44 59.21 63.20 41.81

FIGURE 6

The ratio of F1 value of sentences with multiple aspect words to F1

value of sentences with one aspect word.

the res14 dataset of ASTE-data-V2 using Bi-LSTM encoder. The

experimental results are presented in Table 8, and the ratios of

the F1 score value of sentences with multiple aspect terms to the

F1 score value of sentences with one aspect term are plotted in

Figure 6. The results indicate that the implementation of the multi-

target position-aware function has a positive impact on the model’s

ability to handle sentences with multiple triplets. Specifically, as the

number of aspect terms increases, the decline rate of the F1 score

value is observed to decrease slower than before implementing the

function.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1193011
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2023.1193011

TABLE 9 Results of case study.

Example Golden
truth

GTS DGCNAP

Once we

sailed, the

top-notch food

and live

entertainment

sold us on a

unforgettable

evening.

(Food,

top-notch,

positive)(Live

entertainment,

top-notch,

positive)

(Food,

top-notch,

positive)

(food,

top-notch,

positive) (live

entertainment,

top-notch,

positive)

If you’re

craving some

serious Indian

food and

desire a cozy

ambiance, this

is quiet and

exquisite

choice.

(Ambiance,

cozy,

positive)(Indian

food, serious,

positive)

(Ambiance,

cozy,

positive)(Indian

food, serious,

positive)(Indian

food, craving,

positive)

(Ambiance,

cozy,

positive)(Indian

food, serious,

positive)

One caveat:

Some of the

curried

casseroles can

be a trifle

harsh.

(Curried

casseroles,

neural)

(Curried

casseroles,

positive)

(Curried

casseroles,

neural)

4.9. Case study

To show the advantages and disadvantages of DGCNAP, a

case study is conducted to compare its performance with that

of the GTS model. The results of the study are presented in

Table 9. The first sample of the study comprises two triplets, with

identical opinion terms. GTS accurately predict only one triplet,

while DGCNAP successfully identifies both triplets. The second

sample also contains two triplets, but GTS make an erroneous

identification of a verb as an opinion term, leading to the prediction

of an additional triplet based on the incorrect opinion term. In

contrast, DGCNAP accurately recognizes the number of aspect

terms and make correct predictions for all triplets. The third

sample comprises one triplet. However, due to the fact that GTS

does not consider contextual affective knowledge information, it

inaccurately determine the sentiment polarity of this triplet. In

contrast, DGCNAP accurately predict the sentiment polarity by

utilizing the affective knowledge information of each word.

5. Conclusion

This study proposes a novel Dual Graph Convolutional

Networks Integrating Affective Knowledge and Position

Information (DGCNAP) to the ASTE task, which leverages

the contextual features, the affective knowledge information

of a single word, and relationship between potential multiple

triplets in a same sentence. Specifically, our approach utilize two

parallel channels to learn relevant features of potential aspect

words and potential opinion words, respectively, by incorporating

the SenticNet effective score and the weight of potential aspect

words or opinion words when constructing the adjacency matrix.

Furthermore, a novel multi-target position-aware function is

utilized in the GCN Layer to significantly improve the effectiveness

of the model in processing sentences with multiple triplets.

The experimental results on four benchmark datasets show the

effectiveness of DGCNAP, as it outperforms all other state-of-the-

art models significantly in terms of F1 on all datasets. Our analysis

on the impact of SenticNet Effective Score and Position-aware

Function has demonstrated that these improvements effectively

increase the model’s ability to identify triplets in sentences.

Furthermore, supporting the introduction of affective knowledge

can enhance the model’s ability to recognize sentiment polarity,

while introducing a novel multi-target position-aware function

can enhance the interaction between triplets and avoid the impact

of noise.

It is noteworthy that one aspect may be associated with

multiple opinions and vice versa, and our study has not made

improvements to address such situations. For future studies,

recognition approaches for handling overlapping triplets will be

considered. Additionally, an interactive module will be developed

to effectively combine enhancement features of both aspect terms

and opinion terms.
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