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Abstract

A random sieve of the set of positive integers N is an infinite sequence of nested
subsets N = S0 ⊃ S1 ⊃ S2 ⊃ · · · such that Sk is obtained from Sk−1 by removing
elements of Sk−1 with the indices outside Rk and enumerating the remaining elements in
the increasing order. Here R1, R2, . . . is a sequence of independent copies of an infinite
random set R ⊂ N. We prove general limit theorems for Sn and related functionals, as
n→∞.

Keywords: iterated random function, leader-election procedure, random sieve, stochastic-fixed
point equation.

1. Introduction and motivation

Let R be an arbitrary random infinite subset of the set of positive integers N := {1, 2, 3, . . .}
and (Rk)k∈N independent copies of R. A random sieving of the set N by the set R is an
infinite chain of countable sets

N =: S0 ⊃ S1 ⊃ · · · ⊃ Sn ⊃ · · ·

such that the set Sk is obtained from Sk−1, k ∈ N, by removing elements of Sk−1 with the
indices outside Rk and enumerating the remaining elements in the increasing order. Formally,
for k ∈ N, if

Sk−1 =
{
s
(k−1)
1 , s

(k−1)
2 , s

(k−1)
3 , . . .

}
, s
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Rk =

{
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(k)
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then

Sk :=

{
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, s
(k−1)
r
(k)
2

, s
(k−1)
r
(k)
3

, . . .

}
. (1)

There are several examples of random sieving that were previously analyzed in the literature.
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Example 1.1. If R = {ξ + 1, ξ + 2, ξ + 3, . . .} with ξ being a random variable with values in
N0 := N ∪ {0}, then obviously

Sk = {Sk + 1, Sk + 2, Sk + 3, . . .}, k ∈ N,

where (Sk)k∈N is a standard random walk on N with generic step ξ. The analysis of such a
sieving is the subject of the classical renewal theory on positive integers.

Example 1.2. For R being the range of an increasing integer-valued random walk, that is

r
(k)
j+1 − r

(k)
j , k ∈ N, j ∈ N,

are independent copies of a positive integer-valued random variable, say η, the corresponding
random sieving and its connection to classical Galton–Watson processes were analyzed in
Alsmeyer, Kabluchko, and Marynych (2016). An important particular case is obtained by
choosing η to be geometrically distributed on N with a parameter p ∈ (0, 1). This leads to a
well-known classical model called ‘leader-election procedure’, which has been a subject of active
research during last decades; see, for example, Bruss and Grübel (2003); Fill, Mahmoud,
and Szpankowski (1996); Grübel and Hagemann (2016); Janson and Szpankowski (1997);
Prodinger (1993). The integers in the leader-election procedure are typically viewed as players
in a game who independently toss a coin so as to determine whether they stay in the game
for the next round or not. Restricted from N to {1, 2, . . . , n} the sieving can be thought of as
a procedure of selecting a leader (leaders) from the group of n players, whence the name.

Example 1.3. If R is the set of record’s positions in an infinite sample from a continu-
ous distribution the corresponding random sieving was studied in Alsmeyer, Kabluchko, and
Marynych (2017).

The above introduced random sieving is intimately connected with several classical mod-
els in probability. First of all, let us mention a connection, already observed in Alsmeyer
et al. (2016), with the notion of stability of point processes; see Davydov, Molchanov, and
Zuyev (2011) and Zanella and Zuyev (2015). Associated with every sieving procedure is
the corresponding operator on the space of point processes on [0,∞). Given a point pro-
cess X :=

∑∞
k=1 δXk

in [0,∞) with 0 ≤ X1 ≤ X2 ≤ . . ., and an a.s. infinite random set
R = {r1, r2, r3, . . .} ⊂ N, we define the thinning of X by R as

X •R :=
∞∑
k=1

δXrk
.

This random operation transforms X into a ‘sparser’ point process X •R by removing points
of X with indices outside the range of R. In order to compensate such thinning, a second
deterministic operation is used for rescaling. Namely, let f be a deterministic function which
is ‘contractive’ in an appropriate sense, and set f(X ) :=

∑∞
k=1 δf(Xk). For example, one can

take f(x) = ax for some a ∈ (0, 1) or f(x) = log(1 + x). A point process X is called f -stable
with respect to thinning by a random set R; see Alsmeyer et al. (2016), if

X d
= f(X •R), (2)

where
d
= denotes equality in distribution. From this viewpoint a natural problem is to describe

the set of point processes which are f -stable with respect to thinning by a random set R. In
the setting of Example 1.2, that is, for sieving by a random walk, this problem has been solved
in Alsmeyer et al. (2016). To the best of our knowledge no other cases have been addressed
so far.

Another well-known probabilistic concept related to random sieves is theory of iterated ran-
dom function systems; see Diaconis and Freedman (1999) and also Marynych and Molchanov
(2021) for sieving procedures of such systems. Classic theory of iterated random function
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systems is mainly concerned with a contractive random mapping Φ defined on some complete
separable metric space. For contractive mappings under mild additional assumptions the se-
quence of forward iterations Φk ◦ Φk−1 ◦ · · · ◦ Φ1(x0) converges in distribution, as k →∞, to
a random limit for every starting point x0, whereas backward iterations Φ1 ◦Φ2 ◦ · · · ◦Φk(x0)
converge a.s. The most prominent example of this kind is called perpetuity in which Φ is an
affine mapping on R, that is, Φ(x) = Ax+ B, x ∈ R with (A,B) being an arbitrary random
vector. A criterion for convergence of such iterations can be found in Goldie and Maller
(2000). To see the connection with our model one may look at the countable sets Rk, k ∈ N,
and Sk, k ∈ N0, as random mappings from N to N or, equivalently, as elements of N∞. Taking
this point of view, we write

Rk(x) = r(k)x and Sk(x) = s(k)x for k, x ∈ N,

and recast equation (1) as follows

Sk = Sk−1 ◦Rk, k ∈ N,

where ◦ denotes superposition of two mappings defined in the usual way (f ◦ g)(x) = f(g(x)).
Upon iterating we write

Sk(x) = R1 ◦R2 ◦ · · · ◦Rk(x), k ∈ N, x ∈ N. (3)

Despite seeming backward form of the process Sk in (3), Sk, regarded as an element of N∞,
is actually a k-fold forward iteration of i.i.d. random mappings φk : N∞ 7→ N∞ defined by

N∞ 3 (x1, x2, . . .) = x
φk7−→ x ◦Rk = (x

r
(k)
1

, x
r
(k)
2

, . . .) ∈ N∞

and applied to the starting point Id, the identity mapping. Thus,

Sk = φk ◦ φk−1 ◦ · · · ◦ φ1 ◦ Id, k ∈ N. (4)

In contrast to contractive random mappings, every random sieving of N is, in a sense, ex-
panding. More precisely,

Sn(x) = R1 ◦R2 ◦ · · · ◦Rn(x)
a.s.−→∞, n→∞, (5)

for every x ≥ x0 := x0(R), where (nonrandom) x0 is defined by1

x0 := inf{x ∈ N : P{R(x) = x} < 1}.

To see this just note that the left-hand side of (5) is a.s. nondecreasing in n because P{R(x) ≥
x} = 1 and diverges to infinity in probability because P{R(x) > x} > 0 for x ≥ x0.
In view of (5) it is natural to ask what is a correct normalization of Sn(x) = R1◦R2◦· · ·◦Rn(x)
ensuring convergence to a nondegenerate limit and how to characterize the limit as a function
of x, provided it exists. To get a better feeling of what a possible answer can be, let us look
at the aforementioned Examples 1.1, 1.2 and 1.3. In what follows we denote by =⇒ weak
convergence of probability measures on R∞ endowed with the product topology.

In the setting of Example 1.1 R(x) = x+ ξ and Sn(x) = x+Sn, x ∈ N, where Sn is a random
walk. The question of convergence in distribution of Sn(x), as n → ∞, is the most classical
topic in probability theory and is fully understood. If existent, the limit of properly centered
and/or normalized Sn(x) is a stable distribution and does not depend on x. However, as we
shall see, this type of behavior is not representative for random sieves of N.

In the setting of Example 1.2 R is the range of a random walk on N. Limit theorems for this
type of random sieving were established in Alsmeyer et al. (2016). If Eη log η <∞, then with
µ := Eη we have (

µ−nSn(x)
)
x∈N =⇒ (Zf1(x))x∈N , n→∞, (6)

1For x < x0 we have R1 ◦R2 ◦ · · · ◦Rn(x) = x for all n ∈ N because P{R(x) = x} = 1 for x < x0.
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where (Zf1(x)) is a certain random walk with a.s. positive i.i.d. steps; see Theorem 2.1 in
Alsmeyer et al. (2016). Moreover, (Zf1(x)) satisfies a stochastic fixed-point equation

(Zf1(x))x∈N
d
=
(
µ−1Zf1(R(x))

)
x∈N , (7)

where R on the right-hand side is independent of (Zf1(x))x∈N. On the other hand, assume
that the distribution of η has infinite mean and satisfies Davies’ assumption; see Davies (1978):

x−α−γ(x) ≤ P{η ≥ x} ≤ x−α+γ(x), x ≥ x0, (8)

for some 0 < α < 1, x0 ≥ 0, and a nonincreasing, non-negative function γ(x) such that xγ(x)

is nondecreasing and
∫∞
x0
γ(exp(ex)) dx < ∞. Then Theorem 2.8 in Alsmeyer et al. (2016)

says (after exponentiation) that(
(Sn(x))α

n
)
x∈N

=⇒ (Zf2(x))x∈N , n→∞, (9)

where (Zf2(x))x∈N is the running maximum process of i.i.d. random variables with values in
(1,∞). Here the limit satisfies a stochastic fixed-point equation

(Zf2(x))x∈N
d
=
(
Zαf2(R(x))

)
x∈N , (10)

where again R on the right-hand side is independent of (Zf2(x))x∈N.

In the setting of Example 1.3 R(n) is the position of nth record, n ∈ N, in an infinite sample
from a continuous distribution. In this case Theorem 2.8 in Alsmeyer et al. (2017) says that

(Ln(Sn(x)))x∈N =⇒ (Zf3(x))x∈N , n→∞, (11)

where Ln(x) is the n-fold iteration of the function x 7→ log(1 + x) with itself and the limit
satisfies a stochastic fixed-point equation

(Zf3(x))x∈N
d
= (log(1 + Zf3(R(x))))x∈N ,

where, as before, R on the right-hand side is independent of (Zf3(x))x∈N.

A common feature of limit relations (6), (9) and (11) is that they can be written in a unified
way as follows:fi ◦ · · · ◦ fi︸ ︷︷ ︸

n times

◦R1 ◦R2 ◦ · · · ◦Rn(x)


x∈N

=⇒ (Zfi(x))x∈N , n→∞, i = 1, 2, 3, (12)

where fi : [0,∞) 7→ [0,∞) is a strictly increasing unbounded concave function given by

fi(t) :=


µ−1t, if i = 1 and (6) holds,

tα, if i = 2 and (9) holds,

log(1 + t), if i = 3 and (11) holds.

(13)

Furthermore, the fixed-point equations satisfied by the limits take the form

(Zfi(x))x∈N
d
= (fi(Zfi(R(x))))x∈N , i = 1, 2, 3.

The main goal of this paper is to establish general conditions ensuring, for a given random
set R, existence of a normalizing function f such thatf ◦ · · · ◦ f︸ ︷︷ ︸

n times

◦R1 ◦R2 ◦ · · · ◦Rn(x)


x∈N

=⇒ (Zf (x))x∈N , n→∞, (14)
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for some limit (Zf (x))x∈N. The fact that whenever convergence (14) holds the limit should
satisfy a stochastic fixed-point equation

(Zf (x))x∈N
d
= (f(Zf (R(x))))x∈N , (15)

is obvious. Note that (15) is a particular case of (2) when restricted to point processes on N.

As a byproduct we also derive limit theorems for two related characteristics which describe
the speed of sieving:

• N
(n)
M the number of integers among 1, 2, . . . ,M which remain after n steps, formally,

N
(n)
M := card (Sn ∩ {1, 2, . . . ,M}) , M ∈ N, n ∈ N0; (16)

• T (M) the number of steps until all integers 1, 2, . . . ,M have been removed, namely,

T (M) := inf{n ∈ N : N
(n)
M = 0}, M ∈ N. (17)

Note that the above quantities are connected via duality relations:

{N (n)
M ≥ k} = {Sn(k) ≤M} and {T (M) ≤ k} = {Sk(1) > M}, k,M ∈ N, n ∈ N0.

(18)
In particular, T (M) is a.s. finite if and only if x0(R) = 1, see Eq. (5) above.

Let us introduce the following shorthand notation: given a sequence of either deterministic
or random functions fn : X → X, where X is an arbitrary set, we put

f (k↑n) := fk ◦ · · · ◦ fn and f (n↓k) := fn ◦ · · · ◦ fk

for k ≤ n. For n < k, we stipulate that f (k↑n) and f (n↓k) denote the identity map on X.
Further, we shall use the notation

f◦(n) = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

, n ∈ N,

for the n-fold iteration of f with itself.

2. Limit theorems for random sieves

Let F be a family of nondecreasing unbounded concave functions f : [0,∞) → [0,∞) such
that f(0) = 0. Let FR be a subset of functions f ∈ F that also satisfy

Ef(R(n)) ≤ n, n ∈ N. (19)

The key role of the family FR is revealed by Proposition 2.2 below. However, we shall first
need to ensure that FR is non-empty.

Lemma 2.1. For an arbitrary infinite random set R ⊆ N we have FR 6= ∅.

A proof of Lemma 2.1 will be given in Section 4.

Proposition 2.2. Let Gn be a sigma-algebra generated by the mappings R1, R2, . . . , Rn, n ∈
N, G0 the trivial sigma-algebra. For every f ∈ FR and x ∈ N, the sequence

f◦(n)(R(n↓1)(x)), n ∈ N,

is a positive supermartingale with respect to the filtration (Gn)n∈N0 and, thus, converges a.s.
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Proof. By Jensen’s inequality, since f◦(n−1) : [0,∞)→ [0,∞) is concave,

E
(
f◦(n)(R(n↓1)(x))|Gn−1

)
= E

(
f◦(n−1)(f(R(n)(R((n−1)↓1)(x))))|Gn−1

)
≤ f◦(n−1)

(
E
(
f(R(n)(R((n−1)↓1)(x)))|Gn−1

)) (19)

≤ f◦(n−1)(R((n−1)↓1)(x)).

Thus, (f◦(n)(R(n↓1)(x)))n∈N is a positive supermartingale.

We are ready to formulate our first main result.

Theorem 2.3. Let f ∈ FR. Then(
f◦(n) ◦R(1↑n)(x)

)
x∈N

=⇒ (Zf (x))x∈N , n→∞,

where (Zf (x))x∈N satisfies (15).

Proof. The result follows from Proposition 2.2 upon noticing that(
f◦(n) ◦R(1↑n)(x)

)
x∈N

d
=
(
f◦(n) ◦R(n↓1)(x)

)
x∈N

,

for every fixed n ∈ N.

Theorem 2.3 is not completely satisfactory, since the limit (Zf (x))x∈N might be trivial (a.s.
equal to a fixed point of f) if f ∈ FR is chosen incorrectly. To avoid such trivialities we
naturally want to take f ∈ FR ‘as large as possible’. To formalize the latter notion, we endow
the set FR with a pointwise partial order �:

f1 � f2 ⇐⇒ f1(t) ≤ f2(t) for all t ≥ 0.

Note that, for every n ∈ N and f ∈ FR,

n ≤ R(n) =⇒ f(n) ≤ Ef(R(n)) ≤ n,

and, therefore,

sup
f∈FR

f(t) ≤ sup
f∈FR

f(dte) ≤ dte ≤ t+ 1, t ≥ 0, (20)

which shows that all the functions in FR are uniformly locally bounded.

It is clear that f � g implies P{Zf (x) ≤ Zg(x)} = 1, for all x ∈ N. Recall that a function f∗

is called a maximal element of (FR,�) if f∗ � g, for some g ∈ FR, implies g � f∗. Let MR

be the set of maximal elements in (FR,�). The next proposition, whose proof is postponed
to Section 4, demonstrates that the set MR is non-empty.

Proposition 2.4. Every chain in the partially ordered set (FR,�) possesses an upper bound.
Thus, (FR,�) contains at least one maximal element.

The elements ofMR seem to be the best candidates for deriving (14) with a non-trivial limit.
However, Proposition 2.4 is a result on existence and does not provide any way to find at
least one element of MR explicitly. Therefore, we shall formulate the second theorem, which
provides us with sufficient conditions for (14) with a non-trivial limit.

Note that every function f in FR is strictly increasing on [0,∞) and continuous on (0,∞).
Put xf := f(0+). There exists a unique strictly increasing convex function f← defined on
[xf ,+∞) such

f←(f(x)) = x, x > 0 and f(f←(x)) = x, x ≥ xf .
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Extend f← to a convex function on [0,∞) by putting f←(x) = 0, for x ∈ [0, xf ). For n ∈ N
and f ∈ FR, introduce a stochastic process Xn := (Xn(x))x≥1 defined by

Xn(x) := f◦(n) ◦Rn(b(f←)◦(n−1)(x)c), x ≥ 0,

where we stipulate R(0) = 0. Note that(
f◦(n) ◦R(n↓1)(x)

)
x∈N

= (X(n↓1)(x))x∈N, n ∈ N.

The processes Xn, n ∈ N, are independent but not identically distributed. By Proposition 2.2

(X(n↓1)(x))x∈N
a.s.−→ (Zf (x))x∈N, n→∞.

The next theorem says, in essence, that if (Xn)n∈N converges uniformly to the identity func-
tion, as n → ∞, then the solution Zf (x) satisfies a strong law of large numbers, as x → ∞.
The proof will be given in Section 4.

Theorem 2.5. Suppose that for some f ∈ FR
f(R(x))

x

a.s.−→ 1, x→∞.

Further, assume that the series
∞∑
n=1

sup
x≥0

|Xn(x)− x|
1 + x

, (21)

which is comprised of independent random variables, converges almost surely. Then

Zf (x)

x

a.s.−→ 1, x→∞. (22)

In particular, the nondecreasing process Zf is a.s. unbounded.

Remark 2.6. Necessary and sufficient conditions for the a.s. convergence of the series defined
in (21) are given by the celebrated Kolmogorov three series theorem. Put

Wn := sup
x≥0

|Xn(x)− x|
1 + x

, n ∈ N.

The series (21) converges a.s. if and only if for every A > 0 the following three series converge∑
n≥1

P{Wn ≥ A},
∑
n≥1

E
(
Wn1{Wn≤A}

)
and

∑
n≥1

Var
(
Wn1{Wn≤A}

)
.

Remark 2.7. The denominator 1 + x in (21) can be replaced by an arbitrary function p :
[0,∞)→ [0,∞) such that p(x) ∼ x, as x→∞, and p is bounded away from zero.

Using Theorem 2.5 and duality relations (18) we immediately obtain the following limit theo-

rems for the functionals N
(n)
M and T (M) defined by (16) and (17), respectively. For the limit

process (Zf (x))x∈N in Theorem 2.5 define the counting process

Z#
f (y) := card{x ∈ N : Zf (x) ≤ y}, y > 0,

and put also
y0 := inf{y > 0 : lim

n→∞
(f←)◦(n)(y) = +∞}.

Proposition 2.8. Under the assumptions of Theorem 2.5 it holds:(
N

(n)

b(f←)◦(n)(y)c

)
y>y0

f.d.d.−→
(
Z#
f (y)

)
y>y0

, n→∞.

Furthermore, if x0 = 1, then for every fixed y > y0 and x ∈ Z,

lim
n→∞

P{T (b(f←)◦(n)(y)c)− n ≤ x} = P{Zf (1) > f◦(x)(y)},

where f◦(x) = (f←)◦(|x|) if x < 0.
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Remark 2.9. The distribution of X(n↓1), n ∈ N, can be regarded as a convolution of probabil-
ity measures on the semigroup of self-maps on [0,∞) endowed with the composition operation.
General results on convergence of convolutions of probability measures on semigroups can be
found in (Högnäs and Mukherjea 2013, Section 2.4). However, they do not seem to be appli-
cable in our setting.

As was pointed out to us by the referee, another closely related concept is known in theory of
dynamical systems. One can think of the sequence X(n↓1), n ∈ N, as a random discrete dy-
namical system which is non-autonomous in a sense that Xn’s are not identically distributed.
This type of dynamical systems has received some attention in the literature but from a differ-
ent perspective than considered here; see, for example, Cui and Langa (2017) and (Kloeden,
Pötzsche, and Rasmussen 2013, Section 8).

3. Examples

3.1. A martingale

Assume that there exists µ > 1 such that ER(x) = µx, for all x ∈ N. In this special
case MR contains a function x 7→ µ−1x. Furthermore, for every fixed x ∈ N, the sequence
(µ−nR(n↓1)(x)) is a positive martingale rather than just a positive supermartingale.

Suppose that
R(x)

x

a.s.−→ µ, x→∞, (23)

and, further,
∞∑
n=1

sup
x≥0

|Rn(bµn−1xc)− µnx|
µn(1 + x)

<∞.

The latter is equivalent to

∞∑
n=1

sup
x≥0

|Rn(bµn−1xc)− µbµn−1xc|
µn(1 + x)

<∞. (24)

A simple sufficient condition for (23) and (24) is a Marcinkiewicz–Zygmund type strong law

R(x)− µx
x1−δ

a.s.−→ 0, x→∞,

for some δ ∈ (0, 1). In particular, if R is the standard random walk with E(R(1))1+ε < ∞,
for some ε > 0, then (23) and (24) hold true.

Summarizing, under the above assumptions the limit relation (14) holds true with f(x) =
µ−1x.

3.2. Records

This model has been treated in details in Alsmeyer et al. (2017). Here we just demonstrate
that our Theorem 2.5 is powerful enough to recover the results of Alsmeyer et al. (2017).

Let U1, U2, . . . be a sequence of independent copies of a random variable with the uniform
distribution on [0, 1]. Let R(k) be the index of k-th record in the sample. Thus,

R(1) = 1, R(k) := inf{j > R(k − 1) : Uj > UR(k−1)}, k ≥ 2. (25)

According to the next lemma, whose proof will be given in Section 4, the function x 7→
log(1 + x) belongs to FR.

Lemma 3.1. For all x ∈ N, we have E log(1 +R(x)) ≤ x.
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The relation

∞∑
n=1

sup
x≥0

|(1 + log(·))◦(n) ◦Rn(b(exp(·)− 1)◦(n−1)(x)c)− x|
1 + x

<∞ a.s. (26)

can be checked using the mean value theorem for differentiable functions in conjunction with
the fact that

| log(1 +R(x))− x|
x1/2+ε

a.s.−→ 0, x→∞; (27)

see Theorem 2(v) in Gut (1990) for a stronger version of (27). We refer the reader to calcu-
lations on pp. 4364–4366 in Alsmeyer et al. (2017) for a derivation of an L1-version of (26).
Thus, (14) holds true with f(x) = log(1 + x).

4. Proofs

Proof of Lemma 2.1. We need to find a concave strictly increasing and unbounded function f
such that (19) holds. Such a function will be constructed by finding a sequence 0 = t0 < t1 <
t2 < · · · such that (tk − tk−1)k∈N is nondecreasing and defining f by a linear interpolation
of the points (tk, αk), k = 0, 1, 2, . . ., for some α ∈ (0, 1). The resulting function is obviously
strictly increasing and unbounded. Furthermore, it is concave, since (tk−tk−1)k∈N is assumed
nondecreasing.

In order to find (tk) we argue as follows. Fix α ∈ (0, 1), put

h(t) := sup
n≥1

αP{R(n) ≥ t}
n− α

, t ≥ 0,

and t′k := inf{t ≥ 0 : h(t) ≤ 2−k}. Define the sequence (tk) recursively as follows

t0 := 0, tk := max{t′k, tk−1 + max{tj − tj−1 : j = 1, . . . , k − 1}}, k ∈ N.

Then, for every n ∈ N,

Ef(R(n)) = E

∑
k≥1

f(R(n))1{tk−1≤R(n)<tk}

 ≤∑
k≥1

αkP{tk−1 ≤ R(n) < tk}

=
∑
k≥1

αk (P{R(n) ≥ tk−1} − P{R(n) ≥ tk}) = α+ α
∑
k≥1

P{R(n) ≥ tk}

≤ α+ (n− α)
∑
k≥1

h(tk) ≤ α+ (n− α)
∑
k≥1

h(t′k) ≤ α+ (n− α)
∑
k≥1

2−k ≤ n.

The proof is complete.

Proof of Proposition 2.4. Let C be a chain (totally ordered subset) in (FR,�). Define a
function f∗C : [0,∞)→ [0,∞) as a pointwise supremum:

f∗C (t) := sup
f∈C

f(t), t ≥ 0.

Note that (20) implies that f∗C is locally bounded. Obviously, f∗C is nondecreasing, unbounded
and is an upper bound for the chain C. We need to prove that f∗C ∈ FR which amounts to
checking that f∗C is concave and

Ef∗C (R(n)) ≤ n, n ∈ N. (28)

We shall first prove concavity. Fix t1, t2 ≥ 0 and ε > 0. Then

f∗C (t1) ≤ f1(t1) + ε and f∗C (t2) ≤ f2(t2) + ε,
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for some f1, f2 ∈ C. Since C is a chain we have either max(f1, f2) = f1 or max(f1, f2) = f2.
Without loss of generality assume the latter. Then, for every λ ∈ [0, 1],

λf∗C (t1) + (1− λ)f∗C (t2) ≤ λf1(t1) + (1− λ)f2(t2) + ε

≤ λf2(t1) + (1− λ)f2(t2) + ε ≤ f2(λt1 + (1− λ)t2) + ε ≤ f∗C (λt1 + (1− λ)t2) + ε.

Sending ε→ 0+ yields concavity of f∗C on [0,∞).

In order to prove (28) note that, for every m ∈ N and every ε > 0, there exists fm ∈ C such
that

f∗C (m) ≤ fm(m) + ε, m ∈ N.

Thus, with f̃ := supk≥1 fk, we have

f∗C (m) ≤ f̃(m) + ε, m ∈ N.

It remains to note that

f̃(m) = lim
n→∞

sup
k=1,...,n

fk(m) = lim
n→∞

fpn(m), m ∈ N,

where pn is the index of the �-maximal function in {f1, . . . , fn} ⊂ C which exists since C is a
chain. Thus, for every fixed n ∈ N, by the monotone convergence theorem,

Ef∗C (R(n)) ≤ Ef̃(R(n)) + ε = E
(

lim
m→∞

fpm(R(n))
)

+ ε = lim
m→∞

Efpm(R(n)) + ε ≤ n+ ε.

Since ε > 0 is arbitrary, we obtain (28). The second claim of the lemma follows from Zorn’s
lemma.

We now turn to the proof of Theorem 2.5. We start with an auxiliary lemma.

Lemma 4.1. Let h : [0,∞) 7→ [0,∞) be a nondecreasing unbounded concave function. Let
(xn)n∈N ⊂ (0,∞) and (yn)n∈N ⊂ (0,∞) be two asymptotically equivalent sequences, that is,
limn→∞ xn/yn = 1. Then limn→∞ h(xn)/h(yn) = 1.

Proof. Firstly, note that concavity of h and h(0) ≥ 0 jointly imply

h(λx) = h(λx+ (1− λ)0) ≥ λh(x) + (1− λ)h(0) ≥ λh(x), λ ∈ [0, 1], x ≥ 0. (29)

Fix ε ∈ (0, 1). There exists n0(ε) such that 1− ε ≤ xn/yn ≤ 1 + ε, for n ≥ n0(ε). Using (29)
and monotonicity of h we obtain

h(xn)

h(yn)
≤ h((1 + ε)yn)

h((1 + ε)−1(1 + ε)yn)
≤ (1 + ε)

h((1 + ε)yn)

h((1 + ε)yn)
= 1 + ε, n ≥ n0(ε).

Thus,

lim sup
n→∞

h(xn)

h(yn)
≤ 1 + ε.

Similarly, one can check that lim inf is greater or equal than 1 − ε, which completes the
proof.

Proof of Theorem 2.5. The proof consists of several steps.

Step 1. Let us show that, for every fixed n ∈ N,

Xn(x)

x

a.s.−→ 1, x→∞. (30)

The above formula is equivalent to

f◦(n)(Rn(b(f←)◦(n−1)(x)c))
x

a.s.−→ 1, x→∞,



Austrian Journal of Statistics 23

which, in turn, is the same as

f◦(n)(Rn(bxc))
f◦(n−1)(x)

=
f◦(n−1)(f(R(n)(bxc)))

f◦(n−1)(x)

a.s.−→ 1, x→∞.

The latter follows from Lemma 4.1 and the fact that

f(Rn(bxc))
x

a.s.−→ 1, x→∞.

Step 2. For every fixed n ∈ N,

X(n↓1)(x)

x
=

n∏
k=1

X(k↓1)(x)

X((k−1)↓1)(x)
=

n∏
k=1

Xk(X
((k−1)↓1)(x))

X((k−1)↓1)(x)

a.s.−→ 1, x→∞, (31)

where the last passage follows from (30).

Step 3. Let us show that

sup
n∈N

sup
x≥0

X(n↓1)(x)

1 + x
<∞ a.s. (32)

We have

sup
x≥0

X(n↓1)(x)

1 + x
≤

n∏
k=1

sup
x≥0

1 +Xk(X
((k−1)↓1)(x))

1 +X((k−1)↓1)(x)
≤

n∏
k=1

sup
x≥0

1 +Xk(x)

1 + x

≤
n∏
k=1

(
1 + sup

x≥0

|Xk(x)− x|
1 + x

)
≤
∞∏
k=1

(
1 + sup

x≥0

|Xk(x)− x|
1 + x

)
<∞ a.s.,

where the last inequality follows from (21). Thus, (32) holds true.

Step 4. For x ∈ N, we have the representation

Zf (x)

x
=
f(R1(x))

x
+
x+ 1

x

∑
n≥2

X(n↓1)(x)−X((n−1)↓1)(x)

1 + x
,

where the series converges by Theorem 2.3. We need to show that

lim
x→∞

∑
n≥2

X(n↓1)(x)−X((n−1)↓1)(x)

1 + x
=
∑
n≥2

lim
x→∞

X(n↓1)(x)−X((n−1)↓1)(x)

1 + x
,

since the right-hand side is equal to 0 by (31). In view of the dominated convergence theorem,
it suffices to check that∑

n≥2
sup
x≥0

∣∣∣∣∣X(n↓1)(x)−X((n−1)↓1)(x)

1 + x

∣∣∣∣∣ <∞ a.s.

The latter follows from∑
n≥2

sup
x≥0

∣∣∣∣∣X(n↓1)(x)−X((n−1)↓1)(x)

1 + x

∣∣∣∣∣
≤
∑
n≥2

sup
x≥0

∣∣∣∣∣X(n↓1)(x)−X((n−1)↓1)(x)

1 +X((n−1)↓1)(x)

∣∣∣∣∣ sup
x≥0

1 +X((n−1)↓1)(x)

1 + x

≤

(
sup
n≥2

sup
x≥0

1 +X((n−1)↓1)(x)

1 + x

)∑
n≥2

sup
x≥0

|Xn(x)− x|
1 + x

<∞,

where on the last step we utilized (32) and condition (21).

The proof of Theorem 2.5 is complete.
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Proof of Lemma 3.1. We shall rely on Williamson’s representation for R, see Eq. (3.4) in Gut
(1990),

R(1) = 1, R(k + 1) = dR(k)/Uke, k ∈ N,

where (Uk)k∈N are i.i.d. random variables with the uniform distribution on [0, 1]. According
to this representation, for k ∈ N,

E log(1 +R(k + 1)) = E

 ∑
j≥R(k)+1

log(1 + j)
R(k)

j(j − 1)

 .

Assume that we have proved∑
j≥A+1

log(1 + j)

j(j − 1)
≤ 1 + log(1 +A)

A
, A ∈ N. (33)

Then E log(1 + R(k + 1)) ≤ 1 + E log(1 + R(k)), k ∈ N, and the claim of lemma follows by
induction. It remains to check (33). To this end, note that∑
j≥A+1

log(1 + j)

j(j − 1)
=
∑
k≥A

log(2 + j)

j
−
∑

j≥A+1

log(1 + j)

j
=

log(A+ 2)

A
+
∑

j≥A+1

1

j
log

(
j + 2

j + 1

)
≤ log(A+ 2)

A
+
∑

j≥A+1

1

j(j + 1)
≤ log(A+ 2)

A
+

1

A+ 1

≤ log(1 +A)

A
+

1

A(A+ 1)
+

1

A+ 1
=

1 + log(1 +A)

A
.

The proof of (33) and of the entire lemma is complete.
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