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Cancer-induced bone pain (CIBP) caused by bone metastasis is one of the 
most prevalent diseases, and current treatments rely primarily on opioids, which 
have significant side effects. However, recent developments in pharmaceutical 
science have identified several new mechanisms for CIBP, including the 
targeted modification of certain ion channels and receptors. Ion channels are 
transmembrane proteins, which are situated on biological cell membranes, which 
facilitate passive transport of inorganic ions across membranes. They are involved 
in various physiological processes, including transmission of pain signals in the 
nervous system. In recent years, there has been an increasing interest in the 
role of ion channels in chronic pain, including CIBP. Therefore, in this review, 
we summarize the current literature on ion channels, related receptors, and drugs 
and explore the mechanism of CIBP. Targeting ion channels and regulating their 
activity might be key to treating pain associated with bone cancer and offer new 
treatment avenues.
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1. Introduction

According to the International Association for Pain Research, pain is defined as an 
unpleasant feeling or emotion that arises from actual or potential tissue damage (Raja et al., 
2020). The process of pain development involves signal transduction from peripheral pain 
receptors, further signal transduction in the spinal cord, brain stem, and thalamus, and the 
processing of pain signals in the cerebral cortex (Yam et al., 2018). Pain can be classified as acute 
or chronic according to the duration of pain symptoms. Acute pain tends to be relieved by the 
removal of the injurious stimulus, whereas chronic pain persists constantly or intermittently 
(Cohen et al., 2021). Owing to its complicated mechanism of generation, chronic pain is more 
difficult to treat than acute pain. Cancer pain is a prevalent symptom among patients with 
cancer, with approximately 30–50% of patients experiencing chronic pain during clinical 
treatment (Broemer et al., 2021). Moreover, chronic pain can persist in cancer survivors after 
treatment, along with other symptoms, such as anxiety, depression, fatigue, and loss of appetite, 
severely affecting their daily function (Poço Gonçalves et al., 2021). Cancer-induced bone pain 
(CIBP) is one of the most common types of chronic pain experienced by patients with advanced 
cancer (Kapoor et al., 2021). Although the incidence of primary bone cancer is low, most tumors 
can metastasize to the bone tissue, causing severe pain in the bone tissue. The mechanism of 
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bone cancer pain is complex and involves two main aspects: the 
influence of chemical media, such as changes in the local 
microenvironment of bone tissue; and mechanical deformation, such 
as the mass effect of the tumor and the resulting pressure, which 
results in the activation of stimulation receptors in the endosteum 
(Zheng et  al., 2022). The current three-stage therapy for CIBP, 
advocated by the World Health Organization, involves the use of 
non-body anti-inflammatory and analgesic drugs or opioids based on 
pain severity (Wiffen et al., 2017; Chapman et al., 2020). However, 
opioid drugs often cause addiction and other side effects such as 
itching, gastrointestinal problems, sleep disturbances, and cognitive 
issues (Kata et  al., 2018; Volkow and Blanco, 2020). Therefore, 
elucidating the mechanism of bone cancer pain and determining more 
effective analgesic methods are crucial.

Ion channels, which are specialized proteins located on the 
membranes or organelles, form highly selective pores on the 
phospholipid bilayer, allowing charged ions of appropriate size to pass 
through via passive transport. Ion channels are widely distributed in 
various tissues and organs and participate in various physiological and 
pathological processes (Subramanyam and Colecraft, 2015; De Logu 
and Geppetti, 2019). Previous phytochemical and pharmacological 
investigations demonstrated that ion channels play an important role 
in pain regulation (Raouf et al., 2010; Moore et al., 2018; Bouali-
Benazzouz et al., 2021). Somatic neurons involved in pain transmission 
are present in the dorsal root ganglion (DRG). In these neurons, 
various ion channels play important roles in the transmission of pain 
sensations. For example, transient receptor potential vanilloid 
(TRPV1) in the DRG is mainly expressed in nociceptors and sensory 
neurons and is involved in the regulation of heat and inflammatory 
pain (Karai et al., 2004; Chen et al., 2022; Katz et al., 2023). Increased 
voltage-gated sodium channel 1.7 (NaV1.7) expression leads to 
increased neuronal excitability and ultimately causes neuropathic pain 
in animal models (Li et al., 2018). In the early stage of nerve injury, the 
expression of the Cav3.2 channel and functional enhancement of 
damaged neurons lead to an increase in ectopic discharge frequency 
(Fayad et al., 2022). Transient receptor potential ankyrin 1 (TRPA1) 
and transient receptor potential melastatin 8 (TRPM8) knockout mice 
demonstrated relief of pain sensitization in neuropathic models 
(Trevisan et  al., 2016; de Caro et  al., 2018). The mechanical 
sensitization of pain in neuroinflammation has been reported to 
be  mediated by the pressure-sensitive piezo ion channel family 
(Murthy et al., 2018). Ion channels are often the sites of action of drugs 
or toxins (Bagal et al., 2013). Therefore, as targets of analgesic drugs, 
ion channels have always been the focus of research and direction of 
new drug development. This review provides an overview of the 
functional mechanisms of various ion channels in CIBP. In addition, 

we  discuss their potential application in formulating therapeutic 
strategies to address challenges in cancer pain treatment in the future.

2. Ion channels participating in CIBP–
TRP channel family

The TRP family comprises a group of nonselective cationic ion 
channels found in mammals. This family includes 28 members 
categorized into six subfamilies: TRPV (vanilloid), TRPC (carnical), 
TRPP (polycystin), TRPA (ankyrin), TRPM (melastatin), and TRPML 
(mucolipin). The TRP channel has a pore structure between S5 and 
S6, forming a cationic channel that is mainly permeated by calcium, 
sodium, and magnesium ions (Huang et al., 2020). TRP channels are 
widely distributed in both the peripheral and central nervous systems 
and act as molecular receptors that can be  activated by various 
physical and chemical stimuli, such as pH changes; chemical irritants, 
such as capsaicin and mustard; and changes in the temperature and 
osmotic pressure (Ramsey et al., 2006). Some TRP channels also act 
as thermoreceptors in peripheral sensory neurons. For example, 
TRPV1, TRPV2, and TRPA1 are activated by high temperatures 
(>39°C), while TRPM8 functions as a cold sensor activated by cool 
temperatures (<15°C). These channels are activated in specific 
temperature ranges, which makes them important for temperature 
sensing (Cabañero et  al., 2022). Additionally, some TRP family 
members are activated by various intracellular signaling molecules, 
such as inflammatory mediators, arachidonic acid and its metabolites, 
lipoxygenase products, and adenosine (Nishida et al., 2015).

TRP channels mediate diverse physiological functions as they can 
be activated by different external stimuli. For instance, TPRV1 is a 
temperature receptor that can be  activated by heat and capsaicin, 
whereas some members of TRP, such as TRPN channels, are 
mechanically sensitive ion channels that can transduce mechanical 
signals from the extracellular space to the intracellular space by sensing 
changes in stress on the cell membrane surface (Montell, 2001), which 
allows them to regulate hearing and touch in fruit flies and mammals. 
Mechanical conduction occurs mainly in the vascular endothelium, 
muscles, joints, skin, and other sensory cells. Transient Receptor 
Potential Vanilloid 4 (TRPV4) is expressed in cochlear hair and bone 
cells, where it regulates mechanical stress (Liedtke, 2005). The TRP 
family of proteins plays a crucial role in pain transduction. For 
example, TRPA1 is involved in the conduction of mechanical sensation 
in afferent-innervated blood vessels and mucosal tissues of the colon, 
with high and low threshold values (Jain et al., 2020). TRPV4 and 
TRPA1 knockout can inhibit the generation of painful behaviors in 
pancreatitis (Ceppa et al., 2010). Transient receptor potential vanilloid 
3 (TRPV3), which is mainly expressed in keratinocytes of the skin and 
is structurally similar to TRPV1, is involved in temperature perception 
and thermal pain (Moqrich et al., 2005). TRPV3 activation can also 
regulate skin barrier formation, germatogenesis, wound healing, and 
prostaglandin E2 (PGE2) release, resulting in heat pain and pain 
hypersensitivity when overexpressed in keratinocytes (Um et al., 2022).

2.1. TRPV1

TRPV1, also known as the capsaicin receptor, is a peripheral 
temperature receptor that is widely distributed in nociceptive 
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receptors and is involved in acute and chronic inflammatory pain. It 
is specifically expressed in the small-and medium-sized neurons of the 
DRG and the first and second layers of the spinal dorsal horn (Ma 
et al., 2022). In a rat model of Complete Freund’s adjuvant (CFA)-
induced inflammatory pain, the TRPV1 expression levels in the dorsal 
horn of the spinal cord were significantly increased. However, the 
intraspinal injection of a TRPV1-specific antagonist can block heat 
and mechanical pain sensitivity in a CFA model (Yang et al., 2014). 
Furthermore, TRPV1 expression also appears in large-and medium-
diameter neurons of the DRG in chronic pain states, which are 
believed to mediate mechanical touch and explain mechanical 
sensitivity in chronic inflammatory pain (Yu et  al., 2008). Recent 
research has demonstrated that CIBP includes not only the progression 
of inflammatory pain but also neuropathic pain, which has unique 
characteristics (Zheng et al., 2022). Qian et al. (2021) reported that the 
expression of ASIC3 and TRPV1 was significantly increased in the 
L4-L6 DRG of CBIP model mice. Ghilardi et  al. found that the 
selective blockade of TRPV1 attenuates bone cancer pain by detecting 
TRPV1 on sensory neuron fibers that innervate the mouse femur. 
Furthermore, the administration of a TPRV1 antagonist or 
knockdown of the TRPV1 gene resulted in significant attenuation of 
nociceptive behaviors (Ghilardi et al., 2005). In a more recent study, 
the employment of RNA interference technique to knock down 
TRPV1 resulted in increased mechanical threshold and paw 
withdrawal latency in rats. Furthermore, the impact of pain-inducing 
agent, such as class I histone deacetylases and TNFα, was attenuated 
in the spinal cord of these TRPV1 knockdown rats (Zhang et al., 
2019). Similarly, in a TRPV−/− mice model, bone pain and sensory 
neuron excitation are significantly decreased (Wakabayashi et  al., 
2018). These results suggest the importance role of TRPV1 in algesia 
and hypersensitivity.

2.2. TRPA1

TRPA1, also known as ANKTM1, is an ion channel that 
transports calcium ions into cells after activation. As a TRP family 
member, TRPA1 has certain similarities with TRPV1, including a 
structure consisting of six transmembrane domains with 
intracellular N-and C-termini. TRPA1 is widely expressed in various 
organs including the brain, DRG, heart, pancreas, and 
gastrointestinal tract (Nilius et al., 2012). In the DRG, TRPA1 is 
mostly expressed in small-sized neurons and is considered a noxious 
cold sensor as it can be activated by harmful temperatures lower 
than 17°C (del Camino et  al., 2010). Unlike TRPV1, TRPA1 
inhibition by the administration of A1 antagonists did not change 
the body temperature in preclinical studies (Koivisto et al., 2022). 
Thus, TRPA1 is currently considered a target for cold hypersensitivity 
in the animal models of chronic pain. In addition to cold 
temperatures that activate TRPA1, the receptor is also activated by 
a variety of natural compounds such as allicin (from garlic), allyl 
isothiocyanate (from wasabi and mustard), and carvacrol (from 
oregano and thyme). TRPA1 is gated by metabolites [reactive 
nitrogen species (NO), cyclopentenone prostaglandins, and 
methylglyoxal] during oxidative stress progression and tissue 
damage (Nilius et  al., 2012). Because some TRPA1 agonists are 
related to the inflammatory and chronic pain processes, 
pharmacological regulation of TRPA1 is considered an important 

analgesic therapy. Recent research has suggested that TRPA1 may 
be involved in the development and maintenance of CIBP (Liu et al., 
2021). In animal models of CIBP, TRPA1 expression was upregulated 
in the DRG and spinal cord, and TRPA1 activation contributed to 
pain hypersensitivity (Liu et al., 2021). Another study reported that 
intrathecal administration of a TRPA1 antagonist attenuated 
mechanical allodynia and thermal hyperalgesia in rats with bone 
cancer-induced pain (Jin et al., 2023). In addition to its role in pain 
signaling, TRPA1 has been implicated in the regulation of bone 
metabolism. In vitro studies have demonstrated that TRPA1 
activation can stimulate osteoclast differentiation and function, 
leading to bone resorption (Nummenmaa et al., 2020). Collectively, 
these findings suggest that the TRP channel family is a promising 
target for CIBP treatment. However, further research is warranted 
to completely understand the role of these channels in CIBP and 
develop more specific and effective TRP-targeted therapies.

2.3. TRPV4

TRPV4, which is a calcium-permeable ion channel expressed in 
the sensory neurons, plays an important role in pain perception (Hu 
et al., 2023). TRPV4 has been shown to contribute to the development 
and maintenance of pain in CIBP (Wang et al., 2015; Xu et al., 2023). 
TRPV4 is expressed in the sensory neurons that innervate the bone 
tissue, and its activation can lead to the release of neurotransmitters 
that signal pain. TRPV4 is upregulated in the sensory neurons that 
innervate the bone and contribute to pain development (Xu et al., 
2023). Blocking TRPV4 with specific inhibitors or genetic 
manipulation can reduce pain in animal models of CIBP (Xu et al., 
2023). In addition to its role in pain perception, TRPV4 has been 
implicated in the development of bone metastases. TRPV4 is 
expressed in osteoclasts, which break down bone tissue. TRPV4 
activation in osteoclasts leads to increased bone resorption, which 
contributes to the development of bone metastases (Das and Goswami, 
2022). Studies have shown that blocking TRPV4 in osteoclasts can 
reduce bone resorption and inhibit bone metastases (Masuyama et al., 
2008). Overall, TRPV4 plays an important role in CIBP and 
development of bone metastases. Targeting TRPV4 may provide a new 
therapeutic approach for the management of CIBP and the prevention 
of bone metastases.

2.4. ASICs

ASICs belong to the osteosin/epithelial sodium channel 
superfamily and are highly expressed in the mammalian nervous 
system. They can detect changes in the pH of the internal environment 
and play a regulatory role in response to such changes (Cheng et al., 
2018). Alterations in the pH of the internal environment can activate 
ASICs under both physiological and pathological conditions. For 
instance, in bone tumor metastasis, the primary cause of bone 
destruction is the effect of osteoclasts, which results in bone cancer 
pain. Monocytes accumulate on the surface of mineralized bone, and 
the surrounding acidic microenvironment is maintained (Ahmad 
et al., 2018). A decrease in pH can lead to the excitation of neurons, 
resulting in a larger amplitude of slow activation and inactivation of 
the inward current (Duzhyy et al., 2021).
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ASIC3 is the most pH-sensitive ion channel in the ASICs family 
subtype, detecting a narrow range of acidic pH (6.7–7.3; Lee and 
Chen, 2018). Studies have shown that in rat models of CIBP, the 
expression of ASIC3 mRNA and protein is upregulated on the same 
side of the DRG, and when ASIC3 is upregulated, the pain threshold 
simultaneously decreases (Qian et  al., 2021). Therefore, the 
upregulation of ASIC3 may be a potential factor in the development 
of pain in bone cancer. Increased osteoclast activity is a pathological 
marker of bone cancer, leading to bone remodeling and sensitization 
of nerve nociceptors and resulting in bone cancer pain (Andriessen 
et al., 2021). The inhibition of ASIC3, which responds to the bone 
stroma-degrading proton H1 secreted by osteoclasts, attenuates pain-
related behavior in bone cancer pain models (Morgan et al., 2020). In 
addition to ASIC3, the other two subtypes of the ASIC family, ASIC1 
and ASIC2 in the ASICs family are also involved in pain progression 
(De Logu and Geppetti, 2019). In the CIBP model, the ASIC1, ASIC2, 
and ASIC3 expression levels are upregulated. After treatment with 
opioids, while pain behavior was alleviated, the ASIC1, ASIC2, and 
ASIC3 expression decreased in the treatment group (Heo et al., 2017), 
suggesting that the ASICs family of channels may also be potential 
targets for cancer pain treatment.

2.5. Piezo channels in CIBP

Piezo channels are a family of ion channels that respond to 
mechanical stimuli and are involved in the conversion of mechanical 
signals into electrical signals. They are widely expressed in various 
tissues and have been implicated in various physiological and 
pathological processes including pain sensation (Kefauver et al., 2020). 
Recent research has suggested that piezo channels play a role in CIBP, 
a common and debilitating symptom of bone metastases (Qin et al., 
2021). Bone metastases occur when cancer cells from primary tumors 
spread to the bones, leading to bone destruction and pain. Piezo1 and 
Piezo2 are expressed in sensory neurons and bone cells, including 
osteoblasts and osteoclasts, suggesting their involvement in this 
process. Additionally, Piezo1 was upregulated in an osteoblast model 
and mechanical stimulation of the bone caused an increase in Piezo1 
expression, leading to the release of inflammatory cytokines that 
sensitize sensory neurons and contribute to pain sensation (Wang 
et al., 2020). These findings suggest that Piezo channels contribute to 
CIBP by transducing mechanical stimuli into electrical signals that 
activate sensory neurons and promote inflammation.

2.6. P2X receptors

P2X receptors are a family of ion channels activated by 
extracellular ATP. Seven members of the P2X receptor family (P2X1–
P2X7) are mainly expressed in the neurons and glial cells (North, 
2002). P2X1–6 receptors are mainly found in the dorsal root ganglia, 
ganglia nodal ganglia, and trigeminal ganglia, whereas P2X7 is mainly 
found in immune system cells. These receptors have been implicated 
in various physiological and pathological processes including pain 
sensation (North, 2002). In a bone cancer pain model, ATP-mediated 
purine signaling demonstrated to play a crucial role in the occurrence 
of cancer pain (Zhang et al., 2020). ATP acts as a ligand for the P2X 
receptor, promoting the production of inflammatory cytokines by the 

nerves and immune cells. In an MRMT-1-induced bone cancer pain 
model, ATP was released into the neurons and astrocytes to activate 
the P2X receptors that mediate pain-related behaviors (Falk et al., 
2019). P2X3 and P2X7 are the two main members of the P2X receptor 
family that have been implicated in CIBP (Zhang et al., 2020). P2X3 
is expressed in sensory neurons, whereas P2X7 is expressed in bone 
cells including osteoblasts and osteoclasts. In a mouse model of bone 
metastases, P2X3 was upregulated in sensory neurons, and blocking 
P2X3 with a specific antagonist reduced pain behavior (Hansen et al., 
2012). Another study found that P2X7 was upregulated in osteoclasts 
in CIBP, and the activation of P2X7 in osteoclasts led to the release of 
inflammatory cytokines that sensitized sensory neurons and 
contributed to pain sensation (Hansen et al., 2011). These findings 
suggest that P2X receptors may play a role in CIBP by promoting 
inflammation and sensitizing sensory neurons. Targeting P2X 
receptors may be a potential strategy for the development of new 
therapies for CIBP. However, more research is warranted to completely 
understand their roles in this process and develop effective 
P2X-targeted therapies.

3. Peripheral and central mechanism 
in CIBP

CIBP is a multifaceted phenomenon that involves various 
mechanisms in the peripheral and central nervous systems that 
regulate CIBP development and progression (Luger et  al., 2005). 
Notably, the mechanisms underlying CIBP are complex and can vary 
based on the type and stage of cancer. Therefore, understanding these 
mechanisms is vital for the development of effective treatment 
strategies to help manage CIBP and enhance the patient’s quality of 
life. In the following test, we delved into some of the peripheral and 
central mechanisms that play significant roles in CIBP (Figure 1).

3.1. Peripheral mechanism

Sensory neurons establish neural connections with various bone 
structures, including the bone marrow, mineralized bone, and 
periosteum (Tabarowski et al., 1996; Mach et al., 2002). Traditionally, 
the involvement of sensory neurons in CIBP development has been 
associated with mechanical strain experienced by bone tissues. 
Noxious stimuli, primarily detected by Aδ fibers and C-fibers, are 
transmitted from sensory neurons to the DRGs and subsequently 
relayed to the brain. The presence of tumor cells within the bone 
marrow leads to their proliferation and consequent disruption of 
sensory fiber distribution, accompanied by electrophysiological 
alterations in the sensory neurons (Peters et al., 2005; Haroun et al., 
2022; Yoneda et al., 2023). Notably, a diverse array of nociceptors, ion 
channels, and receptors is distributed among sensory neurons, 
osteoclasts, osteoblasts, and immune cells. These molecular entities 
facilitate the detection of protons, reception of cytokine signals, and 
transduction of mechanical stress, thereby facilitating reciprocal 
communication with tumor cells (Hofbauer et  al., 2021). 
Consequently, this bidirectional interplay culminates in the formation 
of a bone tumor microenvironment.

Inflammatory mediators play a pivotal role in the peripheral 
mechanisms of CIBP (Habberstad et al., 2022). These mediators are 
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released by cancer and bone cells with tumor growth and bone 
destruction and can contribute to pain sensation through various 
mechanisms. Inflammatory mediators include cytokines, chemokines, 
and prostaglandins. These molecules can activate receptors in the 
sensory neurons, leading to the release of neuropeptides that promote 
inflammation and pain (Lu and Gao, 2023). Tumor necrosis factor 
(TNF)-α is a cytokine that is upregulated in bone metastases and 
contributes to CIBP by activating TRPA1 in the sensory neurons, 
leading to the release of substance P and other neuropeptides that 
promote inflammation and pain (Zhao et  al., 2019). Other 
inflammatory mediators implicated in CIBP include Interleukin-1β 
(IL-1β), IL-6, and PGE2. IL-6, for instance, induces the functional 
upregulation of TRPV1 in DRG neurons through the activation of the 
JAK/PI3K signaling pathway, contributing to the pathogenesis of bone 
cancer pain (Fang et  al., 2015). These molecules can also activate 
receptors in the sensory neurons and promote inflammation, pain, 
and sensitization of nociceptors, leading to increased pain sensitivity 
(Adamopoulos, 2018). In contrast, inflammatory mediators contribute 
to bone destruction and nerve compression by disrupting the balance 
between bone resorption and formation (Zhen et al., 2022). IL-1β and 
TNF-α can promote osteoclast activation and bone resorption, leading 
to the release of calcium ions and other bone matrix components that 
can activate nociceptors and contribute to pain sensation (Nguyen 
et al., 1991). Numerous members of the TRP channel family, such as 
TRPV1, TRPV4, and TRPV6 exhibit calcium permeability, rendering 
them sensitive to fluctuations in the extracellular calcium levels. 
Consequently, alterations in the calcium concentration within the 
extracellular space can activate these receptors, thereby instigating 
CIBP (Den Dekker et al., 2003; Hagenacker et al., 2008; Lee et al., 

2016). Notably, the bone microenvironment contains various factors 
that contribute to nociceptor activation and sensitization. 
Neurotrophins (e.g., nerve growth factor and Brain Derived 
Neurotrophic Factor) and ATP, which originate from cancer cells or 
nerve damage, have been implicated in this process (Aielli et al., 2019; 
Haroun et al., 2022). ATP acts as a dual stimulus for P2X receptors, 
eliciting responses from both sensory neurons and osteoclasts, making 
it a crucial mediator of algesia.

Under physiological conditions, the bone marrow exhibits a 
sinusoidal structure perfused by a combination of arterial and venous 
blood, thereby establishing an inherently hypoxic environment within 
the bone marrow (Harrison et al., 2002). Tumor cells, characterized 
by a distinct metabolic profile primarily centered on aerobic glycolysis, 
commonly referred to as the “Warburg effect, “contribute to the 
accumulation of protons and lactate production in the hypoxic milieu 
(Maes et al., 2012; Ganapathy-Kanniappan and Geschwind, 2013). 
Consequently, acidification of the microenvironment affects the 
behavior of both osteoblasts and osteoclasts, stimulating resorptive 
activity while impeding mineralization (Arnett, 2010). Osteoclasts 
facilitate the release of protons into the resorption lacuna via a 
vacuolar ATPase (V-ATPase) mechanism. Subsequently, these protons 
have the potential to escape into the bone marrow microenvironment, 
either owing to inadequate sealing of the lacuna or as a consequence 
of osteoclast apoptosis (Cappariello et al., 2014).

As discussed previously, TRP channels and ASICs exhibit 
heightened sensitivity to fluctuations in the pH levels. Within the 
context of bone marrow innervation, nociceptors display an abundant 
expression of TRP channels and ASICs, with a notable prevalence of 
TRPV1(Haroun et  al., 2022). Interestingly, sensory neurons 

FIGURE 1

Diagram showing the mechanism of chronic pain progression in bone tumor. Tumor growth and bone destruction disrupt the balance between 
osteoblasts and osteoclasts, leading to bone metastasis. The acidic environment created by tumor cells and inflammatory mediators activates 
receptors and ion channels in both nociceptors and the dorsal root ganglion (DRG) neurons. In the central nervous system, the reactive glial cells and 
the expression of receptors on postsynaptic neurons participate in cancer-induced bone pain (CIBP). As a result, peripheral and central sensitization 
contribute to hypersensitivity and pain development. This figure was created with BioRender.com.
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innervating tumor-bearing bones maintain elevated TRPV1 
expression levels even in the presence of tumor-induced injuries 
(Ghilardi et al., 2005). The effect of tumors on TRPV1 expression in 
neurons may be multifaceted. Tumor inoculation in the mouse femur 
led to a discernible increase in the ipsilateral TRPV1 expression within 
the DRGs (Niiyama et  al., 2007). In a human multiple myeloma 
model, Hiasa et al. demonstrated that JJN3 cells in collaboration with 
osteoclastogenic cytokines foster an acidic bone microenvironment 
that subsequently triggered bone pain through the excitation of 
ASIC3-activated sensory neurons. This effect was effectively inhibited 
by the application of a selective ASIC3 antagonist (Hiasa et al., 2017). 
Despite the chemical changes shaping the acidic bone 
microenvironment, physical tumor expanding growth also induces 
CIBP. As tumors grow in the bone, they cause mechanical stress to the 
bone tissue, leading to microfractures and bone pain. Piezo channels 
can be activated by mechanical stress, leading to pain sensation (Qin 
et al., 2021).

In contrast, tumor growth increases the distribution of sensory 
neurons. This process, known as perineural invasion (PNI), occurs 
when cancer cells invade the epineurial, perineurial, and endoneurial 
spaces of the neuronal sheath, resulting in dense nerve innervation in 
the tumor tissue (Yoneda et al., 2021). Recent studies have shown that 
PNI is not a passive process occurring during tumor invasion but that 
neurogenic growth factors also induce nerve growth and innervation 
of the tumor (Demir et al., 2014; Bapat et al., 2016; Liu et al., 2022). 
The ablation of sensory neurons prevented PNI during carcinoma 
development and ultimately prolonged survival in a mice model 
(Saloman et al., 2016). It raises a concern about the roles of sensory 
neurons and Schwann cells, as they appear to transcend mere passive 
victims and instead actively constitute a significant stromal cell 
population that fosters cancer development (Demir et  al., 2014; 
Deborde et al., 2016; Saloman et al., 2016). This naturally evokes an 
association between the sensory neurons and chronic pain in patients 
with bone cancer. PNI has been reported in several types of metastatic 
bone tumors such as prostate cancer, breast cancer, and hepatocellular 
carcinoma (Ciftci et al., 2015; Wang et al., 2015; Delahunt et al., 2020). 
However, the relationship between PNI and CIBP requires further 
studies to elucidate the underlying mechanisms. In summary, 
understanding the peripheral mechanism from the perspective of 
“vicious crosstalk” between sensory neurons and tumors in the bone 
microenvironment could help uncover more targets for pain 
management in CIBP.

3.2. Central mechanism

Chronic pain conditions, including CIBP, can lead to sensitization 
of the central nervous system (Lu et al., 2021). Central sensitization 
refers to the amplification of pain signaling within the spinal cord and 
brain, leading to increased pain perception. It is involved in the 
changes in reactive glial cell, synaptic transmission, neuronal 
excitability, and neuroplasticity (Latremoliere and Woolf, 2009). 
During this process, the nervous system becomes hypersensitive to 
pain signals, leading to increased pain sensitivity and development of 
chronic pain. Under CIBP conditions, central sensitization can occur 
via several mechanisms (Zajączkowska et  al., 2019). One such 
mechanism involves the activation of glial cells in the spinal cord and 
brain. Glial cells, including microglia and astrocytes, are immune cells 

of the central nervous system that play key roles in neuroinflammation 
and pain processing (Inoue and Tsuda, 2018; Lu and Gao, 2023). In 
response to tumor growth and bone destruction, reactive glia releases 
proinflammatory cytokines and chemokines, which can sensitize 
nociceptors and contribute to central sensitization (Zhou et al., 2016). 
In addition to the release of proinflammatory cytokines and other 
signaling molecules, the microglia and astrocytes can interact to 
amplify the inflammatory response and promote central sensitization. 
For example, microglia release chemokines that recruit astrocytes to 
the site of inflammation, whereas astrocytes release cytokines that 
activate microglia and promote their survival and proliferation (Ji 
et al., 2019). Recent studies have shown that microglia and astrocytes 
undergo epigenetic changes in response to tumor growth and 
inflammation, which can lead to long-term changes in the gene 
expression and contribute to the development of chronic pain in CIBP 
(Wang et al., 2012; Vandenbark et al., 2021). For example, microglia 
and astrocytes can undergo DNA methylation and histone 
modification, which can alter the expression of genes involved in 
inflammation and pain signaling (Matias et  al., 2018). The pain 
sensory system normally functions under a balance between excitation 
and inhibition. Down-regulation of K + -Cl--cotransporter-2 (KCC2) 
expression leads to these dysfunctions in spinal cord. A study reported 
by Zhao et al. (2023) demonstrated the activation of microglia through 
the BDNF–TrkB pathway affected neuronal KCC2 downregulation, 
contributing to dynamic allodynia induction in an SNI mouse model. 
Therefore, it is worth investigating those mechanism in CIBP 
condition. Another mechanism of central sensitization in CIBP 
involves the activation of N-methyl-D-aspartate (NMDA) receptors 
(Bennett, 2000). NMDA are ionotropic glutamate receptors involved 
in synaptic plasticity and pain processing. In response to persistent 
nociceptive inputs, NMDA receptors can become overactive, leading 
to central sensitization (Latremoliere and Woolf, 2009). In addition, 
central sensitization in CIBP can occur through the modulation of the 
descending pain pathways. Descending pain pathways originate in the 
brain and modulate pain signaling in the spinal cord. In response to 
persistent nociceptive input, the descending pain pathways can 
become dysregulated, leading to the development of chronic pain 
(Ossipov et al., 2014). Central sensitization is a complex mechanism 
involved in CIBP. Targeting central sensitization is a potential strategy 
for developing new therapies for this type of pain (Figure 1). However, 
further research is warranted to completely understand the 
mechanisms underlying central sensitization in CIBP and develop 
effective targeted therapies.

4. Clinical application

To manage moderate to severe pain, opioids are often 
recommended as first-line therapy in pain-relieving prescriptions, 
even though they are notorious for side effects, including the risk of 
addiction, respiratory depression, cognitive impairment, 
gastrointestinal reactions, and tolerance accompanied by opioid abuse 
(Baldo, 2021). The use of NSAIDs, gabapentinoids, antidepressants, 
paracetamol, or anticonvulsants may provide temporary and 
incomplete pain relief; however, their efficacy is frequently impeded 
by significant adverse effects (Scarborough and Smith, 2018).

Therefore, manipulating the activity of TRP channels and other 
potential ion channels using antagonists or agonists for inducing 
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inactivation, blocking, and desensitization could be considered a new 
strategic approach for achieving analgesia in cancer pain. Capsaicin, 
a typical agonist, has been shown to activate TRP channels in various 
cancer cell lines, such as hepatoblastoma, small-cell lung cancer, and 
breast cancer, leading to apoptosis and reduced proliferation (Lau 
et al., 2014; Weber et al., 2016; Scheau et al., 2019). Capsaicin is widely 
used in the treatment of neuropathic, osteoarthritic, and 
musculoskeletal pain, and suppresses osteoclast formation, 
inflammatory bone resorption, and cyclooxygenase-2 (COX-2) 
expression; however, no clinical trials examining the potential role of 
capsaicin and its synthetic isomers or precursors in CIBP exist (Attal 
et al., 2006; Kobayashi et al., 2012; Boyd et al., 2019; Kolasinski et al., 
2020). Only one phase 2 clinical trial (NCT03317613) has assessed the 
efficacy of the capsaicin patch in patients of cancer with neuropathic 
pain; however, it did not result in a concrete conclusion. Poor water 
solubility, irritation of the digestive system, and dangerous elevations 
in the body temperature limit the application of capsaicin as an oral 
analgesic (Gavva et al., 2008; Smutzer et al., 2018). Therefore, there is 
a need for improved delivery systems, carriers, and potential capsaicin 
analogs to overcome these side effects and inadequate efficacy.

Another capsaicin analog, resiniferatoxin (RTX), derived from 
Euphorbia resinifera, is the most potent known TRPV1 receptor 
agonist, surpassing both endogenous and synthetic compounds, and 
has been investigated as a potential therapeutic agent for cancer-
induced pain (Bölcskei et al., 2010). Brown et al. (2005) reported the 
antinociceptive effects of intrathecal RTX in a canine bone cancer 
model. A similar result was obtained in a subsequent study that found 
that additional intrathecal administration of RTX provided effective 
pain relief and improved function in dogs with bone cancer without 
significant long-term side effects compared with standard analgesic 
therapy alone (Brown et  al., 2015). An ongoing phase 1 study 
(NCT00804154) intrathecally evaluated the analgesic effect and safety 
on 45 participants. The participants are diagnosed with cancer, whose 
NRS score is greater than or equal to 6 and alternative methods of 
pain control are not sufficiently effective. Another completed phase 
1b clinical trial (NCT03226574), carried out by Sorrento 
Therapeutics, established an escalation safety study to define the 
maximally tolerated dose of epidural RTX injection for the treatment 
of intractable pain associated with cancer. The company revealed on 
its website that 11 of 17 participants achieved a 30% decrease in pain 
based on NPRS scores (Moreau, 2021). Although the side effects were 
described as abnormal sensations that usually resolved over several 
hours, the clinical use of RTX needs to be proven in a large-scale 
study with a larger sample.

Several TRPV antagonists have been tested for analgesic effects. 
CPZ provides a multipronged approach for treating cancer pain in 
animal models, including CIBP from distal breast cancer metastases 
(Menéndez et al., 2006; Fazzari et al., 2015, 2017). However, a high 
effective dose, poor metabolic and pharmacokinetic properties, and 
nonspecific blockage of voltage-activated calcium channels other than 
TRPV1 have hindered subsequent clinical trials (Docherty et al., 1997; 
Kwak et al., 1998; Walker et al., 2003). SB-705498 is a selective TRPV1 
antagonist that has been widely tested in clinical trials for acute 
migraine, chronic cough and toothache (clinicaltrials.gov). SB-705498 
is safe and well tolerated for oral administration with no observed 
incidence of hyperthermia (Rami et al., 2006; Chizh et al., 2007). 
However, it does not show any advantage over the use of a placebo 

(Khalid et  al., 2014). ABT-102 has been shown to have an acute 
antinociceptive effect in animal CIBP models. It exhibits good oral 
bioavailability and enhanced analgesic activity after repeated 
administration (Gomtsyan et al., 2008; Honore et al., 2009). In clinical 
trials, ABT-102 also demonstrated excellent bioavailability as a melt 
extrusion formulation, increasing the heat pain thresholds without 
intolerable hyperthermic events in participants (Rowbotham et al., 
2011; Othman et al., 2012). Many other inhibited TRPV1 compounds, 
such as JNJ-17203212, JNJ-39439335, and JNJ-38893777, have been 
found to be  effective in various pain models, and some, such as 
SB366791, demonstrate potential analgesic effects in bone cancer pain 
(Niiyama et al., 2009). Although these TRPV1 inhibitors have shown 
promise, they face a common challenge–the need for testing in large 
scale clinical trials. This is a crucial step toward establishing their 
safety and efficacy in humans. The next generation of TRPV1 
antagonists with greater target selectivity and better penetration into 
the central nervous system is being designed and tested. One such 
compound, MDR-652, has shown promise as a potential TRPV1 
antagonist, with improved selectivity and penetration into the central 
nervous system (Qiao et al., 2022).

5. Conclusion and future perspectives

In conclusion, ion channels play a critical role in CIBP and are 
involved in the transmission and modulation of pain signals, and their 
dysregulation can contribute to the development of chronic pain. 
Understanding the mechanisms underlying ion channel dysregulation 
in CIBP is important for the development of new therapies for 
CIBP. Future perspectives in this area of research include the 
development of novel ion channel modulators that selectively target 
specific ion channels involved in CIBP. Additionally, combination 
therapies targeting multiple ion channels and other mechanisms 
involved in CIBP may be more effective than those targeting a single 
ion channel.
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