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Objective: To identify the incidence of moral hazards among health care providers

and its determinant factors in the implementation of national health insurance

in Indonesia.

Methods: Data were derived from 360 inpatient medical records from six

types C public and private hospitals in an Indonesian rural province. These

data were accumulated from inpatient medical records from four major

disciplines: medicine, surgery, obstetrics and gynecology, and pediatrics. The

dependent variable was provider moral hazards, which included indicators of up-

coding, readmission, and unnecessary admission. The independent variables are

Physicians’ characteristics (age, gender, and specialization), coders’ characteristics

(age, gender, education level, number of training, and length of service), and

patients’ characteristics (age, birth weight, length of stay, the discharge status,

and the severity of patient’s illness). We use logistic regression to investigate the

determinants of moral hazard.

Results: We found that the incidences of possible unnecessary admissions,

up-coding, and readmissions were 17.8%, 11.9%, and 2.8%, respectively. Senior

physicians, medical specialists, coders with shorter lengths of service, and patients

with longer lengths of stay had a significant relationship with the incidence of

moral hazard.

Conclusion: Unnecessary admission is the most common form of a provider’s

moral hazard. The characteristics of physicians and coders significantly contribute

to the incidence of moral hazard. Hospitals should implement reward and

punishment systems for doctors and coders in order to control moral hazards

among the providers.
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1. Introduction

A moral hazard refers to the possibility of consumers or health

care providers abusing a system in order to maximize profits at the

expense of other consumers, providers, or the financing community

as a whole (1). Amoral hazard occurs, for example, when an insured

person spends an extra day in the hospital or pays for a procedure

that would not have been purchased otherwise (2). In insurance

industry, the phenomenon of moral hazard umbrella may be

considered as fraud. Insurance fraud would not be possible without

asymmetric information—and cheating on insurance companies

is deemed immoral—it is referred to as a moral hazard (3).

Health insurance fraud can be committed by medical providers,

policyholders, or health insurers. Although anyone in the system is

capable of committing fraud, healthcare providers are more likely

than patients to do so (4, 5).

Some of the healthcare fraud schemes that are frequently

discussed in the literature and used to develop fraud detection

algorithms or analytics within regulatory entities are as follows:

Diagnostic-Related Groups (DRG) creep, unbundling and

fragmentation of procedures, up-coding of services, phantom

billing, providing excessive services that are not required, kickback

schemes, billing for mutually exclusive procedures, duplicate

claims and intentional billing errors (6). A number of studies in

the world has proven that, provider moral hazard among providers

did exist in hospital services (7).

Moral hazard has preoccupied health economics and U.S.

health policy for half a century (8). When Medicare providers’

payment patterns changed to a prospective Diagnostic Related

Groups (DRG) system in the United States, hospitals raised the

patient’s disease code to a higher level (up-coding). It is aimed at

getting the hospital’s finance higher than they should be. In private

hospitals, the response was stronger. Up-coding or code creeps also

occurs in independent medical practices where there is an increase

in claim payments, 2.2% from what it should be in 1 year. Hospitals

respond to changes in payment patterns by changing the intensity

of service provided to patients, severity levels, and market share

(7, 9, 10).

Alonazi (11) conducted an audit of the Saudi healthcare system

and found the official documents contain the details of various

moral hazard measures. Berta et al. (12) examined several types of

deviant in Italian hospitals and linked them to hospital efficiency.

Deviations in question include up-coding, cream skimming, and

readmissions. Debpuur et al. (13) found that the form of moral

hazard in the Northern Ghana National Health Insurance is

diagnosing simple malaria with complicated malaria, exaggerating

the provision of drugs and health services to patients, asking for

payments for services that are not provided, and increasing the

number of patients receiving health services.

World Health Organization (WHO) estimates the annual

global health care expenditure is US$ 5.7 trillion (2008). Each year,

7.29% of that, or an estimated US$ 415 billion, is lost to fraud

and errors. South Africa’s healthcare system is defrauded between

4 million and 8 billion US Dollars annually. In the UK in 2008–

2009, about 3% of National Health Services (NHS) fees were lost to

fraud (14). The Centers for Medicare andMedicaid Services (CMS)

spent $1.1 trillion on health coverage for 145 million Americans in

2016, $95 billion of which was improper payments related to abuse

or fraud (15).

According to a 2009 study, 19.6% of 11.8 million Medicare

beneficiaries who were hospitalized from 2003 to 2004 were

readmitted within the first month of their hospitalization, costing

an estimated $41 billion per year (16). According to Geruso

and Layton (2020), upcoding could have cost Medicare $10.5

billion in 2014, or $640 per Medical Advantage enrollee (17).

Between July 2009 and June 2010, 139 patients were admitted

and treated for preterm labor at a level III center, but none

of them delivered preterm. Total hospital charges for the

management of these patients were $1,018 589. Unnecessary

admissions and treatments for threatened preterm labor are

part of clinical practice and contribute to exploding healthcare

costs (18).

Indonesia is the world’s largest country that aims to achieve

Universal Health Coverage through the National Health Insurance.

However, the health financing fund was claimed to contribute to

budget deficit from USD 200,000,000 in 2014 to USD 450,000,000

in 2016. The moral hazard of health providers has been blamed

as one cause of the deficit. In 2015, there were around 175

thousand claims from health services managed by National Health

Insurance Administration Agency or recognized by name BPJS

Kesehatan with a value of 27 million dollars that was detected as

fraud, and up to now there have been 1 million claims detected.

Nevertheless, so far no independent study was done to assess the

real incidence and cause of moral hazards in the National Health

Insurance of Indonesia (7, 19, 20). This research can contribute

to improve the implementation of Indonesian National Health

Insurance by providing scientific evidence on the existence and

sources of moral hazards among providers. This will allow the

relevant parties to forecast the events and take preventive actions

in the future.

On the other hand, systematic review conducted by Pongpirul

and Robinson (21) stated that the actors of moral hazard in

hospitals could be classified into three categories; those are hospital

management, clinicians, and coders (21). However, no study has

shown the relationship of moral hazard with the type of hospital,

physician, coder, and patient characteristics. The hypothesis we

seek to test is that there is a relationship between the characteristics

of physicians (age, gender, and specialization), coders (age, gender,

education level, number of certificates, and length of service),

and patients (age, birth weight, LOS, discharge status, and the

severity of the illness) with the incidence of moral hazards.

This study aims were to identify the incidence of moral hazards

and determinant factors such as physicians, coders and patients

characteristics in the implementation of national health insurance

in Indonesia.

2. Methods

2.1. Design

We conducted a cross-sectional study on representative Class

C hospitals to undertake medical record analysis in West Sumatera

Province, Indonesia.
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2.1.1. Population
In this study, the population consisted of medical records

from inpatients in class C hospitals in West Sumatra. According

to data from the Ministry of Health, class C hospitals are the

most common type of hospital in West Sumatra. According

to data from the Health District Office West Sumatera

Province, there are 38 Class C hospitals, 15 of which are

government-owned and 23 of which are private (22). A Class

C hospital is one that offers four basic medical specializations:

surgery, obstetrics and gynecology (OBGYN), pediatrics, and

internal medicine.

2.1.2. Sample
A cluster random sampling technique was used to

choose the hospitals. Cluster random sampling divides

the population into clusters/classes, with the assumption

that each class/cluster already has the trait/variation

under study. In this study, 6 (six) Class C hospitals were

selected, consisting of three government hospitals and

three private hospitals. In accordance with the sample size

calculation, the minimum sample size for this study is 360

medical records.

Six hospitals receive an equal quantity of samples. In each

hospital 60 medical records were selected. The 60 patient medical

records will be split into four primary groups of INA-CBG internal

disease cases: surgical cases (Group 1), medical cases (Group 4),

delivery cases (Group 6), and neonatal cases (Group 8). The

number of medical records obtained for each case was 60/4, i.e.,

15 medical records per case. The sampling method in this study is

shown in Figure 1.

The sample inclusion criteria include medical records which

have complete data on 14 casemix variables, including: Patient

Data (1). Identification: Patient name, Medical Record Number;

(2). Age in years; (3). Age in days; (4). Gender; (5). Date of

Birth; (6). Birth Weight (for neonates), Admission Data (7).

Date of hospital admission (8). Discharge Date (9). Length

of stay (LOS) (10). Discharge Disposition Clinical Data (11).

Primary Diagnosis; (12). Secondary Diagnosis; (13). Primary

Procedure; (14). Secondary Procedure. Sample exclusions criteria

are medical records that are not found, damaged, or cannot be

read by an independent coder. Data collection was carried out in

January–June 2018.

2.2. Data collection

The data were collected by independent reviewers, namely

several senior medical record professionals who did not work

in the selected hospitals and have a minimum of 5 to 10

years of experience as coders. Furthermore, the qualification for

selecting independent reviewers is that they have attended INA-

CBG coding training on a national scale five times or more. The

reviewer’s job is to go over the medical records of the patient

who were chosen as samples. The function of an independent

reviewer is to code the patient’s illness based on the information

in the medical records. Because the independent coder is not

involved in the service and management processes at the hospital

under review, we consider the results of this coding to be the

gold standard for medical coding. Furthermore, the reviewers

gathered secondary data in the form of the characteristics of the

coder, clinician, and patient, which were the study’s independent

factors.

2.3. Study outcomes

2.3.1. Moral hazard
Three indicators of moral hazards are used in this study: up-

coding, readmission and unnecessary admission. These variables

were derived from systematic review and a pilot study to identify

the main moral hazard indicators in hospitals.

Up-coding is the mismatch between the diagnosis code and

procedure written in the medical records which causes an increase

in hospital reimbursement (7, 23–25). In this study, an Independent

Senior Coder (ISC) reviewed each of the medical records. The

codes were entered into INA-CBGs software to determine the

hospital tariff. Furthermore, researchers gathered data on the

results of medical coding executed by the hospital coder (original

codes) and their tariff. The tariff based on the original codes was

compared with the codes from ISC. If the tariff from the hospital

coder’s work is higher than ISC codes, then the case is considered

as up-coding.

Readmission is an event of patient service where the same

discharged inpatient is brought back for hospitalization to undergo

the same disease treatment after a period of <30 days (26). In this

study, we reviewed the medical records and if the is hospitalized

in the same hospital for the same disease they had previously

been treated and discharged <30 days, then it is classified as a

readmission case.

Unnecessary admission is a hospitalization case where

there is no significant reason for the patient to be treated

when they were first admitted to the hospital (26). In

this study, unnecessary admission is defined as any

admission with a length of stay (LOS) of 2 days and

below, and the patient is discharged well (not dead).

However, admissions that ended in death are not considered

unnecessary admissions.

2.3.2. Characteristics of patients
Patient data is an important factor to determine INA-

CBGs tariff. Patient data consist of demographic data, admission

data, and clinical data. So far, there were no studies that

look at the relationship between patient variables with moral

hazard. Patient variables in this study were patients’ age,

birth weight, LOS, discharge status, and the severity of the

patient’s illness.

2.3.3. Characteristics of coders
A coder is a person who assigned the diagnoses and procedure

codes and enters the minimum data set into INA-CBGs software
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FIGURE 1

Sample selection process.

in order to produce INA-CBGs tariff. The coder’s qualification is

very decisive for coding quality. Coders’ characteristics in this study

were age, gender, education level, number of certificates, and length

of service.

2.3.4. Characteristics of physicians
In terms of health care provided in hospitals, a physician is

a person who has responsibility for patient care. The physician

also has the potential to perform moral hazard by increasing

admission volume, changing the intensity of care, and exaggerating

(21). Physician variables in this study were age, gender, and

specialization (medical, surgical, OBGYN, pediatric).

2.4. Statistical analysis

The incidence of moral hazard and characteristics of

doctors, coders, and patients are described in the frequency

distribution table. Incident moral hazard consists of up-coding,

readmission, and unnecessary admission. The physician’s

characteristics include the physician’s age, physician’s gender,

and physician’s specialization (medical, surgical, OBGYN,

and pediatric). The characteristics of the coder consist of

the coder’s age, coder’s gender, education level of coders,

the number of coder’s certificates, and coder’s length of

service. Patient characteristics consist of patients’ age,

birth weight, LOS, discharge status, and the severity of the

patient’s illness.

We used multilevel logistic regression analysis to examine the

contributions of characteristics of the patient, coder, and physician

to the incidence of moral hazards. The following multilevel model

was used (27).

P
(

y = 1
∣

∣xij, η0j
)

P
(

y = 0
∣

∣xij, η0j
) = β0 + β1 + . . . βkXkij + η0j + eij

In the presence of more than one explanatory variable, logistic

regression is used to calculate the odds ratio. With the exception

that the response variable is binomial, the approach is quite similar

to multiple linear regression. The impact of each variable on the

odds ratio of the observed event of interest is the result (28).

2.5. Ethics approval

Ethical approval for this study was obtained from Faculty of

Medicine Andalas University (No. 052/KEP/FK/2018).

3. Results

3.1. Incidence of moral hazard

Detailed indicators of moral hazard are presented in

Table 1. The most common type of moral hazard was possible

unnecessary admission (17.8%), followed by up-coding (11.9%)

and readmission (2.8%).

Unnecessary admissions were up to 4.2% more common

among neonates group. Meanwhile, deliveries group dominated up

coding cases by asmuch as 2.8%. Readmissions weremore common

in neonatal groups and female reproductive system groups. The full

results can be seen in Table 2.
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TABLE 1 Incidence of moral hazard.

Indicators of moral hazard Numbers %

Up-coding Yes 43 11.9

No 317 88.1

Readmission Yes 10 2.8

No 250 97.2

Unnecessary admission Yes 64 17.8

No 296 82.8

Total 360 100

3.2. The characteristic of physicians,
coders, and patients

Table 3 illustrates the characteristics of physicians, coders and

patients. The average age of physicians was 41 years old. It means

that the physicians involved in this study were mostly young.

Similarly the average age of coders was 31.32 years old. Meanwhile,

the average age of patients was 26, 49 years old, and average LOS

was 4 days.

Most of physicians’ were male and one third of them were

specialized in OBGYN (31.4%). Half (50.8%) of coders have had

<4 years work experience and more than half coder (67.5%) have

at less only one INA CBG coding training. Most of patients (71.4%)

are females, with the discharge status dominated discharge home

(93.6%). Most of the infant patients have not experienced low birth

weight (84.6%) as illustrated in Table 4.

It could be seen from multivariate analysis that physician’s

age, physicians’ specialization, coders’ length of service, and LOS

have significant relationship with incidence of moral hazard. The

most remarkable influence on moral hazard cases is physicians

specialization variable. To put it simply older physicians, medical

specialization, coders with less length of service, and long LOS had

a significant relationship with the incidence of moral hazard. The

full results can be seen in Table 5.

4. Discussion

Indonesia offers significant funding for JKN implementation.

According to the BPJS Kesehatan financial report, health insurance

expenses totalled 6.364 billion US dollar in 2018. Several rules

to prevent moral hazard or fraud have also been implemented,

such as the release of Regulation of the Minister of Health

no. 36 of 2015 on hospital fraud prevention. However, no

research has been conducted to demonstrate the efficiency of

these preventative measures against moral hazard situations

in hospitals.

This study found the incidence of unnecessary admission

was the highest moral hazard indicator at 17.8%. This

finding is higher than in other studies elsewhere. According

to Mosadeghrad and Isfahani (30) research on the

measurement of unnecessary patient admissions in Iranian

hospitals, 2.7% of hospital admissions were considered

unacceptable and unnecessary. The highest unnecessary

patients’ admissions in hospital were 11.8%, and the lowest

were 0.3%.

Unnecessary admission is “an admission that provides no

significant benefit to the patient or provides a benefit that

could have been obtained at a lower level of care (31). In this

study, the term “unnecessary admission” refers to patients who

are hospitalized for 1 to 2 days with a non-dead discharge

status. Unnecessary admissions mostly occurred in the Neonatal

Group and Deliveries Group. Other studies elsewhere on

unnecessary admissions were mostly found in the emergency

departments (32–34).

A variety of patient-related factors (e.g., age, disease severity,

method of payment, and route and time of admission), physicians,

and the hospital and its diagnostic facilities and technology

influence the unnecessary admission of patients to the hospital.

Unnecessary hospitalization increases nosocomial infections,

morbidity, and mortality, and reduces patient satisfaction and

hospital productivity (35–39).

Previous researchers proposed several strategies for reducing

avoidable hospital admissions, including expanding the primary

health care network, reducing hospital beds, implementing an

effective and efficient patient referral system, using a fixed provider

payment method, promoting residential and social services care at

the macro level, establishing a utilization management committee,

using the appropriateness evaluation protocol, establishing short-

stay units, and establishing a patient referral system (30, 33, 40, 41).

Indonesia has implemented several of these strategies in its

health care system, such as implementing a patient referral system.

The National Health Insurance Administration Agency has a tiered

referral system that must be implemented by health insurance

participants, social health insurance companies, and health facility

providers. This tiered referral system operates on a hierarchical

basis, beginning with primary health facilities (the closest to the

community) and progressing to secondary and tertiary health

facilities. Referral to second-level health facilities can only be

administered by a first-level health facility (42).

With the existence of a referral system, where there are criteria

such as health services in primary health care facilities that can be

referred directly to tertiary health care facilities only for cases that

have been diagnosed and a treatment plan has been established, a

repeat service and is only available in tertiary health care facilities,

reducing the incidence of unnecessary admissions because there

is a system that must be followed, unnecessary admissions will be

reduced. This system is strengthened by the existence of a policy

that states that if a health facility does not adopt a referral system,

BPJS Kesehatanwill conduct re-credentialing on the health facility’s

performance, which may have an impact on future collaboration.

However, hospitals must strengthen management to avoid

unnecessary admissions by establishing a utilization management

committee and implementing the appropriate evaluation protocol.

The second type of moral hazard found in this study was up-

coding (11.9%). In Germany, up-coding occurs at 1% of inpatients’

payments (29). Another study found a fairly high incidence of up-

coding, estimating that 18.5% annual reimbursed claims for Present

on Admission (POA) infections were up-coded hospital-acquired

infections (HAIs) (43).
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TABLE 2 Percentage of moral hazard types based on casemix main group.

Moral hazard Casemix main groups Total % Explanation

Up-coding (43) O 10 2.8 Deliveries group

W 6 1.7 Female reproductive system groups

P 4 1.1 Newborns and neonates groups

K 4 1.1 Digestive system group

G 3 0.8 Central nervous system groups

I 3 0.8 Cardiovascular system groups

L 3 0.8 Skin, subcutaneous tissue and breast group

M 3 0.8 Musculoskeletal system and connective tissue groups

D 2 0.5 Haemopoeitic and immune system groups

C 1 0.3 Myeloproliferative system and neoplasms groups

E 1 0.3 Endocrine system, nutrition and metabolism groups

J 1 0.3 Respiratory system groups

N 1 0.3 Nephro-urinary system groups

U 1 0.3 Ear, nose, mouth and throat groups

Readmission (10) P 2 0.5 Newborns and neonates group

W 2 0.5 Female reproductive system groups

G 1 0.3 Central nervous system groups

I 1 0.3 Cardiovascular system group

J 1 0.3 Respiratory system groups

K 1 0.3 Digestive system group

L 1 0.3 Skin, subcutaneous tissue and breast groups

U 1 0.3 Ear, nose, mouth and throat groups

Possible unnecessary admission (64) P 15 4.2 Newborns and neonates group

O 14 3.9 Deliveries group

U 10 2.8 Ear, nose, mouth and throat groups

M 6 1.7 Musculoskeletal system and connective tissue groups

G 4 1.1 Central nervous system groups

H 3 0.8 Eye and adnexa groups

L 3 0.8 Skin, subcutaneous tissue and breast groups

W 3 0.8 Female reproductive system groups

D 2 0.5 Haemopoeitic and immune system groups

K 2 0.5 Digestive system group

I 1 0.3 Cardiovascular system groups

N 1 0.3 Nephro-urinary system groups

Hospitals in Germany have up-coded at least 12,000 premature

babies and received additional reimbursements totalling more than

100 million Euros since the implementation of DRG. Currently,

approximately 2,000 up-coding generate an additional 20 million

Euros per year (44).

Up-coding is the practice of classifying a patient in a DRG that

results in a higher reimbursement or shifting a patient’s DRG to

another DRG that results in a higher payment from the third-party

provider (25, 45). There are two primary methods for detecting

potential DRG up-coding: (1) auditing by recoding the original

medical charts, and (2) comparing historical claim data to detect

an increase in the percentage of higher-cost DRGs (24).

Previous studies have indicated that DRG up-coding by private

providers can be intentional (46). A code audit is the most

reliable method of detecting DRG up-coding. Experienced health-

information managers recode the original medical chart and then

compare the new codes to the codes originally submitted by the

hospital in code audit (46). Other research indicates that audits with

fines can reduce up-coding while not necessarily inducing more

honesty (47).
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TABLE 3 Characteristics of physicians, coders, and patients.

Variables Mean (±SD) Median Max Min

Physicians; age 41.04 (±9,037) 39 72 31

Coders; age 31.32 (±5,244) 30 40 26

Patients’ age 26.49 (±22,387) 25.5 86 0

LOS 4.18 (±2,213) 4 20 1

Another qualitative study on up-coding discovered that the

Deliveries Group (2.8%) had the highest percentage of up-coding,

followed by Female Reproductive SystemGroups (1.7%). Upcoding

could result in a loss of IDR 154,626,000, or 9% of hospital

revenue (48).

That study also discovered that the reasons for up-coding can

be divided into three categories: (1) hospital-related; this occurred

due to a lack of defined coding criteria. The hospital also did not

know the flow of coordination between the teams constituted to

tackle the problem of coding conflicts between the hospital and

BPJS Kesehatan. (2) related to doctors; and (3) related to coders.

Doctors frequently did not understand the coding standards. From

the doctor’s perspective, the disease’s symptoms could also be

incorporated into medical coding, but they couldn’t. Furthermore,

the coders occasionally have problems reading, and the doctor’s

handwriting and untranslated abbreviations are illegible (48).

To avoid human error in up-coding, doctors and coders should

receive medical coding training to reduce doctor misspecifications

or coder misunderstandings.

So far, the government’s efforts in reducing moral hazard,

including up-coding, have included the signing of an agreement

or memorandum of understanding (MoU) between the BPJS

Kesehatan and the Director of the Hospital, which includes the

“Declaration of Absolute Responsibility Submission of Health

Services Claims” and the “Statement of Claims by the Team

Hospital Fraud Prevention,” which specifies that the hospital

director is accountable for submitting claims files that are devoid

of fraud or moral hazard. If there is fraud, the director is willing to

face legal consequences.

This study discovered a low number of readmission incidents,

with only 2.8%. Readmission cases were confirmed more in

group P (Newborns and Neonates Group) and group W (Female

reproductive system Groups) with two cases each.

Hospital readmissions can be defined as admissions to hospitals

or other health care facilities arranged within a specific period of

time following a hospital stay. Readmissions can also be defined as

returning to the hospital within 30 days of being discharged (at first

time), allowing the hospital to receive multiple reimbursements for

the same treatment (12, 49, 50). The following factors contribute

to readmissions: Inability to recognize the seriousness of the

patient’s illness, inability to appropriately address the patient’s

illness, patients being discharged from the hospital prematurely,

and a lack of control over the hospital (12, 51, 52).

Furthermore, in research conducted by Auger et al. (53)

on medical record review, 15% of readmissions were classified

as unplanned and preventable. Researchers and policymakers

concluded that a significant proportion of readmissions were

TABLE 4 Characteristics of physicians, coders, and patients (categorical

data).

Variabel F %

Physician

Physician’s sex

Male 244 67.8

Female 116 32.2

Physician’s specialization

Surgery 78 21.7

Medical (Internal Medicine, Ophthalmology,

Cardiology, ENT (Ear, Nose and Throat), Pulmonology

67 18.6

Obstetric and genecology 113 31.4

Pediatric 102 28.3

Coder

Coder’s Sex

Male 0 0

Female 360 100

Coder education

Lower than diploma 0 0

Diploma and higher 360 100

Number of coder’s training

One and none 243 67.5

More than one 117 32.5

Coder length of services

Less than 4 years 183 50.8

More than 4 years 177 49.2

Patients

Patient’s sex

Male 103 28.6

Female 257 71.4

Birth weight (neonates)

Low birth weight 14 15.4

Normal 77 84.6

Discharge status

Discharge home 337 93.6

Transferred to other hospitals 11 3.1

Discharge against medical advice 6 1.7

Death 6 1.7

Primary diagnosis

A00-B99 8 2.2

C00-D48 25 6.9

D50-D89 6 1.7

E00-E90 6 1.7

H00-H59 2 0.6

(Continued)
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TABLE 4 (Continued)

Variabel F %

I00-I99 23 6.4

J00-J99 22 6.1

K00-K93 32 8.9

L00-L99 5 1.4

M00-M99 6 1.7

N00-N99 10 2.8

O00-O99 105 29.2

P00-P96 89 24.7

Q00-Q99 2 0.6

R00-R99 6 1.7

S00-T98 8 2.2

Z00-Z99 5 1.4

Primary procedure

No procedure 139 38.6

01–05 1 0.3

06–07 1 0.3

08–16 3 0.8

21–29 17 4.7

30–34 2 0.6

35–39 2 0.6

40–41 1 0.3

42–54 21 5.8

55–59 1 0.3

65–71 8 2.2

72–75 89 24.7

76–84 19 5.3

85–86 21 5.8

87–99 35 9.7

Severity level of illness

Severity level 3 26 7.2

Severity level 2 57 15.8

Severity level 1 277 76.9

Total 360 100

The bold values indicate the highest percentage of each variable.

caused by healthcare system failures—whether due to inadequate

treatment during the initial hospitalization or a failure of

care coordination after hospital discharge. Therefore, it is

necessary to have policies to reduce inappropriate readmissions

because hospitals receive additional payments when patients are

readmitted (54).

Several interventions have succeeded in reducing readmission

rates for discharged patients. These interventions include: patient

needs assessment, medication reconciliation, patient education,

timely outpatient appointments, and telephone follow-up. The

impact of the intervention on the readmission rate is proportional

to the number of components performed. This means that

interventions with single component treatments are unlikely to

reduce readmissions significantly (55).

Another finding in our study was physicians’ age and

specialization, coder’s length of service, and LOS was the

determinant factor of moral hazard in hospitals.

Older physicians are 1.037 times more likely than younger

physicians to be associated with moral hazards (POR = 1.037).

Other studies found that male physicians and older physicians

were more likely to commit fraud, waste, and abuse on Medicare

(56, 57). Based on the in-depth research conducted, it is stated,

before beginning inpatient care, younger physicians learned the

fundamentals of rules. As a result, their knowledge of coding rules

keeps them more aware of moral hazards than older physicians.

Older physicians may be resistant to new patient treatment rules,

particularly coding rules that they believe are unfair to them. It is

suggested that every CME (Continuing Medical Education) unit

in the Faculty of Medicine should include Moral Hazard material

in its activities in order to increase knowledge and skills, as well

as develop doctors’ attitudes so that they can always carry out

their profession properly and correctly, and to help physicians

understand the consequences of moral hazards and avoid them in

the interest of their patient’s health.

We also discovered that the specialization of physicians

can influence the occurrence of moral hazards. Based on the

study’s findings, medical specializations are 2.373 times more

likely to perform moral hazards rather than surgical, pediatrics,

and OBGYN specializations (POR = 2.373). Previous research

has found that the specialization of physicians influences the

occurrence of fraud. According to Chen (57), physicians in certain

specialties (such as family medicine, psychiatry, internal medicine,

anesthesiology, surgery, and OBGYN) are more likely to commit

Medicare fraud, waste, and abuse.

Pediatric specialization is used as the standard for calculating

baselines in this study because the algorithm for compiling

the INA-CBGs code in cases of pediatric is more complex,

making manipulation difficult. According to this study, medical

specialization is more likely to cause moral hazard than other

specializations. Previous studies discovered Family medicine

physicians and psychiatrists departed are more likely to commit

fraud. This is because fraud is easier to commit when the risk of

malpractice suits is very low, such as in the fields of family medicine

and psychiatry. The study also explains that surgeons have the

highest proportion of doctors who face malpractice claims based

on their specialization (58).

BPJS Kesehatan is expected to be more stringent in inspecting

cases of moral hazard to medical specialists and to continue to

educate and raise awareness among physicians about the potential

moral hazard in their medical practices.

We discovered that the length of service of the coder

was a determinant of moral hazards. A beginner coder was

2.237 times more likely than an experienced coder to commit

moral hazard (POR = 2.237). The length of service corresponds

to the opportunity to receive training. Because the INA-CBG

coding rules are not taught in detail in their studies, beginner

coders have limitations in understanding the hospital coding

regulations. Hospitals should provide regular training, particularly

for new coders.
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TABLE 5 Multiple logistic regression analysis of factors influencing moral hazards.

Variabel B S.E. Wald p-value POR 95.0% C.I. for EXP(B)

Physician’s age 0.036 0.018 4.054 0.044 1.037 1,001–1,073

Physician’s specialization

Surgery 0.752 0.356 4.459 0.035 2.121 1.056–4.262

Medical 0.864 0.377 5.257 0.022 2.373 1.134–4.262

Obstetric and gynecology 0.219 0.338 0.421 0.517 1.245 0,642–2,415

Pediatric 1

Coder length of services 0.805 0.255 9.942 0.002 2.237 1,356–3,691

LOS 0.222 0.069 10.397 0.001 1.249 1,091–1,430

The LOS is the final factor discovered in this study that

influences moral hazard in hospitals. Moral hazards are 1.249 times

more likely to occur in long lengths of stay than short lengths of

stay (POR = 1.249). Patients who require more treatment spend

more days in hospitals. More hospital resources will be deployed as

a result. Some hospitals are willing to takemoral hazard, such as up-

coding if they believe the INA-CBG tariff is insufficient for patient

care. We recommend that the BPJS Kesehatan conduct more audits

of hospitals with higher LOS.

The study’s findings are highly encouraging, as it is well-known

that senior physicians, medical specialists, coders with shorter

lengths of service, and patients with longer lengths of stay. This

discovery should encourage hospitals and insurance companies

to be more cautious and pay more attention to audits of patient

medical records containing these variable factors.

5. Strengths

In this study, each medical record was examined by an

Independent Senior Coder (ISC). ISC comes from a higher-

level hospital than the one being analyzed, where the coders are

accustomed to coding more difficult and complex cases, and they

have had national-level training more than five times.

6. Limitations

The operational definition of unnecessary admission in this

study is a hospitalization of <2 days, and discharges, which are not

due to death. No doctor conducts a thorough examination of the

unnecessary admission case. As a result, some cases of unnecessary

admission may be considered necessary admission because they are

not further evaluated bymedical experts. The next study is expected

to include a physician reviewing each case to determine whether

hospitalization or admission is required.

7. Conclusion

This study revealed that the most common moral hazard is

unnecessary admission, followed by up-coding and readmission.

The factors significantly associated with moral hazard are

physicians’ age, physicians’ specialization, coders’ length of service,

and LOS. Themain factor that most has a role inmoral hazard is the

physician’s specialization. It is suggested to the hospitals conduct

training for physicians and coders about coding rules in casemix

system in the hospital.
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