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Background: Unwarranted extended length of stay (LOS) increases the risk of

hospital-acquired complications, morbidity, and all-cause mortality and needs to

be recognized and addressed proactively.

Objective: This systematic review aimed to identify validated prediction variables

and methods used in tools that predict the risk of prolonged LOS in all hospital

admissions and specifically General Medicine (GenMed) admissions.

Method: LOS prediction tools published since 2010 were identified in five

major research databases. The main outcomes were model performance metrics,

prediction variables, and level of validation. Meta-analysis was completed for

validated models. The risk of bias was assessed using the PROBAST checklist.

Results: Overall, 25 all admission studies and 14 GenMed studies were identified.

Statistical and machine learning methods were used almost equally in both

groups. Calibration metrics were reported infrequently, with only 2 of 39 studies

performing external validation. Meta-analysis of all admissions validation studies

revealed a 95% prediction interval for theta of 0.596 to 0.798 for the area under

the curve. Important predictor categories were co-morbidity diagnoses and illness

severity risk scores, demographics, and admission characteristics. Overall study

quality was deemed low due to poor data processing and analysis reporting.

Conclusion: To the best of our knowledge, this is the first systematic review

assessing the quality of risk prediction models for hospital LOS in GenMed and

all admissions groups. Notably, both machine learning and statistical modeling

demonstrated good predictive performance, but models were infrequently

externally validated and had poor overall study quality. Moving forward, a focus

on quality methods by the adoption of existing guidelines and external validation

is needed before clinical application.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier: CRD42021272198.
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Background and significance

Hospital inpatient and outpatient services make up the bulk

of the health spending for all the Organization for Economic

Co-operation and Development (OECD) countries (1). Australian

health expenditure has increased by an average of 2.7% per

year in the last 18–20 years, and the cost of hospital care

accounted for 40% of the total, of which 61.7% was spent on acute

admitted care (2, 3). In 2020–2021, the cost of acute admitted

care was AUD33.8 billion, with the average cost per admitted

acute care separation being $5,315 (4). Length of stay (LOS)

in an acute hospital is a significant influencer of the cost of

delivering hospital-based care and is a key measure of hospital

performance according to the Australian Health Performance

Framework (5). Extended LOS increases the risk of hospital-

acquired complications (HACs) and impacts patient access and

flow (6). A recent report showed up to a 3- to 4-fold variation

in the average LOS in Australian hospitals (3) often due to a

complex interaction of multiple factors, including some unrelated

to the patient’s condition. HACs similar to delirium can prolong

hospital LOS by 6–7 days and increase mortality (7, 8). Reducing

unwanted variation in LOS is essential in Australia and globally to

ensure the sustainability of economically viable health services for

the future.

To utilize healthcare resources efficiently, studies have been

undertaken globally utilizing existing data and applying statistical

techniques such as machine learning (ML), to develop and

validate predictive models identifying patients at risk of extended

LOS (9–13). Prior studies have investigated LOS prediction

in disease-specific groups such as heart failure (14), cardiac

surgery (15), thermal burns (16), or population-specific groups

such as intensive care unit (ICU) and neonatal care (17, 18).

Other recent reviews have looked at this outcome from a

risk adjustment perspective (19) or a broad epidemiological

perspective (20).

Prediction of risk of extended LOS in heterogenous populations

such as all hospital admissions and General Medicine is common

but lacks impact (20, 21). Accurate and timely risk prediction

can enable targeted interventions to streamline care, reduce

unwarranted extended LOS, and potentially impact system-level

management of patient flow issues by providing high-level visibility

of impending access issues and enabling proactive decision-making

(2, 22). A review of the literature published in 2019 had examined

methodologies applied to create LOS predictions. The authors

found that approximately half of the included studies (36 of

74) did not restrict the studied population by diagnosis groups,

and only a third had calculated the prediction at the time of

admission or earlier (20). We aimed to extend this review by

broadening the search, evaluating the risk of bias (ROB) (23)

of the included studies, and adding data from the recent 2

years to capture the emerging Artificial Intelligence (AI/ML)

approaches. This review aims to identify validated prediction

variables and methods used in tools that predict the risk of

extended LOS in all hospital admissions and specifically General

Medicine admissions. This is needed to advance the evidence base

required by healthcare administrators and planners on possible

future predictive tools supporting efficient resource utilization and

patient flow.

Methods

“Prediction tools” or “tools” for this review can include any type

of risk assessment tools/flags/factors or risk prediction models that

used computerized statistical methods for predicting hospital LOS.

This review was conducted according to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (24). Protocol was registered on the International

Prospective Register of Systematic Reviews (PROSPERO) (https://

www.crd.york.ac.uk/PROSPERO/) (#CRD42021272198).

Search strategy

We searched CINAHL, EMBASE, OVID MEDLINE, OVID

EMCARE, and Cochrane systematically on 31 August 2021

and updated the search on 28 June 2023, using a predefined

search strategy guided by our library scientist (VD), as shown

in Supplementary Table S2. The primary concepts searched were

“risk factors”, “statistical/prediction models”, and “Length of

stay”. Considering the rapidly advancing field of health data

analytics, we narrowed the search to only include English

language articles, from OECD comparable countries and

published after 2010. Reference lists of included publications

were examined to identify any additional potential studies.

A gray literature search using key terms was completed in

Google and Google Scholar in a time-limited way (20 h over

4 weeks).

Eligibility criteria

As shown in Supplementary Table S3, we included primary

studies that reported LOS predictive tools for adults admitted

to acute care hospitals that reported prediction metrics (25)

to inform what works in LOS prediction methods and in

what context. No limits on publication types were applied. We

excluded studies looking at day procedures (LOS < 24 h) and

those describing or including admissions to nursing homes,

or subacute/rehabilitation facilities due to the difference in

their operational structure and purpose, compared to the acute

hospital setting.

Model for all admissions (mixed medical and surgical

admissions) was the focus based on recent reports suggesting

the positive impact of identifying and managing acuity on

hospital resource utilization (26). We also studied the prediction

tools for the General Medicine admissions (2, 3, 5) due

to their high LOS variation, which is summarized in a

separate section.

Studies that were not primary research, including conference

abstracts, unpublished studies, book chapters, and review

articles, were excluded. We also excluded reports focusing on

condition/procedure-specific LOS tools such as burns, joint

replacements, cardiology, cancer, maternity, and pediatric

admissions and studies that did not assess LOS as an outcome.

No limits on publication types were applied. Once studies

were highlighted for inclusion, the reference lists of included

publications were manually searched for additional studies.
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Study screening and data extraction

Screening, full-text review, data extraction, and quality

assessment were completed using the web-based data management

platforms of Covidence (27) and EndNote X9.3.3 (Clairvate).

Title, abstract, and full-text screening was conducted by two

reviewers (SG and JG) who were responsible for selecting studies

for inclusion. In case of discrepancies, consensus was reached via

discussion. SG extracted data based on the CHARMS and TRIPOD

checklist (28, 29) into a predefined data extraction table.

Quality assessment

The risk of bias was assessed independently by two reviewers

(SG and YH) based on PROBAST recommendations. Disagreement

was resolved by consulting a third reviewer (JE). Using the

PROBAST tool (30), studies were rated as low/moderate/high

concern for bias and applicability in each of the four domains:

participants, predictors, outcomes, and analysis (23, 29). We used

guidance from the adaptation of the PROBAST tool for ML

models (31).

Data synthesis

The data items extracted for each included article are

provided in Supplementary Table S4. Data sources were

classified as (1) administrative/registry/claims, and (2)

medical records and prediction modeling methods as classic

statistical methods/ML/both. Model performance measures of

discrimination and calibration were extracted and synthesized.

Discrimination measures, where possible, were presented as

Area Under Receiver Operating Curve (AUROC) with a 95%

confidence interval (CI) (21). We applied AUROC thresholds of

0.5 to suggest no discrimination (ability to identify patients with

and without the risk under test), 0.7–0.8 as acceptable, 0.8–0.9 as

excellent, and >0.9 as outstanding discrimination (32). Calibration

was assessed using reported calibration plots, where available, or

using calibration statistics (32, 33).

Predictor variables in the included LOS models were classified

into categories adapted from the recent systematic review by

Lequertier et al. (20), as shown in Supplementary Table S5.

The level of validation (development with or without internal

validation and/or external validation) was based on the PROBAST

guideline (30).

Meta-analysis

Meta-analysis of prediction models is challenging especially

when models are specified differently and have heterogenous

predictors and outcome definitions (34). Conversely, it is also

valuable to understand the impact of the underlying variation in

case mix and population characteristics on the prediction estimates

(35). As such, we have presented a random-effects meta-analysis

using restricted maximum likelihood estimation for external

validation studies of LOS prediction models. As guided by recent

literature on a meta-analysis of prediction model studies (36, 37),

models having comparable outcome types (binary) and predictors

were included, and we reported the 95% prediction interval of theta

(21) to provide a range for the estimated performance of the model

in a new population. Stata SE 17 was used for statistical analysis and

calculation. When the standard error of AUROC was unreported,

it was estimated using the method by Hanley and McNeil (38)

and Kottas et al. (39). Heterogeneity was reported as I2 (40). The

number of eligible validation studies was small, and hence further

investigation of sources of heterogeneity was not possible.

Publication bias

Forest plots showing effect sizes and confidence intervals were

generated. Egger’s regression was used for evaluating funnel plot

asymmetry due to small-study effects (33, 41).

Results

The search yielded 8,103 studies from OVID Medline (4,172),

OVID Emcare (260), CINHAL (555), EMBASE (3-076), and

Cochrane (40). Records were exported to Covidence, and 319

duplicates were removed. In total, 7,784 records were screened,

which yielded 213 potential reports for full-text retrieval. Citation

searching identified an additional 17 records which were assessed

for eligibility. A recent update identified a further nine studies for

full-text review. Following the full-text review, 39 were selected for

inclusion based on the eligibility criteria: 14 reporting on GenMed

populations and 25 on all admissions. PRISMA diagram illustrates

the search in Figure 1. Study characteristics are summarized in

Supplementary Table S6.

All admissions prediction models

Of the 25 studies, themajority were published in the last 5 years,

11 were from the United States, six from the European Union, two

from Australia, and one each from the United Kingdom, Canada,

Japan, South Korea, Algeria, and Singapore. All studies were

observational: two prospective and 22 retrospective, a single cross-

sectional study. The median duration was 3.75 years (range 0.6–12)

with a median sample size of 53,211 (range 332–42,896,026).

Data sources
There was greater use of medical records data (60%) compared

to administrative data (40%). All studies collected data at and

during admission (84%) or used data collected post-discharge in

addition to admission data. LOS was predicted categorically in

64% or continuously in 28% of studies and both categorically and

continuously in 8% of studies. The cut-off for defining prolonged

LOS ranged from 5 to 14 days, and two studies used a predefined

diagnosis-specific increase of LOS tertile as their cut-off.
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FIGURE 1

PRISMA flow diagram demonstrates the systematic review of the literature for hospital length of stay prediction tools. PRISMA, preferred reporting

items for systematic reviews and meta-analyses; ** based on exclusion criteria provided in Supplementary Table S3; OECD, organization for

economic co-operation and development.

Predictive modeling methods
The level of validation was low with only 2 of 25 reported

validation studies (four models). Of the 45 models reported

in 25 studies, classical statistical approaches accounted for just

under half (44%), ML methods such as ridge regression, random

forest, gradient boosting machine algorithms, and generalized

linear models were used in 32%, and deep learning approaches

(24%) included stacked recurrent neural network, channel-wise

long short-term memory (LSTM), multi-modal deep learning, and

ensemble-based neural networks. The greater prevalence ofML and

deep learning approach in this group is likely to reflect the number

and complexity of the variables and the large sample size used in

these studies.

Analytical pipeline
The median number of predictors used was 18 (range 2–714).

Inclusion of all candidate predictors in multivariable modeling

was common (96%) without pre-selection of variables which was

done in a single study (42). Feature/predictor selection methods

during multivariable modeling were largely poorly reported in

76% of studies. When reported, AIC (43–45), recursive feature

elimination (46), and full model approach (47, 48) were used

for feature/predictor selection. Missing data were handled using

imputation by various methods in 16% of studies but remained

under-reported in the remaining studies (84%). Methods used

to manage over-fitting and optimism were commonly used in

80% of studies. They included combinations of random split, k-

fold cross-validation, bootstrapping, hyper-parameter tuning and

selection and stochastic gradient descent techniques; and were

not reported in 20% of studies. The more recent studies reported

various hyperparameter optimisation methods such as Bayesian

(49) and Gaussian (50)-based selection and tuning processes,

gradient descent methods (51), and 10-fold cross-validation (52).

Table 1 and Supplementary Table S8 show the key information

for all admission LOS prediction models included in the

systematic review.

Reported performance metrics and interpretation
The frequency of the various reported model performance

measures is summarized in Figure 2 and Supplementary Table S7.

Discrimination
AUROC was the most frequently reported metric of

discrimination (42% models) outlined in Figure 2. The median

values of AUROC were 0.7365 (range 0.63–0.832), indicating the

fair-to-good discriminative ability of the majority of the models
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TABLE 1 All admission LOS prediction models included in the systematic review (n = 45).

References Type of final
model

Outcome Name of data
analysis/modeling method
used DD

AUROC
values (95%
CI)/C-
statistics

Other
prediction
metrics

Baek et al. (42) (1) Internal validation LOS Pred

(continuous)

Multivariable logistic regression MAE= 4.68

Baek et al. (42) (2) LOS long-term

(>30 days)

Random forest method (ML) Accuracy: 97.32%

Bahrmann (53) (1) Development LOS (continuous) Multivariable linear regression Estimate:−0.58

(−1.0,−0.15) p=

0.009

Bahrmann (53) (2) Estimate: 0.41 (0.02,

0.81) p= 0.041

Beaulieu-Jones (54) (1) Development LOS > 7 days Stacked recurrent neural network [gated

recurrent unit (GRU)]

0.82

Beaulieu-Jones (54) (2) Temporal

validation

0.71

Belderrar (55) Internal validation High hospital LOS

outliers (geometric

mean= 2 SD)

FRBFN (fuzzy radial basis function

networks)

MMRE (Z-score):

2.13%

Chrusciel (56) Development LOS≥ 7 days

(structured data)

Random forest method (ML) Accuracy: 74.1%

Precision: 74.2%

LOS≥ 7 days

(unstructured data)

Accuracy: 75%

Precision: 75.7%

Gilbert et al. (57) Internal validation LOS > 10 days Multivariable logistic regression 0.73

Grampurohit et al. (58) Development LOS (continuous) Ridge regression MAE: 0.82131

Guerra et al. (43) (1) Development LOS≥ 7 d Cox proportional hazards regression

model

HR = 0.60 (0.49–

0.73)

AIC 6006

Guerra et al. (43) (2) HR = 0.61 (0.52–

0.73)

AIC 6019

Harutyunyan et al. (59) (1) Internal validation LOS > 7 days Channel-wise LSTM+ deep supervision 0.84

Harutyunyan et al. (59) (2) LOS (continuous) MAE: 94.0 (93.6,

94.4)

Hilton et al. (49) Internal validation LOS > 5 days Gradient boosting machine

(GBM)-based methods

0.84

Jaotombo et al. (52) Development LOS > 14 days Gradient boosting machines (GBM) 0.81

Lequertier et al. (20) Internal validation LOS 0–13 days

LOS > 13 days

Feed-forward neural network (FFNN)

with embeddings

Accuracy: 73%

Levin et al. (47) (1) Internal validation LOS < 1 day

(same-day

discharge)

Supervised ML 0.72–0.78

Levin et al. (47) (2) LOS < 2 days (Next

Day Discharge)

Supervised ML 0.70–0.80

Liu (60) (1) Development LOS > 5 days Multivariable logistic regression 0.81 (0.81–0.82)

Liu (60) (2) Development 0.90 (0.90–0.91)

Liu (60) (3) Development 0.94 (0.93–0.94)

Liu (61) Development LOS (continuous) OLS linear regression Accuracy: 62.9%

Malone (62) Internal validation LOS (continuous)

time series data

only

Ridge regression MAE: 2.956

Malone (62) LOS (continuous)

all data

MAE: 2.945

(Continued)
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TABLE 1 (Continued)

References Type of final
model

Outcome Name of data
analysis/modeling method
used DD

AUROC
values (95%
CI)/C-
statistics

Other
prediction
metrics

McAlister and van Walraven

(48) (1)

External validation LOS > 10 d Multivariable logistic regression 0.705

McAlister and van Walraven

(48) (2)

External validation 0.723

Monterde et al. (44) (1) Development LOS >14 days Multivariable logistic regression 0.739 (0.734–0.743)

Monterde et al. (44) (2) Development 0.786 (0.782–0.790)

Monterde et al. (44) (3) Development 0.745 (0.740–0.750)

Monterde et al. (44) (4) Development 0.811 (0.806–0.815)

Ossai et al. (46) Development Tertile for DRG Machine learning: SMOTE+ recursive

feature elimination with

cross-validation (RFECV)+ extra tree

classifier (ETC)

Accuracy 0.885 ±

0.063

Precision 0.9

± 0.052

Purushotham et al. (45) Internal validation LOS (continuous) MMDL (multi-modal deep learning)

using data in the first 24 h

MSE: 36,338.2015

± 2,672.3832

Purushotham et al. (45) Internal validation LOS (continuous) MMDL (multi-modal deep learning)

using data in the first 48 h

MSE: 36,924.2312

± 3,566.4318

Purushotham et al. (45) Development LOS (continuous) MMDL (multi-modal deep learning)

using data for the entire admission

MSE: 36,338.2015

± 2,672.3832

Rajkomar et al. (50) (1) Internal validation LOS > 7 days

Hospital A

0.86 (0.86–0.87)

Rajkomar et al. (50) (2) Internal validation LOS > 7 days

Hospital B

Deep learning 0.85 (0.85–0.86)

Shin (63) Internal validation LOS (continuous) GLM with gamma distribution Explained variance:

0.088 (0.086–0.089)

Shukla (64) Internal validation LOS (continuous) Interpolation and prediction network Median absolute

error: 2.862± 0.166

Explained variance:

0.245± 0.019

Soong et al. (65) (1) Development

(elective)

Upper quartile of

LOS specific to

country

Multivariable logistic regression 0.73

Soong et al. (65) (2) Development

(non-elective)

Multivariable logistic regression 0.65

Soong et al. (65) (3) External validation

(elective)

Multivariable logistic regression 0.676

Soong et al. (65) (4) External validation

(non-elective)

Multivariable logistic regression 0.677

Xiongcai et al. (66) Internal validation LOS < 1 day

(same-day

discharge)

Machine learning 0.83

Sn, sensitivity; Sp, specificity; MAPE, mean absolute percentage error; RMSE, root mean square error; SD, standard deviation; MAE, mean absolute error; AIC, Akaike’s information criterion;

HR, hazards ratio; OLS, ordinary least squares; GLM, generalized linear model.

(67). Other discrimination metrics reported were accuracy (20%),

C-statistic (13%), and mean absolute error (MAE) (11%).

Calibration
Calibration metrics (likelihood ratio index, HL goodness of fit,

and calibration plots) were reported in only 20% of models. All the

reported models appeared to be sufficiently calibrated.

Of the two studies reporting comprehensive performance

measures, including calibration, discrimination, and overall

accuracy measures, both Harutyunyan et al. (LOS>7 days)

and Hilton et al. (LOS>5 days) demonstrated an excellent

discriminative ability with AUROC of 0.84 (49, 59) with good

calibration of models using ML/deep learning (recurrent neural

networks, LSTM, and gradient boosting machines) and data from

electronic medical records.
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FIGURE 2

Frequency of LOS prediction model performance metrics reported in all admissions LOS prediction models (n = 45). AIC Akaike information criterion.

The following performance metrics were used less than three times and are not represented in the figure: Pred/z-score/MMRE (mean magnitude of

relative error), model adequacy/model fit R2/adjusted R-squared, Cohen’s kappa, explained variance/Nagelkerke’s R-squared, Brier score, and

median AE (absolute error).

Predictors/variables
The most frequently used predictors and predictor

categories are outlined in Table 2 and Supplementary Figure 1.

Variable/feature importance was reported in half the studies using

diverse association metrics such as hazard ratio, incident rate ratio,

and estimates/regression coefficients making comparisons based

on the strength of association of predictors imprecise.

The top three predictor categories used were risk scores (68%),

demographic and anthropometric variables (68%), and admission

characteristics (60%). Risk scores included illness severity scores,

functional indices, co-morbidity scores, and neurocognitive

screening tools. A wide range of demographic variables

representing the social determinants of health (SDOH) such

as ethnicity, socioeconomic index, anthropometric characteristics,

and marital status were used frequently. Admission characteristics,

such as admission source, day/month of admission, need for ICU

admission, admitting unit, procedure type, time and length of last

admission, elapsed LOS, and discharge/transfer destination, were

used widely, possibly owing to the predominant use of medical

record data sources and ongoing data collection throughout the

admission period. Many studies using electronic medical records

used information about the number of tests, consults, assessments,

medication, and investigations as proxy indicators of extended stay

rather than the actual results of these events (47, 51, 58, 66, 68).

Physical examination parameters and diagnostic and

administrative variables were included in 40% of studies, while

documentation and clinical notes, medications, health professional

characteristics, and hospital characteristics were included less

frequently. Admission diagnoses such as cancer and mental health

conditions were noted as important features having an impact

on LOS.

Quality assessment
The quality assessment of the included studies is outlined in

Table 3. Although many retrospective studies were done using

secondary data sources, most were deemed to be from high-quality

databases with evident reporting standards.

Of the 25 studies, the majority of the studies were at a low ROB

in domains of participants (76%), predictors (72%), and outcome

(68%) domains, implying an overall low concern for applicability.

Studies at moderate-to-high ROB in these domains demonstrated

unclear reporting of data source quality, availability of predictors

during implementation, determination, definition, and consistency

of outcomes, and inappropriate participant inclusion/exclusion.

Quality assessment of analysis methods showed 68% were at

high, and 16% at moderate or low risk of bias. Limitations in the

model analysis and methodology reporting in high-risk studies

included a lack of comprehensive reporting of model performance

measures (no calibration measures), overfitting and optimism,

missing data, and handling of data complexity, potentially implying

poor adoption/awareness of the TRIPOD reporting guideline (29).
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TABLE 2 Most frequently used variables in risk prediction of prolonged LOS in all admissions (n = 25).

Input variables (predictors) Frequency of inclusion in LOS
risk

prediction studies (n = 25)

Risk scores

• Illness severity scores such as APR-DRG risk and APR-DRG severity

• Functional indices such as Barthel’s index (BI), hand grip strength (lowest three quartiles), and rehabilitation (mobility

scale)

• Co-morbidity scores such as CCI, Charlson age co-morbidity, Charlson co-morbidities, co-morbidity point score,

Elixhauser co-morbidity score, Gagne’s co-morbidities, and Queralt index

• Frailty scores such as Dr. Foster Frailty Index and Hospital Frailty Risk Score (HFRS)

• Neuro-cognitive screens such as GCS and its variations and triage scores

• Nutritional risk scores such as MUST, NRS-2002, and PG-SGA

17 68%

Demographic and anthropometric variables

• Age/sex

• BMI

• Caregivers

• Clinical flags (correlates of psycho-social determinants)

• Ethnicity: race (white vs. other)

• Height/weight

• Language

• Marital status

• Religion

• Socioeconomic index

17 68%

Admission characteristics

• Admission month/admission shift/admission source/admission type

• Care units/hospital service/transfer frequency

• Day of week time of day

• Entry date and time

• Mode of entry/mode of arrival to ED

• Discharge date and time/discharge location

• Early admission to ICU

• Temporal variables: elapsed LOS (current admission)/last admission LOS/no. of days since last admission/total days in

hospital in last 12/12

• First procedure on admission/medical procedures/interventions/procedural terminology

15 60%

Physical examination (biological and physiological parameters)

• Observations: capillary refill rate, chart events, diastolic blood pressure, fraction of inspired oxygen, heart rate, mean

blood pressure monitoring outputs, oxygen saturation, respiratory rate, temperature, systolic blood pressure

• Lab tests: bilirubin, Glucose, ph, K, Na, serum bicarb level, serum urea, nitrogen level, WBC count

• Laboratory acute physiology score

• Number of micro labs/number of lab tests/consults/diagnostics (count of tests)

• Imaging reports

• Days since the last event (lab test, etc.)

10 40%

Diagnoses (primary/secondary including co-morbidities) and procedure types.

• Principal diagnoses or admission diagnoses such as AIDS, blood cancers, mental co-morbidity, and metastatic cancer

• Associated diagnoses

• Number of diagnoses on admission

10 40%

Administrative

• Administrative charge codes for all actions taken from a presentation at the hospital until the end of the first calendar

day of admission

• Insurance type

10 40%

Medications

• 24 h medications

• IV meds

• Medications (count of meds Oral/IV)

• Non-IV meds

4 16%

Documentation and clinical notes

Data from Electronic medical record systems like CareVue and Meta-Vision including

• observations

• imaging

• lab events

• medication-related order entries

• microbiology events

• discharge summary

5 20%

Healthcare professional characteristics

• Admitting physician speciality

• Admitting unit/location

3 12%

Hospital characteristics

• Type of hospital/center

2 8%

APR-DRG, all patients refined diagnosis related groups; CCI, charlson co-morbidity index; GCS, glasgow coma scale; MUST, malnutrition universal screening tool; NRS, nutrition risk screening;

PG-SGA, patient-generated subjective global assessment.

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2023.1192969
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gokhale et al. 10.3389/fmed.2023.1192969

TABLE 3 Risk of bias assessment of all admissions studies using PROBAST tool (n = 25).

Type of
prediction
model

Participant
risk of bias

Predictor risk
of bias

Outcome risk
of bias

Analysis of
risk of bias

Overall risk
of bias

Baek et al. (42) Development

Bahrmann (53) Development

Beaulieu-Jones (54) Validation

Belderrar (55) Development

Chrusciel (56) Development

Gilbert et al. (57) Development

Grampurohit et al. (58) Development

Guerra et al. (43) Development

Harutyunyan et al. (59) Development

Hilton et al. (49) Development

Jaotombo et al. (52) Development

Lequertier et al. (20) Development

Levin et al. (47) Development

Liu (61) Development

Liu (60) Development

Malone (62) Development

McAlister and van

Walraven (48)

Validation

Monterde et al. (44) Development

Ossai et al. (46) Development

Purushotham et al. (45) Development

Rajkomar et al. (50) Development

Shin (63) Development

Shukla (64) Development

Soong et al. (65) Validation

Xiongcai et al. (66) Development

Type of
prediction
model

Participant
risk of bias

Predictor risk
of bias

Outcome risk
of bias

Analysis of
risk of bias

Overall risk
of bias

Baek et al. (42) Development

Bahrmann (53) Development

Beaulieu-Jones (54) Validation

Belderrar (55) Development

Chrusciel (56) Development

Gilbert et al. (57) Development

Grampurohit et al. (58) Development

Guerra et al. (43) Development

Harutyunyan et al. (59) Development

Hilton et al. (49) Development

Jaotombo et al. (52) Development

Lequertier et al. (20) Development

Levin et al. (47) Development

Liu (61) Development

Liu (60) Development

Malone (62) Development

McAlister and van

Walraven (48)

Validation

Monterde et al. (44) Development

Ossai et al. (46) Development

Purushotham et al. (45) Development

Rajkomar et al. (50) Development

Shin (63) Development

Shukla (64) Development

Soong et al. (65) Validation

Xiongcai et al. (66) Development

, low ROB; , unclear ROB; , high ROB.

Dev, development only (includes models with internal validation), Val, studies with external validation.
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FIGURE 3

Meta-analyses of four externally validated models for LOS prediction in all admissions group (n = 4).

Meta-analysis
We conducted a meta-analysis of four LOS validation

models that used Frailty Risk Scoring tools using administrative

data [Hospital frailty risk score (48) and Global frailty score

(65)] to predict LOS using logistic regression analysis. The

meta-analysis reports a 95% prediction interval [shown

in Figure 3 (forest plots), Table 4], to account for varying

model performance due to differences in case mix and other

study-level factors (21). The random-effects meta-analysis

showed a 95% prediction interval for theta of 0.596, 0.798

(I2 = 99.92%). Sources of heterogeneity were not explored

further statistically due to the small sample size. However,

Supplementary Table 13 outlines the differences in study

populations and characteristics.

Publication bias
We observed no small-study effects on statistical testing

(Egger’s test p < 0.001) shown in Supplementary Table S11.

In combination with the visual inspection of the

funnel plots, we observed no publication bias in our

included studies.

General medicine prediction models

The majority of the studies in this subgroup came from Europe

(nine of 14) and the rest from the United States, Australia, and

Japan (3, 1, and 1, respectively). The median study duration was 2.9

years (range 0.2–12) with amedian sample size of 19,095 (range 33–

2,997,249) and the predominant use of administrative data (64%).

Timing of prediction in most studies (13 of 14) was on admission

with a large range of prolonged LOS cut-offs used (3–30 days).

TABLE 4 Meta-analysis summary of four externally validated models for

LOS prediction in all admissions group.

Meta-analysis summary

Number of studies= 4

Random-effects mode Heterogeneity

Method: REML tau2= 0.0004

I2 (%)= 99.92

H2= 1,288.86

95% prediction interval for theta = (0.596, 0.798)

Test of theta= 0: z = 66.51 Prob > |z|= 0.0000

Test of homogeneity: Q= chi2(3)= 3,136.41 Prob > Q= 0.0000

Predictive modeling methods
There were no externally validated models in 30 models

reported in 14 studies. Overall, 56% used classical statistical

approaches such as multivariable logistic (n= 14) and Cox/Poisson

(n = 3) regression. The rest were ML (37%) and deep learning

(artificial neural network) (7%) models. Supervised ML methods

used commonly were bagged regression trees (n = 3), random

forest (n = 4), linear support vector machine (SVM) + Chi-square

filtering method with synthetic minority over-sampling technique

(SMOTE) (n = 3), and one decision tree (CHAID) model. Binary

outcome modeling was more common (90% of models). AUROC

was the most frequently reported metric of discrimination (46%)

as outlined in Supplementary Figure 2 followed by sensitivity,

specificity, and C-statistic.

Analytical pipeline
The median number of predictors used was 12 (5-1001). Most

studies (64%) included all candidate predictors in multivariable

modeling and pre-selection of variables based on univariable

analysis was noted in 35% of studies. Feature/predictor selection

methods during multivariable modeling and missing data were
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poorly reported. In the remaining studies (45, 69–72) p-value

thresholds were used for feature/predictor selection, and patients

with missing data were excluded (73–75). Methods used to

manage overfitting and optimism were used frequently (64%) and

included combinations of random split, k-fold cross-validation,

bootstrapping, and sensitivity analysis.

Predictor variables
Frequently used variable predictor categories are shown in

Supplementary Figure 1 and Supplementary Table 8. Predictor

categories such as risk scores (86%), diagnoses (primary/secondary

including co-morbidities) (79%), and demographic and

anthropometric variables (71%) were used most frequently.

Commonly used risk scoring tools were illness severity scores/index

(71), Charlson Co-morbidity Index and Manchester triage scores

(70), Brief Geriatric Assessment tool (74), Exton smith scale

(pressure injury risk), ADL score and nutritional risk tools (76),

and COMPRI (care COMplexity PRediction Instrument) (77).

Cardiovascular, respiratory, gastrointestinal, and neurological

diagnostic groups were noted as significant predictors, in addition

to demographic characteristics such as age, sex, and living

situation. Physical/laboratory parameters (43%) such as serum

markers, routine observations including oxygen requirements,

medication variables such as >5 drugs/day (36%), and admission

characteristics (14%) such as day/month of admission, elapsed

LOS, and discharge destination were also included in prediction

models albeit less frequently. The predominant use of diagnostic

categories in this group emphasizes the importance of clinical

presentation in General Medicine admissions and diagnostic

complexity reflecting acuity and by proxy LOS.

Quality assessment
Risk of bias (ROB) was low in the domains of predictors

and outcome assessment of all studies (Supplementary Table 12).

In total, 28% of studies were found to have a moderate-to-high

bias in the participant selection domain due to unclear data

source information. Bias was also noted to be high in the analysis

of all included studies. The commonly observed pitfalls were a

lack of comprehensive reporting of model performance measures

(no calibration measures) (78%), overfitting and optimism (35%),

missing data (85%), and handling of data complexity (71%).

As a result, the overall ROB for all included General Medicine

studies was high suggesting that results should be interpreted and

translated cautiously.

Discussion

This systematic review of risk prediction models for prolonged

LOS in all admissions and General Medicine admissions showed

a sharp increase in reporting of LOS prediction studies since 2018

with the widespread use of ML methods. Most models calculated

the risk on admission. Reported prediction models showed

good discriminative ability; however, they lacked calibration

information, limiting impact assessment. Only four external

validation models were reported with extensive use of electronic

medical records and ML and AI methods. Overall, the study

reporting was poor, especially for model analysis and performance,

impacting the ability to assess the model quality and potential

for translation into practice. In addition to detailed reporting

aligning with guidelines such as TRIPOD and PROBAST, the

high-quality studies had large sample sizes and reliable data

sources and used retrospective data. A meta-analysis demonstrated

prediction intervals in the moderate-to-good discrimination range,

demonstrating that these macro-level algorithms may have some

utility for identifying inpatients at risk of prolonged LOS.

Observations about a shortage of external validation studies

have been noted by other researchers (78–80). Underreporting

of external validation studies that often perform poorly may be

contributing to this observation (80, 81). Another factor may be

the lack of consistency in the predictor variables used in the

various LOS models. Consensus on a consistent set of predictor

variables could assist the ability of researchers across the world

to conduct external validations and work toward establishing

transportable models predicting the risk of prolonged LOS.

Increasing age, presence of multiple co-morbidities (assessed via

diagnoses or risk scores), illness severity (assessed using risk scores

or proxy indicators such as number of medications), and admission

characteristics such as type, source, and day of admission were

used most frequently in the GenMed admissions. In addition to

these, all admissions models predominantly included physiological

measurements (such as BP and oxygen saturation) and functional

independence measures (risk scores or demographic variables such

as living situation). The extensive use of non-clinical features

may suggest that systemic and environmental factors have a

considerable role alongside clinical factors in the prediction of LOS

in heterogenous populations.

Literature about procedure-specific prediction models with

good prediction accuracy (82, 83) is abundant, with models

primarily predicting clinical outcomes such as 30-daymortality and

postoperative pain. LOS prediction models for surgical populations

have been analyzed and published in a separate manuscript (84).

LOS predictions are considered to have a dual benefit in being a

proxy measure of clinical outcomes as well as hospital efficiency

(1). As such, population-based LOS predictions are key enablers

of organizational resource planning as well as the daily access and

flow issues managed by the frontline staff. Hence, the purpose

of prediction should guide the choice of procedure-specific vs.

population-specific models.

SDOHs are also associated with health outcomes such as longer

acute LOS (85, 86). Factors such as socioeconomic index, residential

postcode, cohabitation status, and level of education are often

considered a proxy for SDOH and can be extracted from routinely

collected data. Only two studies (47, 57), in this review, explicitly

used these factors over and above the standard demographic

variables of age, gender, ethnicity, and marital status. Levin et al.

included predictors such as addiction treatment medications,

psychotherapeutics, case management and social work consults,

and clinical flags of substance abuse, which were correlates of

SDOH. Notably, only seven of 39 studies clearly indicated the

inclusion of other socioeconomic variables such as ethnicity, race,

religion, language, or marital status. This could potentially be a

limitation of the data sources used or the capability for data linkage

with other data sources which could provide this rich detail to the
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data. Future models could benefit from the inclusion of reliable

indicators of SDOH to identify cases where prolonged LOS riskmay

be more ambiguous.

Clinical implementation and deployment of LOS prediction

models continue to be a challenge despite extensive efforts in the

development of such models (87–89). Low digital literacy levels,

serious technological debt in healthcare infrastructure systems,

and issues with the reliability of data and interoperability have

been widely cited in the literature as potential roadblocks to the

implementation of such predictive analytical decision support.

In addition, successful implementation strategies must consider

the existing workflows and clinician perspectives on the utility

and value of these predictive algorithms. As such, co-design and

coproduction with end-users is crucial to embed these tools as

an integrated legacy framework, for future use by the health

service. Furthermore, in this process, external validations must be

conducted in a large number of settings to show all stakeholders,

including clinicians, administrations, and patients, that this type of

decision support can add value and is trustworthy.

Strengths and limitations

The validated PROBAST quality assessment of the included

studies was a strength of our review. It revealed a significant

gap in the adoption of TRIPOD guidelines for prediction

modeling studies, presenting evidence of moderate-to-high ROB.

Poor reporting impacts implementation feasibility and external

validation of existing prediction models. Many recent publications

have implored the research community to attempt external

validation before developing new models while accepting the

evident challenges in reporting and reproducibility (80, 90). This

review further strengthens this imperative to improve the reporting

in prognostic prediction modeling studies in LOS.

The majority of the data sources in our systematic review were

classified as secondary data sources. As per the PROBAST tool

recommendation, secondary data sources are considered as high

ROB due to a lack of data collection protocols, increasing the

uncertainty about data validity (91) and limiting generalizability.

Secondary data use is critical for long-term real-world evaluation of

health interventions, system efficacy, and continuous improvement

and monitoring of health service delivery (92). Transparent

reporting of data quality issues such as missingness, inaccuracy,

and inconsistency can assist in providing some reassurance that

routinely collected data can be used as a strategic resource for

research to improve health system efficiencies and effectiveness (91,

93, 94). We suggest that data hubs and repositories adopt evidence-

based standardized frameworks to guide their data governance

and evaluation practices (92, 95) to ensure transferability and

generalization of results of secondary analysis of routinely collected

health data.

Broad recommendations

Future studies should (1) validate the prediction models on

prospective data to enable near real-time LOS risk prediction

and attempt external validation of existing models to test

implementation feasibility, (2) use appropriate guidelines (23, 29)

to report prediction study findings, (3) utilize data available on

and within 24 h of admission to enable prognostic prediction and

proactive interventions, and (4) include variables and assessments

that are available from routinely collected data to reduce the

administrative burden on frontline clinicians.

Conclusion

To the best of our knowledge, this is the first systematic

review assessing the quality of risk prediction models for prolonged

LOS in All Admissions and GenMed studies. Overall, LOS risk

prediction models appear to show an acceptable-to-good ability

to discriminate, however, transparent reporting and external

validations are now required for potential benefits of such macro-

level prediction tools to be implemented inside hospitals to assist

with early identification of inpatients at risk of a prolonged LOS.
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