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Introduction: Gastric cancer (GC) is an aggressive and clinically heterogeneous

tumor, and better risk stratification of lymph node metastasis (LNM) could lead

to personalized treatments. The role of radiomics in the prediction of nodal

involvement in GC has not yet been systematically assessed. This study aims to

assess the role of radiomics in the prediction of LNM in GC.

Methods: A PubMed/MEDLINE systematic review was conducted to assess the

role of radiomics in LNM. The inclusion criteria were as follows: i. original articles,

ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were

selected and analyzed by a multidisciplinary board of two radiation oncologists

and one surgeon, under the supervision of one radiation oncologist, one surgeon,

and one medical oncologist.

Results: A total of 171 studies were obtained using the search strategy mentioned

on PubMed. After the complete selection process, a total of 20 papers were

considered eligible for the analysis of the results. Radiomicsmethods were applied

in GC to assess the LNM risk. The number of patients, imaging modalities, type

of predictive models, number of radiomics features, TRIPOD classification, and

performances of the models were reported.

Conclusions: Radiomics seems to be a promising approach for evaluating the

risk of LNM in GC. Further and larger studies are required to evaluate the clinical

impact of the inclusion of radiomics in a comprehensive decision support system

(DSS) for GC.
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Introduction

Gastric cancer (GC) is the third cause of cancer-related deaths in Western countries

(1). Lymphadenectomy represents a main step in the multimodality management of GC,

improving the oncological outcome with perioperative chemoradiotherapy (2–6). Adequate

lymphadenectomy is of paramount importance to adequately stage and establish the

prognosis of GC patients, which is negatively influenced by the presence of lymph node

metastases (LNMs) (5, 7, 8). In fact, LNM represents an important prognostic factor that
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influences cancer-specific survival in patients with GC (9–14). If

lymph node (LN) harvest is inadequate for stage defining, the

lymph node ratio (LNR) (15) and the log odds of positive lymph

nodes (LODDS) (16–18) could be used as prognostic factors for

oncological outcome after curative gastrectomy, independent of the

number of LNs harvested (16–21). The association between LNR

and survival is stronger, particularly in cardia GC, in which the risk

of cancer-specific death seems to be two to three times higher if

the ratio is over 33%. Moreover, the role of LN micrometastasis

(0.2–2.0mm in size) in the pathogenesis of cancer recurrence after

surgical resection was analyzed (22), and the occurrence of LN

micrometastasis at the pathological examination seemed to be a

negative prognostic factor strictly related to a worse oncological

outcome due to cancer recurrence, especially hematogenous and

peritoneal metastases (23–26).

Considering its important prognostic role and subsequent

therapeutic implications in GC patients, a critical point is

represented by the opportunity to accurately predict and evaluate

LNM occurrence risk before making treatment decisions, which is

extremely necessary (27, 28). Several tools have been suggested and

evaluated to predict the presence of LNMs. Furthermore, several

studies have analyzed the effectiveness of sentinel LN biopsy,

but its role remains controversial due to its high false-negative

rate (7–46.4%) (29–31). A valid instrument for the staging and

diagnosis of loco-regional LNM is endoscopic ultrasonography

with fine needle aspiration, but the accuracy of this tool is operator-

dependent (32). Molecular biomarkers have also been analyzed as

predictors of LNMs, but the applications of these tools are still

under examination, considering their high cost and significant

technological requirements (33, 34).

The extent of lymphadenectomy represents a subject of

debate in GC, especially between Western and Eastern countries.

In Western countries, D2 lymphadenectomy is considered

mandatory for radical surgical management of GC. As reported

in the randomized Dutch D1/D2-trial and Italian Gastric Cancer

Study, the long-term survival of patients who underwent D2

lymphadenectomy (without routine pancreatosplenectomy)

was significantly better than those who underwent D1

lymphadenectomy, both in early compared with locally advanced

GC, without significant differences in terms of morbidity and

mortality if performed in high-volume centers and by expert

surgeons (5, 8). However, the need to perform an extent

lymphadenectomy should be discussed according to tumor

location, clinical staging, and related pattern of LNM, as reported

in the guidelines of the Japanese Gastric Cancer Association

(JGCA) for cT1N0 GC (35–39).

In oesophagogastric junction cancer, an important factor for

establishing the correct surgical procedure, especially in Siewert’s

type II tumors, is represented by the presence of LNM in the

mediastinum. In Siewert type II oesophagogastric junction cancer,

the incidence of mediastinal LNM ranged between 5 and 25% (40,

41) but the accuracy of diagnostical tools (computed tomography

and endoscopic ultrasonography) in establishing the presence of

LNM is not yet highly acceptable (42). Having preoperatively

knowledge about the presence or absence of mediastinal LNM

could guide surgeons in performing better surgical procedures on

patients in terms of oncological radicality than in terms of better

post-operative morbidity. Several previous studies have defined

the clinical indicator for predicting mediastinal LNM without

obtaining significant results in terms of diagnostic accuracy (43–

47).

In this context, radiomics is considered a valid tool for

discovering new imaging biomarkers by converting digital

radiological images into quantitative characteristics of the tumor

(48–50). The potential role of radiomics in increasing the diagnostic

and prognostic value of clinical-radiological features of a neoplasm

has already been demonstrated in lung, prostate, brain, liver,

and colorectal cancers (51). Moreover, new artificial intelligence

technologies and algorithms can contribute to radiomic analysis

methodologies by increasing their diagnostic power (52).

This study aims to systematically collect all available evidence

on radiomics-based prediction models of LNMs in patients with

gastric cancer.

Materials and methods

Research strategy

We followed the recommendations of the Preferred Reporting

Items for Systematic Reviews and Meta-analyses (PRISMA) (53).

A systematic PubMed/MEDLINE search was performed using the

following search strategy: “[‘radiomic’ (All Fields) OR ‘radiomics’

(All Fields)] AND {‘stomach neoplasms’ (MeSH Terms) OR

[‘stomach’ (All Fields) AND ‘neoplasms’ (All Fields)] OR ‘stomach

neoplasms’ (All Fields) OR [‘gastric’ (All Fields) AND ‘cancer’ (All

Fields)] OR ‘gastric cancer’ (All Fields)}.” Only original articles

on radiomics applications in GC characterization were selected.

Papers published between 1 January 2000 and 15 February 2023

were considered for this analysis.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) articles on radiomics;

(2) original articles; (3) papers on LNM prediction in GC. The

exclusion criteria were as follows: (reason 1) articles not related to

radiomics; (reason 2) not original articles (e.g., reviews, editorials,

letters, congress communications or posters, and book chapters);

(reason 3) articles not referring to GC in humans; (reason 4) articles

not written in English, French, Spanish, or Italian; and (reason 5)

articles that have not considered LNM prediction.

Systematic review workflow

All the papers were selected and analyzed by amultidisciplinary

board of two radiation oncologists (ROs; CC and ML) and

one surgeon (GR), followed by independent validation by three

experts in GC (one RO, FM; one surgeon, VT; and one medical

oncologist, DCC). CC and ML selected the studies independently,

and GR helped reach a consensus in case of discordance. All three

researchers validated the final paper selection; FM, VT, and DCC

were involved in the case of discordances in the final evaluation of
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TABLE 1 Quantitative synthesis of the 20 selected articles.

First author, year N◦ of patients
(training/internal
validation/external validation)

Imaging modality
(phases or sequences)

N◦ features Predictive
model

AUC training/internal
validation/external
validation

Tripod
classification
(RQS, %RQS)

Jiang et al. (54) 312/360/1017 CT (portal venous phase) 269 Nomogram pN1 vs. pN0: 0.802
pN2 vs. pN0: 0.892
pN3 vs. pN0: 0.949

3 (15, 41.67%)

Chen et al. (55) 71/47/28 MRI (DWI sequences) 1,305 Nomogram 0.857/0.878 3 (15, 41.67%)

Feng et al. (56) 326/164 CT (venous phase) 93 Automatic clinical
DSS

0.824/0.764 2a (12, 33.55%)

Yang et al. (28) 118/52 CT (arterial phase) 2,394 (1,561 on the primary tumor,
833 on the nodes)

Radiomic
signatures

0.991/0.882 1b (14, 38.89%)

Dong et al. (57) 225/454/51 CT (multiphases) 1,203 Nomogram Overall C-indexes:
0.821/0.797/0.822

3 (18, 50%)

Wang et al. (58) 197/50 CT (arterial phase) 844 Nomogram 0.886/0.881 2a (12, 33.33%)

Gao et al. (59) 486/240/42 CT (portal venous phase) 859 Nomogram 0.92/0.86 3 (15, 41.67%)

Li et al. (60) 136/68 CT (arterial and venous phases) 527 (136 deep learning features,
391 radiomics features)

Nomogram 0.84/0.82 2a (14, 38.89%)

Sun et al. (61) 531/975/112 CT (venous phase) 269 Radiomics score 0.0667/0.823 3 (23, 63.89%)

Liu et al. (62) 156/29 18F-FDG PET/CT 2,100 (1,050 PET-based features,
1,050 CT-based features)

Machine learning
model

n.a./0.882 2b (15, 41.67%)

Wang et al. (63) 80/79 CT (venous phase) 546 Nomogram 0.915/0.908 2a (16, 44.44%)

Gao et al. (64) 308/155 CT (portal venous phase) 859 Nomogram 0.91/0.89 2b (14, 38.89%)

Wang et al. (65) 340/175 CT (venous phase) 352 Nomogram 0.896/0.814 3 (12, 33.33%)

Xue et al. (66) 127 18-FDG PET/CT 71 Nomogram 0.81 1b (12, 33.33%)

Zeng et al. (67) 388/167/79 CT (portal venous phase) 107 Machine learning
model

0.901/0.915 3 (15, 41.67%)

Zhang et al. (68) 367/156 CT 48 Machine learning
model

0.796/0.762 2a (12, 33.33%)

Xue et al. (69) 134/59/31 18F-FDG PET/CT 136 (71 PET-based features, 65
CT-based features)

Nomogram 0.861/0.897 3 (17, 47.22%)

Guan et al. (70) 242/105 CT (arterial phase) 401 (375 deep learning features, 26
radiomics features)

Nomogram 0.997/0.991 2a (15, 41.67%)

Yang et al. (71) 193/98 CT (venous phase) 98 [49 on the primary tumor
region (C1), 49 on the peri-tumor
region (C2)]

Radiomics score 0.779/0.724 2b (15, 41.67%)

Xue et al. (72) 127 18-FDG PET/CT 71 Radiomics Score 0.882 1b (14, 38.89%)

N◦ , number; CT, computed tomography; MRI, magnetic resonance imaging; 18F-FDG PET/CT, 18 F-fluorodeoxglucose positron emission tomography/computed tomography; DWI, diffusion-weighted imaging; DSS, decision support system; pN, pathological stage;

n.a., not available; RQS, radiomics quality score; and RQS%, radiomics quality score in percentage.
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the paper selection. All papers were screened on the bases of their

title and abstract. Then, their eligibility was assessed after a full-text

examination. Data extraction and synthesis were conducted byML,

CC, and GR, while FM, VT, and DCC were involved in the case of

discordances. The extracted data included the first author, year of

publication, number of patients (organized into training, internal,

and external validation cohorts), imaging modalities, number of

features, predictive model, area under the curve (AUC) if available

(organized into training, internal, and external validation cohorts

if available), TRIPOD classification, and Radiomics Quality Score

(RQS) (48). The results are summarized in a Table 1.

Results

Characteristics of the included studies

A total of 171 studies were obtained using the search strategy

mentioned on PubMed/MEDLINE. Of these, 129 papers were

selected based on the title and abstract, according to the previously

described criteria. The selection process, shown in Figure 1, led to

the identification of 20 eligible studies based on full-text analysis

(three papers discarded according to exclusion criterion three; one

paper discarded according to exclusion criterion four, and 101

papers discarded according to exclusion criterion five), and these

were selected for the analysis of the results. All the studies included

in the analysis are retrospective, with their year of publication

ranging from 2019 to 2023. The most frequent imaging modality

was CT (15 papers, 75%), followed by 18-FDG PET/CT (4 papers,

20%), and MRI (1 paper, 5%). The number of features per study

ranged from 48 to 2,394.

Narrative synthesis of the results

CT-based radiomics studies
Sun et al. (61) conducted a retrospective and prospective

multicentre study, analyzing data from 531 patients as a training

cohort, 975 patients as an external cohort, and prospectively

enrolling 112 patients as a validation cohort. The study, based

on preoperative CT images, developed a radiomic score (Rad-

score) and correlated it with the presence of metastases in each

LN station. In both the external and prospective validation cohorts,

the Rad-score turned out to be the most important predictor for

the detection of LNMs and remained a significant and independent

factor in multivariate analysis in all patient groups. As stated by the

authors, the novelty of this study was the evaluation of the risk of

metastases for each LN station. This allowed for the establishment

of whether neoadjuvant therapy is necessary, thereby also allowing

for a tailor-made selection of the extent of surgery required and an

understanding of the LN stations that should be treated.

Jiang et al. (54) also analyzed preoperative CT images to

develop a radiomic signature and subsequently integrate it (by a

Rad-score) into a nomogram, along with other clinical-pathological

factors (degree of differentiation, Ca19.9 level, cT stage, and cN).

The results showed a statistically significant correlation between the

Rad-score and LN status; the higher the stage (pN0, pN1, pN2, and

pN3), the higher the score. This made it possible to implement a

practical tool, which, given the characteristics of the patient and the

tumor, could estimate the probability of the LN stage.

Wang et al. (58) analyzed the CT images of 247 patients (197

in the training cohort and 50 in the test cohort) with pathologically

confirmed gastric cancer, to define the LN stage. The nomogram

consisted of radiomics scores and the CT-reported LN status and

showed excellent discrimination in the training and test cohorts

with AUCs of 0.886 (95% CI, 0.808 to 0.941) and 0.881 (95% CI,

0.759 to 0.956), respectively. The model outperformed routine CT

in the discrimination of cases with LNmetastasis, with the accuracy

increased to 80–84%.

Wang et al. (65) focussed on the prediction of 10 LNMs in

advanced proximal GC from a cohort of 340 patients (training

cohort) and 175 patients (test cohort) from two different centers.

They built a radiomics nomogram based on amultivariable analysis

of radiomic signature and clinical characteristics, in particular the

Rad-score and CT- No.10 LNMs’ status, which were defined by the

radiologists and selected as two independent predictors.

Wang et al. (63) analyzed the radiomic characteristics of both

the tumor and LN station N 3 in patients with early-stage GC (T1-

T2) and developed a nomogram that could predict the presence of

LNMs. In view of the good results obtained, the authors applied the

same method to a more limited sample for LN station 4, using it as

a validation set.

Yang et al. (28) developed and validated a radiomics method

based on multi-step feature selection to identify the preoperative

LN status in 170 patients with GC (113 patients with positive

LNs and 57 patients without metastases, surgically treated and

pathologically confirmed; 118 patients for training and 52 patients

for validation), by incorporating tumor and LN radiomics

features. The results confirmed that taking into account the

characteristics of both the primary tumor and the LNs improves the

predictive capabilities of the radiomic model and that even better

performances are obtained from the radiomic-clinicopathological

model. Therefore, this method can be useful for guiding therapeutic

choices in patients with GC (especially for the group of patients in

stage T2, of a diffuse and moderately/well-differentiated type).

Yang et al. (71) developed a radiomics model combining

features from the tumor and peri-tumor regions for predicting

LNM and prognosis by analyzing the data of 291 patients (193 for

training and 98 for validation) who had undergone preoperative

contrast-enhanced abdominal CT scanning, radical gastrectomy,

and extended LN dissection. The authors focussed their analysis

on the peritumoural area within 5mm, which includes many

morphological changes, such as extramural venous invasion and

the presence of small LNs. They concluded that the radiomic

approach in this area can provide important information related

to the number of metastatic LNs. However, the radiomic model

proved to be unstable, probably due to the relatively limited sample

size analyzed. Thus, a larger number of patients will be required to

build a reliable predictive model.

The study published by Dong et al. (57) is the only international

study among those analyzed that used an external validation cohort

from Italy (51 patients). The authors analyzed the data of 679 locally

advanced GC patients from five centers in China, divided into four

cohorts: a primary cohort for training (PC, n = 225) and three
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FIGURE 1

PRISMA 2020 flow diagram for new systematic reviews, which included searches of databases and registers only (53).

validation cohorts (VC1, n = 178; VC2, n = 145; and VC3, n =

131), along with an international cohort. There was a significant

positive correlation between the deep learning radiomic nomogram

(DLRN) score and the pathological N stage. The stratification

analysis showed that DLRN performance was independent of

clinical factors such as age, gender, histology, tumor location,

or even technical factors such as CT system version and slice

thickness. The DLRN could well discriminate non-N0 groups from

N0 in all cohorts. Using this model to guide lymphadenectomy

(where non-N0 patients receive lymphadenectomy and N0 patients

do not), the decision curves indicated that the DLRN could

provide more benefits to patients than single signatures, the

clinical model, the non-lymphadenectomy scheme, and the all-

lymphadenectomy scheme. The importance of this study lies

in the fact that DLNR was tested and showed high predictive

ability and reproducibility across different centers. However, the

international cohort was limited, and the authors concluded

that a further prospective study conducted on a larger scale,

including both Asian and non-Asian populations, could further

improve the model’s performance, which would benefit from the

diverse sample.

Guan et al. (70) used a deep learning features model to

build a nomogram. The authors selected the data of 347 patients

(training cohort: 242 and test cohort: 105) to extract radiomic

deep learning features. All the clinical, pathological, and laboratory

data, including age, gender, tumor location, tumor morphology,

albumin, neutrophils, lymphocyte, CEA level, CA742 level, CT-

reported LN status, and deep learning feature scores were evaluated

by performing univariate and logistic regression analyses. The

results showed that the deep learning feature scores and the

LN status reported by CT were independent factors. Finally, a

classification model using deep learning and radiomics features

together was evaluated. Surprisingly, however, the performance did

not improve after the two were combined. The authors concluded

that there might be a reproducibility issue with human-defined

radiomics. Contrarily, deep learning, which does not need human

pre-definition, is more independent, and its use may improve

versatility and accuracy.

Frontiers inMedicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2023.1189740
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Miccichè et al. 10.3389/fmed.2023.1189740

Zhang et al. (68) aimed to build a non-invasive measurement

based on pre-trained deep learning models and compared their

performance with that of the traditional radiomic model. The

authors collected the data of 523 patients who had pathologically

confirmed LAGC and randomly divided them into the training

cohort (367 patients) and the testing cohort (156 patients). Three

groups of hand-crafted radiomic features were analyzed: shape

features, histogram statistics, and second-order features, while

learning features were extracted from preoperative CT images

using five pre-trained convolutional neural networks. Moreover,

a support vector machine (SVM) was employed as the classifier.

The authors explored the possibility of improving the model by

integrating radiomics and deep learning features. Additionally,

they explored the addition of clinical factors, but the prediction

performance did not improve.

Zeng et al. (67) aimed to develop and validate a predictive

model by combining deep transfer learning (DTL), radiomics, and

clinical features for LNM. They focussed on 555 patients with early

GC (EGC). They were randomly split into two cohorts: the training

cohort (n= 388) and the internal validation cohort (n= 167), along

with 79 patients from another center who were regarded as the

external validation cohort. Clinical parameters such as age, gender,

tumor size as the maximal diameter, depth of tumor infiltration,

histological grade, Lauren type, ulcer, and lymphovascular invasion

were considered. The best performance of the model was obtained

by combining the clinical variables with the radiomic ones and with

the DTL features.

Gao et al. (64) conducted a retrospective study on 726 patients,

who were separated into the training cohort (n = 486) and the

validation cohort (n = 240), along with 42 patients whose data

were taken from The Cancer Genome Atlas (TCGA)-Stomach

Adenocarcinoma (STAD) dataset and used as the external testing

cohort. Patients were stratified based on the pathological N stage

into LNM- (pN0) and LNM+ (pN1-3) groups. The values of

each radiomics feature between the two groups were compared.

The radiomics signature showed good predictive performance in

the testing cohort (the TCGA-STAD dataset that enrolled non-

Asian patients). A radiomics-based model, which combined CA72-

4, the radiomics signature, and the CT-reported LN status, was

established and demonstrated as the nomogram, but it was not

possible to conduct external validation on this model because the

TCGA-STAD dataset does not include information about blood

biomarkers. The authors conducted a subgroup analysis in the early

gastric stage (143 patients, 23 of whom were LNM+ at surgery).

The radiomic signature and the radiomics-based model pattern

demonstrated a good ability to discriminate LN status in this group,

superior to that of CT.

In another study, the same authors (59) analyzed 463 patients

(308 for the training dataset and 155 for the validation dataset)

with EGC (T1a-T1b) who received radical gastrectomy with R0

resection and D2 lymphadenectomy to build a radiomics signature-

based nomogram. The authors pointed out that the sensibility of

CT in detecting LNM in this study was low (only 21.7%) and

was outperformed by the radiomics signature. In early-stage GC,

it is difficult to identify and delineate the lesions, but in this

study, rather than having a precise segmentation of the lesions,

the peritumoural tissue was also included in the VOI for feature

extraction. In fact, the authors considered that the peritumoural

microenvironment could provide useful information to more fully

characterize tumor heterogeneity. It was also considered that,

although many lesions of EGC cannot be detected on CT images,

non-visible lesions at CT are highly suggestive of the T1a stage and

rarely have metastatic LNs. The limitation of this study, as with

many similar studies, lies mainly in the limited sample obtained

from a single center.

Li et al. (60) analyzed the data of 204 patients randomly

splatted into a training (136 patients) and a validation (68 patients)

cohort. CT scans were performed using two versions of dual-

energy CT. Both deep learning features (n 136) and handcrafted

features (n 391) were extracted. Based on the training set, two

deep convolutional neural networks (DCNNs) were constructed

and trained to extract deep learning features from two groups of

ROIs, and 68 arterial phase (AP) features and 51 venous phase

(VP) features were analyzed to build two radiomics signatures. The

radiomic nomogram proved to be useful in patients’ stratification

based on the risk of the presence of LNM, and it was superior to the

single energy and clinical models. According to the monocentric

experience, the authors concluded that a multicentric external

validation is needed to assess and confirm the results.

Feng et al. (56) used a machine learning approach to develop

and validate an automatic clinical decision support system (DSS)

for preoperative reporting of the risk of LNM. The authors began

with a dataset of 490 patients with GC who underwent primary

radical gastrectomy with regional LN dissection, according to the

Japanese GC treatment guidelines 2010 (version 3). The developed

DSS model showed higher sensitivity and diagnostic accuracy than

the conventional staging criterion (CSC). As confirmed by the

authors, there is a need for external validation, preferably from

a larger international cohort, to develop an automatic method of

lesion segmentation that would make the process easier and faster.

PET/CT-based radiomics studies
Xue et al. (69) used 18F-FDG PET/CT and analyzed radiomics

features in 224 GC patients from two centers. A predictive

model was developed for 134 patients in the training cohort and

subsequently validated in two groups, internal (59 patients) and

external (31 patients). The model combined PET/CT radiographic

signatures and more conventional risk factors such as Ca19.9

and PET/CT radiological diagnosis. The radiomic nomogram was

found to have a higher predictive value than the PET/CT scan, and

the radiomic model alone showed an improvement in sensitivity,

which was detected in all three cohorts, while specificity was slightly

decreased. The authors concluded that the X-ray nomogram could

be a useful tool to compensate for the lack of diagnostic sensitivity

of preoperative PET/CT. As the authors concluded, the main

limitations of the study lie in the relatively small sample size and the

fact that the results were limited to identifying only the presence of

LNMs, without defining the stage and location of positive LNs.

Xue et al. (66, 72) published two more studies in 2022

and 2023, respectively. In the first study, the authors enrolled

127 patients with pathologically confirmed GC who underwent

preoperative 18F-fluorodeoxyglucose (18F-FDG) PET/CT, with the

aim of building and validating an 18F-FDG PET-based radiomics
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nomogram to predict N2-3b LNM. In the second study, the authors

proposed a mixed prediction model that integrated the Rad-score

and independent clinical risk factors.

Liu et al. (62) applied a machine learning process at 18F-

FDG PET/CT radiomic features and developed and validated

a binary model using two radiomic features to predict LNMs

preoperatively. They analyzed the data of 156 patients as the

training database and 29 patients as the validation cohort. The

PET/CT-based radiomics model was superior to the CT-based

features in discriminating LN status and could, therefore, be useful

for optimizing diagnostic performance by integrating 18F-FDG

PET/CT. Additionally, the authors correlated the selected features

used to establish the predictive model (CT feature: Maximum

3D Diameter and PET feature: Maximum 2D DiameterSlice) with

pathological characteristics traditionally associated with the process

of metastasis and nerve invasion, such as vascular tumor thrombus,

nerve invasion, and infiltration depth (p < 0.05). They concluded

that the inclusion of these features could improve the performance

of the radiomic model.

MRI-based radiomics studies
The study by Chen et al. (55) was the only study that used MRI

images. The authors enrolled 146 patients from two centers (71

patients as the training cohort, 47 patients from one center as the

internal validation cohort, and 28 patients from another institution

as the external validation cohort). A significant correlation between

LN status and radiomic nomogram was demonstrated in all

three groups, and the latter obtained better results than magnetic

resonance. The authors concluded that further studies with a larger

sample size and with the subdivision of LN stages into more

categories are needed.

A general summary of the main characteristics of the analyzed

studies, including the number of patients, TRIPOD classification,

RQS, and performance evaluation, is presented in Table 1.

TRIPOD classification and RQS

According to the TRIPOD classification (73), three papers

(15%) were type 1b (development and validation using resampling);

six papers (30%) were type 2a (random split-sample development

and validation); 15 papers were type 2b (non-random split-

sample development and validation); and 8 papers (40%) were

TRIPOD type 3 (development and validation using separate

datasets). The RQS ranged from a minimum of 12 points (33.33%)

to a maximum of 23 points (63.89%), and the median RQS

was 15 (41.67%).

Discussion

The result of this systematic review shows that radiomics is an

interesting approach for evaluating LNM risk in patients with GC

in various clinical settings and contexts. Figure 2 shows an example

of the clinical implementation of a radiomics-based prediction

model. The lack of standardization of the feature extraction process

from the technical viewpoint represents one of the limitations of

this methodology, which hinders the large-scale applicability of a

model developed and validated in a single center. Additionally,

the issue of imaging segmentation should be considered a possible

second limitation: manual segmentation is burdened by operator

dependence, and automatic segmentation requires dedicated and

reliable software. The contextual external validation of a new

model (TRIPOD 3) and/or a further external validation of an
already published model (TRIPOD 4) are usually considered the

gold standard for retrospective models before testing them in a
prospective randomized clinical trial, especially in cases where
studies are conducted with highly large cohorts of patients. In
fact, the quality and reliability of the tool, especially when based

on artificial intelligence, such as in machine-learning tools, is also
directly related to the number of patients recruited, as well as the

TRIPOD validation category.

This systematic review has several limitations. The first
limitation is the use of only a single database (MEDLINE-PubMed).

The second limitation is represented by the heterogeneity of the

studies, which includes differences in imaging segmentation in

terms of predefined target definition (primary tumor, peritumoural

area, and LNs) and in terms of evaluated features, features

extraction techniques, outcomes of the studies, and clinical

parameters considered in the models. These factors restrict any

quantitative analysis of the extracted data, making it difficult to

draw clearer and synthetic conclusions. Moreover, the current

stage of development of radiomics models seems to be immature,

with only eight studies among the 20 selected showing a TRIPOD

three classification, with low to moderate RQS levels. Finally,

another limitation is that the majority of the studies recruited Asian

populations, potentially limiting the high applicability of the results

or at least warranting confirmation before precise application in

different ethnic contexts.

In other gastrointestinal malignancies, such as rectal cancer,

pancreatic cancer, and liver cancer, radiomics has been thoroughly

analyzed, covering various aspects from diagnosis to treatment

response assessment (74–81), the prediction of distant metastasis

(82) and diagnosis (83), and even evaluation for personalization of

clinical decisions based on radiomics models (84, 85). Regarding

GC, only in recent years has there been a surge of papers in the

scientific literature, where radiomics has been applied in different

clinical settings. These settings include prognostic stratification

(86–89), prediction of peritoneal lesions (90–93), assessment of

response to neoadjuvant treatments (54, 94, 95), prediction of

peculiar biological and molecular factors (96–100), and prediction

of post-operative complications (101, 102). Within this framework,

the prediction of LNM through radiomics-based tools represents

one of the most explored opportunities.

In the context of an increasingly personalized and multi-

omics-driven care pathway, the integration of these image analysis

modalities (possibly combined with AI algorithms) within DSSs

seems to be an interesting prospect, considering the clinical

heterogeneity that characterizes GC patients. Radiomics represents,

therefore, a promising method for the early identification of

GC patients burdened with an increased risk of LNM. This

scenario opens up new opportunities for selecting patients for

possible intensification of locoregional treatments or remodulation

of therapies already considered standard of care, based on better

risk assessment.
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FIGURE 2

Example of the radiomics analysis workflow.
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Conclusion

Radiomics methodology has been widely used in GC. Based

on the 20 papers selected, there is evidence that it provides an

interesting tool for clinicians and researchers to evaluate the risk of

LNM in GC. Further and larger studies are required to incorporate

radiomics parameters into a comprehensive DSS for GC and to

assess the clinical benefits of improved patient risk stratification.
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