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Brain diseases, including neurodegenerative diseases and neuropsychiatric

diseases, have long plagued the lives of the a�ected populations and caused

a huge burden on public health. Functional magnetic resonance imaging

(fMRI) is an excellent neuroimaging technology for measuring brain activity,

which provides new insight for clinicians to help diagnose brain diseases. In

recent years, machine learning methods have displayed superior performance in

diagnosing brain diseases compared to conventional methods, attracting great

attention from researchers. This paper reviews the representative research of

machine learning methods in brain disease diagnosis based on fMRI data in

the recent three years, focusing on the most frequent four active brain disease

studies, including Alzheimer’s disease/mild cognitive impairment, autism spectrum

disorders, schizophrenia, and Parkinson’s disease. We summarize these 55 articles

from multiple perspectives, including the e�ect of the size of subjects, extracted

features, feature selection methods, classification models, validation methods,

and corresponding accuracies. Finally, we analyze these articles and introduce

future research directions to provide neuroimaging scientists and researchers in

the interdisciplinary fields of computing and medicine with new ideas for AI-aided

brain disease diagnosis.

KEYWORDS

brain diseases, functional magnetic resonance imaging, machine learning, diagnosis,

feature selection

1. Introduction

The brain is the most complicated and delicate biological organ in human cognition,

which contains nearly 100 billion neurons with over 1,000 trillion synaptic connections

between neurons (Koch and Laurent, 1999; Azevedo et al., 2009; Zhang, 2019). It processes

various information humans obtain daily, regulates various bodily functions, and manages

advanced activities such as emotion, movement, learning, and memory (Raji et al., 2009;

Shoeibi et al., 2023). Due to the extremely fine biological structure of the brain, minor

damage to its internal functions is highly likely to lead to diseases such as Alzheimer’s

disease (AD) (Tanveer et al., 2020), mild cognitive impairment (MCI) (Fathi et al., 2022),

schizophrenia (SCZ) (Fathi et al., 2022), Parkinson’s disease (PD) (Li and Li, 2022), autism

spectrum disorders (ASD) (Moridian et al., 2022), and traumatic brain injury (Abdelrahman

et al., 2022). Brain diseases, including neurodegenerative diseases and neuropsychiatric

diseases, have long plagued the affected populations’ lives and caused a huge burden
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on public health (Vardi and Merrick, 2008; Chen et al., 2022).

However, there is currently no gold standard for diagnosing

brain diseases worldwide due to the unclear pathogenesis of these

diseases (de Lau and Breteler, 2006; Scheltens et al., 2016; Lord

et al., 2018). Brain disease diagnosis mainly depends on the clinical

symptom scores and doctors’ experience in clinical practice, which

is relatively subjective and inefficient, leading to some extent of

misdiagnosis and omissions (Insel and Cuthbert, 2015; Wang

et al., 2022a; Allely et al., 2023). How to accurately diagnose brain

diseases has become a hot topic in many fields, such as psychology,

medicine, and artificial intelligence.

Neuroimaging technologies, including functional magnetic

resonance imaging (fMRI) (Logothetis, 2008), structural MRI

(Wattjes, 2011), positron emission tomography (Nasrallah and

Dubroff, 2013), diffusion tensor imaging (DTI) (Bihan et al., 2001),

and electroencephalography (Mulkey et al., 2015), are important

tools for studying and diagnosing brain diseases (Perrin et al.,

2009; Abi-Dargham and Horga, 2016). Among many imaging

modes, fMRI provides a new window for researchers to study

dynamic brain activity observation and internal activation states

(van den Heuvel and Pol, 2010). It detects the metabolic activity

of the brain by measuring variations in blood flow and blood

oxygen concentration, indirectly revealing distinctions in brain

activity between patients and normal people, thereby providing

new perspectives into the disease pathogenesis (Heeger and Ress,

2002; Slobounov et al., 2011; Birur et al., 2017). Researchers have

proposed various imaging features based on fMRI in recent years

to explore variations in brain function, such as the amplitude of

low-frequency fluctuation (ALFF) (Zang et al., 2007), and regional

homogeneity (ReHo) (Zang et al., 2004). These imaging metrics

have different characteristics and advantages, and their emergence

and development can help understand diseases’ neurophysiological

mechanisms from multiple perspectives.

Researching AI-assisted diagnosis algorithms for brain diseases

can alleviate the supply and demand contradiction between

the limited number of doctors with professional diagnostic

qualifications and the increasing number of disease patients, which

could also improve the accuracy of diagnosis and treatment. Based

on fMRI data, researchers study potential differences between

patients and healthy subjects by machine learning methods, which

have been extensively adopted in researching brain diseases such as

AD, SCZ,MCI, andASD. Althoughmachine learning-based studies

for brain disease classification surged recently, a comprehensive

and detailed review of these studies is lacking. We searched for

articles published in the recent three years, from January 1, 2020, to

March 1, 2023, through the keywords “machine learning," “fMRI,"

“brain disease," and “diagnosis" on the Web of Science. According

to the title, abstract, and full-text content, 88 articles above the

Journal Citation Reports Quartile 2 in the category were selected.

According to the number of papers on brain diseases studied, the

most frequent four active brain disease studies, including AD/MCI,

ASD, PD, and SCZ, were selected, with a total of 55 papers. The

general process for diagnosing brain diseases based on fMRI and

machine learning is shown in Figure 1. We summarize the detailed

information of these studies, such as data sources, dataset sizes,

and extracted features in Table 1. Furthermore, the representative

feature selection, machine learning, and evaluation methods are

described in detail to help readers understand the benefits and

usage of distinct methodologies. Finally, we summarize the current

challenges and possible future research directions in this area,

hoping to provide new perspectives for studying AI-aided diagnosis

of brain diseases.

2. Features extracted from fMRI data

As can be seen from Figure 1, extracting features from fMRI

data is a crucial step for diagnosing brain diseases based onmachine

learning. The extracted features include functional connectivity

(FC), ReHo, ALFF, and graph measures. Besides, multimodal

features, such as iron-radiomic features from susceptibility-

weighted imaging (SWI) and diffusion from DTI, are also

adopted for brain disease diagnosis. These features are important

for improving model performance and exploring the biological

mechanisms of brain function.

2.1. Functional connectivity

FC describes the degree of correlation between blood-oxygen-

level-dependent (BOLD) time series in two different brain regions,

which has been demonstrated to be a vital tool for revealing various

disease mechanisms (Price et al., 2014). The brain atlas divides

the entire brain into multiple regions of interest (ROI) based on

functional or structural definitions. The average BOLD time series

for all voxels within the ROI coordinate ranges represent the BOLD

time series for each ROI. FC is mainly obtained by computing the

Pearson correlation coefficient of the BOLD time series between

paired ROIs. The calculation formula is as follows:

FCi,j =
cov(Xi,Xj)

SXiSXj

, 1 ≤ i, j ≤ M, (1)

where Xi represents ith ROI time series, S is the standard deviation,

cov is the covariance function, and M denotes the number of

ROIs in the atlas. Based on the calculated FC value, a symmetric

functional connectivity network is established, represented by FCN

= [FC1,1, FC1,2, · · · , FCM,M] ∈ R
M×M . The widely utilized atlas

is the automatic anatomical labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002; Guo and Zhang, 2020; Ji and Yao, 2021; Pang et al.,

2021; Wang et al., 2021, 2022b; Alorf and Khan, 2022; Cai et al.,

2022; Hu et al., 2022; Lu et al., 2022; Wang T. et al., 2022; Chen

et al., 2023). Besides, FC can be constructed by other atlases, such as

the Power atlas (Power et al., 2011; Xu et al., 2020), Craddock 200

atlas (Craddock et al., 2011; Huang et al., 2021; Liang et al., 2021,

2022), Bootstrap Analysis of Stable Clusters (Bellec et al., 2010;

Subah et al., 2021; Wang N. et al., 2022), Brainnetome atlas (Fan

et al., 2016; Jin et al., 2020), Yeo atlas (Yeo et al., 2011; Gullett et al.,

2021), Harvard-Oxford atlas (Desikan et al., 2006; Cao et al., 2020),

and Dosenbach atlas (Dosenbach et al., 2010; Zhao et al., 2022). In

particular, Zhang et al. (2022) constructed multiple FCNs based on

the selected set of the atlas from generated multiple personalized

atlases from the AAL atlas to improve the diagnosis effect of MCI.

The above FC refers to the traditional static FC, which

reveals the inherent similarity between a pair of ROIs or

particular networks (Liu et al., 2021). Dynamic FC is mainly
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FIGURE 1

The general process for diagnosing brain diseases based on fMRI and machine learning. fMRI, functional magnetic resonance imaging; FC, functional

connectivity; ReHo, Regional homogeneity; ALFF, Amplitude of low-frequency fluctuation; DTI, di�usion tensor imaging; sMRI, structural MRI; SWI,

susceptibility-weighted imaging.

extracted from fMRI data based on the sliding window strategy,

which is more helpful than static FC in understanding the

basic dynamic characteristics of the human brain (Hutchison

et al., 2013). For each subject with M ROIs, an appropriate

size and a sliding step of the time window are set, then the

time window is slid according to the step over the entire

time series. Statistical correlation coefficients such as Pearson

are used to calculate the FCN for each window. Continuous

sliding and calculation can obtain a set of T FCNs. Dynamic

FCN can be denoted as dFCN = [FCN1, FCN2,· · · , FCNT]∈

R
T×M×M , where T is the number of overlapping windows. Lin

et al. (2022) constructed dFCNs based on the sliding window

strategy from resting state fMRI (rs-fMRI) data and extracted

advanced features of dFCNs to classify brain disease by the

proposed convolutional recurrent neural network. Wang B. et al.

(2022) constructed dFCNs based on human connectivity project

multimodal partitioning. Different from static FCN, dFCN can

reveal more useful information for distinguishing between patients

with brain diseases and healthy subjects. ElNakieb et al. (2023)

proposed an enhanced version of dFCN, where correlation

calculations consider temporal dynamics. The accuracy of the

presented dFCN achieved 5% higher than traditional FCN. Kam

et al. (2020) extracted static brain functional networks (BFNs)

from rs-fMRI data by the Group Information Guided Independent

Component Analysis method and generated dynamic BFNs based

on seed association and sliding window strategy. The experimental

results indicated that the simultaneous use of static BFNs and

dynamic BFNs prioritizes using static BFNs alone, as dynamic

BFNs provide additional time information for BFNs. Li et al.

(2020a) obtained better functional brain network estimates based

on regulated transfer learning to identify MCI patients from

normal controls.

2.2. Regional homogeneity

ReHo is a major tool for detecting local neural synchronization

(Xing et al., 2021). It reflects the consistency of regional brain

activity by computing Kendall’s coefficient of concordance between

a specific voxel and its neighboring voxels (Zang et al., 2004; Pang

et al., 2021). The calculation formula is defined as follows:

ReHo =
12

∑t
i=1(Ri − R̄)2

k2(t3 − t)
,

Ri =

k
∑

j=1

ri,j,

R̄ =
1

t

t
∑

i=1

Ri,

(2)

where t is the length of the BOLD time series, k is the number of

local voxels studied, and ri,j represents the ranking level of a specific

voxel j in the entire time series under the ith moment. Ri denotes

the rank sum of k voxels at the ith moment. R̄ is the average value at

all times. Mean ReHo (mReHo) is obtained by dividing the average

ReHo value of the entire brain (Cao et al., 2020; Jia et al., 2021; Pang

et al., 2021).

2.3. Amplitude of low-frequency
fluctuation

ALFF is an effective fMRI data analysis tool widely used in

various diseases to assess resting state activity in brain regions

(Zhang et al., 2015; Pang et al., 2021; Zang et al., 2021; Cai

et al., 2022). Firstly, the Fourier transform is performed on the
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time series of each voxel to obtain the frequency domain power

spectrum. ALFF is obtained by calculating the square root of the

power spectrum and taking the average value over a predefined

frequency range (Zang et al., 2007). Mean ALFF (mALFF) is

calculated by dividing themean ALFF value of the entire brain (Cao

et al., 2020; Jia et al., 2021; Pang et al., 2021). In addition, several

researchers have broadened the range of brain disease classification

characteristics from different perspectives. For example, Shi et al.

(2021b) extracted intensity-based ALFF histogram features in 2021

to effectively discover regions of the brain with aberrant activity in

PD patients. In 2022, Shi et al. (2022) extracted radiological features

based on ALFF for the classification study of PD, providing further

support for interpreting the PD’s pathological mechanism.

2.4. Graph measures

As a branch of discrete mathematics, graph theory is frequently

employed in network analysis of diverse brain diseases (Farahani

et al., 2019; Hallquist and Hillary, 2019; Guo et al., 2020; Yang et al.,

2020). The vertices V and edges E are the two most important

concepts in constructing the graph G(V ,E). Based on graph theory,

the ROIs are regarded as vertices V and the connections between

ROIs as edges E, thereby constructing a brain network graph for

complex brain network analysis.

The metrics in complex brain network analysis mainly include

nodal and global measures. Nodal measures characterize the nodal

behavior of a network, such as the nodal shortest path length

L(i), betweenness centrality BC(i), nodal local efficiency Eloc(i),

nodal efficiency Enodal(i), and nodal clustering coefficient C(i)

(Freeman, 1977; Watts and Strogatz, 1998; Latora and Marchiori,

2001; Xu et al., 2020). Global measures indicators reflect the

overall network organization, such as clustering coefficient CP,

characteristic path length LP, small-worldness σ , local efficiency

Eloc, and global efficiency Eglob (Watts and Strogatz, 1998;

Latora and Marchiori, 2001; Rubinov and Sporns, 2010). Table 2

summarizes the definitions of these nodal and global measures.

2.5. Multimodal

Some researchers diagnose disease by comprehensive

classification features, integrating more information from various

features. For example, Pang et al. (2021) extracted indicators

such as ReHo, ALFF, and FC as classification features to provide

more comprehensive information on brain function change. Chen

et al. (2023) constructed graph measures and FC from rs-fMRI

data based on the AAL atlas to distinguish the Idiopathic PD

(IPD) and the parkinsonian variant of multiple system atrophy

(MSA-P). Jia et al. (2021) extracted mReHo and mALFF from

the Brainnetome atlas to distinguish MCI and AD, achieving an

accuracy of 86.4%. Ghafoori and Shalbaf (2022) utilized clinical

features and functional images extracted from rs-fMRI data to

distinguish stable MCI and progressive MCI, with an accuracy

improvement of 1.9% compared to using only functional images.

In recent years, multimodal analysis has also been widely

adopted in the research of brain diseases by fusing the features of

imaging data such as fMRI, structural MRI (sMRI), and DTI to

identify more consistent biomarkers and explore the relationship

between differentmodes (Liu et al., 2020b; Zhang et al., 2021; Khatri

and Kwon, 2022). Gullett et al. (2021) achieved 94.5% accuracy

in classifying stable amnestic MCI (aMCI) and declining aMCI by

combining rs-fMRI and T1 sMRI modalities, which is better than

only one modality. Shi et al. distinguished SCZ and healthy control

(HC) by integrating multimodal information, including fMRI and

sMRI. The results revealed that the most discriminate regions

between SCZs and HCs mainly locate in the 15 regions, such as

the left superior parietal lobule (Shi et al., 2021a). Pang et al. (2022)

distinguished IPD andMSA-P by extracting iron-radiomic features,

function, diffusion, and volumetric measures from SWI, rs-fMRI,

DTI, and T1-weighted imaging, which achieves an accuracy of

91.1%. The classification accuracy was improved to 93.4% by

combing clinical variables into the multimodal model. Cao et al.

(2020) established a PD diagnosis framework by incorporating

relevant clinical features, whole-brain functional connectivity and

activity, and gray matter structure, which achieved 84.8% accuracy.

The results found that unique whole-brain functional activity and

connectivity in PD are mainly located in five networks, such as

the affective network. These studies indicated the potential of

multimodal data fusion in the auxiliary diagnosis of PD patients.

The fusion of fMRI and genetic data is another researchmethod

for multimodal analysis. Using imaging and genetic data to identify

biomarkers and classify diseases can help reveal the pathogenesis

of diseases, which is of great significance for the development of

computational medicine (Bi et al., 2020, 2022; Ghosal et al., 2021).

Ghosal et al. (2021) extracted Imaging and Genetics features from

task-fMRI and single nucleotide polymorphism to identify SCZ

patients from 97 subjects. Bi et al. (2020) constructed ROI-gene

pairs based on rs-fMRI and genes to classify early MCI (eMCI) and

late MCI (lMCI) patients. The discovery of the most discriminating

ROIs and risk genes can provide essential bases for pathological

research in the development of MCI.

In addition to the commonly used classification features

mentioned above, rs-fMRI time series, 4D fMRI data, and 2D

images loaded from fMRI data can be directly used as classification

features (Li et al., 2020a; Wang et al., 2020; Ahammed et al.,

2021). In particular, Lama and Kwon (2021) adopted the Node2vec

graph embedding method to convert brain networks into feature

vectors as input to the model. Mousa et al. (2022) calculated the

intensity time series of each region and extracted the correlation

transfer function (CorrTF) matrix by the CorrTF. It is a promising

biomarker for early AD recognition, helping clinicians discover

and investigate the affected brain regions and their potential

associations during AD development.

3. Feature selection

The dimension of the above-extracted features usually exceeds

the total number of samples, leading to the dimensionality curse

(Liu et al., 2021; Khatri and Kwon, 2022). In addition, processing

numerous features may resulting model overfitting. The feature

selection step aims to preserve the features with strong correlation,

improve model performance and minimize the computing cost.

It plays a crucial role in correlation analysis, which could explain
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TABLE 1 Summary of research on the classification of brain diseases based on machine learning and functional magnetic resonance imaging data.

References Target Subjects Dataset Modality Extracted
features

Atlas Feature
selection

Classification
model

Validation Accuracy

Li et al. (2020a)

AD vs. MCI

116 AD, 99 MCI,

174 NC
ADNI fMRI 4D fMRI data N/A N/A C3d-LSTM Hold-out

92.1

MCI vs. NC 88.1

AD vs. NC 97.4

AD vs. NC vs.

MCI

89.5

Zhang et al. (2020) MCI vs. NC 82MCI, 93NC ADNI rs-fMRI

Neuropsychological

assessments,

network metrics

AAL RF RF Nested CV 91.4

Kam et al. (2020) eMCI vs. NC 49 eMCI, 48 NC ADNI rs-fMRI
Static BFNs,

dynamic BFNs
N/A N/A sdMB-CNN 5-fold CV 76.1

Bi et al. (2020) AD vs. NC 37 AD, 35NC ADNI
rs-fMRI,

SNP
ROI-gene pairs AAL CERF SVM Hold-out 86.2

Wang et al. (2020)

AD vs. NC

154 NC, 165 eMCI,

145 lMCI, 99 AD
ADNI rs-fMRI BOLD signals AAL N/A STNet 5-fold CV

90.3

lMCI vs. eMCI 79.4

AD vs. MCI vs.

NC

71.8

AD vs. lMCI vs.
60.7

eMCI vs. NC

Li et al. (2020b) MCI vs. NC 45 MCI, 46 NC
HCP,

rs-fMRI FBN based NERTL AAL t-test SVM LOOCV 82.4
NITRC

Lei et al. (2020)

SMC vs. NC

38 lMCI, 44 eMCI,

44 SMC, 44 NC
ADNI rs-fMRI d-HON AAL

Local weight

clustering

coefficient, LASSO

SVM Nested CV

78.9

eMCI vs. NC 80.3

lMCI vs. NC 85.2

lMCI vs. eMCI 78.8

lMCI vs. SMC 84.3

eMCI vs. SMC 80.2

Jin et al. (2020)
AD vs. MCI vs. 252 AD, 221 MCI,

INTERNAL rs-fMRI
ReHo, FC,

Brainnetome Meta analysis SVM LOSOCV 89
NC 215 NC AM, FC strength

Xu et al. (2020) MCI vs. NC
39 MCI, 60 NC INTERNAL

rs-fMRI FC, Graph measures Power t-test, gLASSO MK-SVM LOOCV
92.9

27MCI, 23NC ADNI 66.0

Liu et al. (2020b) eMCI vs. NC 105 eMCI, 105 NC ADNI
rs-fMRI,

T1w MRI

GMV, SPL,

non-imaging

phenotypic measures

AAL MTFS-gLASSO GCN 5-fold CV 84.1

(Continued)
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TABLE 1 (Continued)

References Target Subjects Dataset Modality Extracted
features

Atlas Feature
selection

Classification
model

Validation Accuracy

Liu et al. (2020a)

lMCI vs. NC

105 eMCI, 105 lMCI,

105 NC
ADNI

rs-fMRI, T1w

MRI
GMV, CT, CC, SPL AAL MTFS-gLASSO-TTR MK-SVM Nested CV

88.5

eMCI vs. NC 82.7

lMCI vs. eMCI 79.6

Guo et al. (2020) AD vs. NC 30 AD, 30 NC ADNI rs-fMRI Graph measures 13 seed ROI RF RBK_SVM 10-fold CV 95.9

Guo and Zhang (2020) MCI vs. NC 91 MCI, 79 NC ADNI rs-fMRI FC AAL N/A Autoencoder 10-fold CV 94.6 (Sens)

Bi et al. (2021a)
eMCI vs. NC 42 eMCI, 38 lMCI,

36 NC
ADNI rs-fMRI Graph measures AAL N/A CEWSVME Hold-out

83.5

eMCI vs. lMCI 84.3

Lama and Kwon (2021)

MCI vs. NC

31 MCI, 31 NC,

31 AD
ADNI rs-fMRI Feature vector AAL LASSO Linear SVM 10-fold CV

98.9

AD vs. NC 90.6

MCI vs. AD 97.8

Wang et al. (2021)

AD vs. NC

34 AD, 18 eMCI,

18 lMCI, 50 NC
ADNI

fMRI,

sMRI

FC,

gray matter images
AAL

PCANet,

3DShuffleNet
SVM Hold-out

96.0

AD vs. MCI 100.0

MCI vs. NC 100.0

lMCI vs. eMCI 100.0

Jia et al. (2021)

SMC vs. NC

34 AD, 26 SMC,

57 eMCI, 35 lMCI,

38 MCI, 50 NC

ADNI fMRI mALFF, mReHo N/A
Improved

3DPCANet
SVM N/A

91.3

SMC vs. MCI 95.0

SMC vs. AD 83.3

eMCI vs. lMCI 85.2

MCI vs. AD 86.4

MCI vs. NC 88.9

AD vs. NC 92.0

Bi et al. (2021b) eMCI vs. NC 37 eMCI 36 NC ADNI
rs-fMRI,

genetic data
ROI-gene pairs AAL N/A GERF Hold-out 86.2

Zhang et al. (2021) MCIc vs. MCInc 55MCInc, 30MCIc,

19AD
ADNI rs-fMRI,

sMRI

Cortical thickness

features,

structural brain network

features,

sub-frequency functional

brain network features

Desikan

-Killiany,

AAL

RSFS SVM Nested CV 84.7

MCIc vs. AD 89.8

(Continued)
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TABLE 1 (Continued)

References Target Subjects Dataset Modality Extracted
features

Atlas Feature
selection

Classification
model

Validation Accuracy

Gullett et al. (2021)
stable aMCI vs.

declining aMCI

41 stable aMCI,

14 declining aMCI
INTERNAL

rs-fMRI,

T1 sMRI

FC,

T1 voxelwise

intensity values

Yeo atlas t-test SVM Nested CV 94.5

Bi et al. (2022) eMCI vs. lMCI 37 eMCI, 26 lMCI ADNI
rs-fMRI,

genetic data
ROI-gene pairs AAL WERF SVM Hold-out 88.9

Zhou et al. (2022) MCI vs. NC 42 MCI, 54 NC INTERNAL
rs-fMRI,

DTI

Significant HIP-related

WM network
Seed based RFE SVM rbf Hold-out 89.4

Wang B. et al. (2022)
AD vs. eMCI vs.

lMCI vs. HC

30 AD, 34 lMCI,

53 eMCI, 43 HC
ADNI rs-fMRI Dynamic FC HCP MMP K-means DBCP Hold-out 86.0

Cai et al. (2022) aMCI vs. HC 33 aMCI, 34 HC ADNI rs-fMRI ReHo, ALFF, FC AAL
MGS-WBC,

VGBN-LM
SVM LOOCV 94.0

Lu et al. (2022) AD vs. NC 100 AD, 100 NC ADNI fMRI FC AAL KFS-ELM ELM Hold-out 99.2

Zhang et al. (2022) MCI vs. NC 66 MCI, 51 NC ADNI rs-fMRI Multiatlas-based FCNs AAL RSGL SVM LOOCV 85.5

Ghafoori and Shalbaf

(2022)
sMCI vs. pMCI 188 sMCI, 78 pMCI ADNI rs-fMRI

Functional images,

clinical features
N/A N/A 3D-CNN 5-fold CV 87.6

Khatri and Kwon (2022)

AD vs. NC

63 AD, 68 NC,

37 sMCI, 45 MCIc
ADNI

rs-fMRI,

sMRI

Graph measures,

Voxel Features,

Hippocampus and

Amygdala Volume

AAL JMI SVM 10-fold CV

95.9

AD vs. MCI 92.5

NC vs. MCI 90.4

sMCI vs. MCIc 88.0

Alorf and Khan (2022)

CN vs. SMC

182 CN, 36 SMC,

213 eMCI, 145 lMCI,

14 MCI, 116 AD

ADNI rs-fMRI FC AAL N/A

SSAE network 10-fold CV

92.8

86.8

CN vs. eMCI
96.7

87.8

CN vs. MCI
90.9

77.1

CN vs. lMCI

BC-GCN 5-fold CV

94.9

91.5

CN vs. AD
97.0

91.7

CN vs. SMC vs.

eMCI vs. MCI vs.

lMCI vs. AD

94.2

84.0
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TABLE 1 (Continued)

References Target Subjects Dataset Modality Extracted
features

Atlas Feature
selection

Classification
model

Validation Accuracy

Mousa et al. (2022)

AD vs. NC

167 NC, 102 eMCI,

129 lMCI, 114 AD
ADNI rs-fMRI CorrTF matrix AAL t-test SVM 10-fold CV

99.3

AD vs. MCI 99.7

NC vs. MCI 98.2

eMCI vs. lMCI 100.0

AD vs. NC vs.

eMCI vs. lMCI
98.2

Lin et al. (2022)

AD vs. NC

99 AD, 145 lMCI,

165 eMCI, 154 NC
ADNI rs-fMRI dynamic FC AAL N/A CRNN 5-fold CV

92.8

eMCI vs. NC 84.5

AD vs. IMCI vs.

eMCI vs. NC
61.7

Ji and Yao (2021) ASD vs. NC 527 ASD, 569 NC ABIDE rs-fMRI FC AAL N/A CNNGLasso 5-fold CV 68.3

Liang et al. (2021) ASD vs. NC 511 ASD, 561 NC ABIDE rs-fMRI FC CC200
Kendall rank

correlation estimation
CNNPL 10-fold CV 76.0

Huang et al. (2021) ASD vs. NC 505 ASD, 530 NC ABIDE rs-fMRI FC CC200 GBFS DBN 10-fold CV 76.4

Subah et al. (2021) ASD vs. NC 402 ASD, 464 NC ABIDE rs-fMRI FC BASC N/A DNN 5-fold CV 87.9

Haweel et al. (2021) ASD vs. NC 50 ASD, 50 NC NDAR Task-fMRI BOLD signals HO K-means, DWT 2D-CNN 10-fold CV 80.0

Ahammed et al. (2021) ASD vs. NC 79 ASD, 105 NC ABIDE fMRI 2D images N/A N/A DarkASDNet N/A 94.7

Cao et al. (2022) ASD vs. NC 539 ASD, 573 NC ABIDE rs-fMRI Dynamic graphs CC200 N/A GSA-LSTM 10-fold CV 68.4

Hu et al. (2022) ASD vs. NC

13 ASD, 21 NC

ABIDE rs-fMRI FC AAL N/A FCG-MTGS-TSK 10-fold CV

71.4

18 ASD, 16 NC 59.1

15 ASD, 20 NC 75.2

Wang et al. (2022b) ASD vs. NC 479 ASD, 478 NC ABIDE rs-fMRI FC AAL N/A
Random SVM

cluster
Hold-out 88.1

Zhao et al. (2022) ASD vs. NC 48 ASD, 50 NC ABIDE rs-fMRI FC
Dosenbach

atlas
Boruta SVM LOOCV 92.9

Wang N. et al. (2022) ASD vs. NC 280 ASD, 329 NC ABIDE rs-fMRI FC BASC
SIMLR, Nested

SVD
SVM LOOCV 68.4

Liang et al. (2022) ASD vs. NC 480 ASD, 509 NC ABIDE rs-fMRI FC CC200 N/A MSA-DNN 10-fold CV 70.5

ElNakieb et al. (2023) ASD vs. NC 408 ASD, 476 NC ABIDE rs-fMRI dynamic FC AAL F-Score, RFECV linear SVM 5-fold CV 98.8
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TABLE 1 (Continued)

References Target Subjects Dataset Modality Extracted
features

Atlas Feature
selection

Classification
model

Validation Accuracy

Cao et al. (2020) PD vs. NC 68 PD, 48 NC INTERNAL
rs-fMRI,

sMRI

mALFF, mReHo, FC,

VMHC, GM,

clinical information

HO

MannWhitney

U test,

removing features

with high

correlation, LASSO

SVM 10-fold CV 84.8

Pang et al. (2021) TD vs. PIGD 57 TD, 39 PIGD INTERNAL rs-fMRI
mReHo, mALFF,

DC, VMHC, FC
AAL

t-test, LASSO,

Spearman’s rank

correlation

SVM Hold-out 87.5

Shi et al. (2021b) PD vs. NC
48 PD, 32 NC Public

database
rs-fMRI

Intensity-based

histogram features

of the ALFF

AAL t-test, LASSO Rag-score 10-fold CV
93.8

11 PD, 9 NC 90.0

Shi et al. (2022) PD vs. NC
59 PD, 41 NC

Public

database rs-fMRI
ALFF-based

Radiomic features
Brainnetome t-test, LASSO SVM Nested CV

81.5

27 PD, 16 NC FCP/INDI 67.4

Pang et al. (2022) MSA-P vs. IPD 77 IPD, 75 MSA-P INTERNAL
rs-fMRI, DTI,

T1 images, SWI

Iron-radiomic features,

function, diffusion,

volumetric measures,

clinical variables

Brainnetome mRMR, LASSO SVM Hold-out 93.4

Chen et al. (2023) MSA-P vs. IPD 76 MSA-P, 53 IPD INTERNAL rs-fMRI Graph measures,

FC

AAL
t-test, RF,

removing features with

high autocorrelation
LR Hold-out 92.3

Yang et al. (2020) SCZ vs. NC 236 SCZ, 150 NC INTERNAL Task-fMRI Graph measures Power N/A SVM Hold-out 71.6

Ghosal et al. (2021) SCZ vs. NC 43 SCZ, 54 NC INTERNAL
Task-fMRI,

SNP
Imaging, Genetics Brainnetome N/A

Generative-

discriminative

framework

10-fold CV 73.0

Shi et al. (2021a) SCZ vs. NC 45 SCZ, 64 NC COBRE
rs-fMRI,

sMRI

ALFF, ReHo,

DC, VMHC, GMD Brainnetome t-test MLDA LOOCV 83.5

Zang et al. (2021)
SCZ vs. NC 61 FESCZ,

79 CSCZ,

205 NC

INTERNAL
rs-fMRI,

sMRI

GMV, ReHo,

ALFF, DC
GWB

PCA
LR LOOCV

88.0

FESCZ vs. CSCZ RFE 86.0

(Continued)
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the affection of brain regions on classification performance. The

following briefly describes the three most frequently used feature

selection algorithms in Table 1.

3.1. Two-sample t-test

The two-sample t-test is a filtered feature selection method to

compare whether each feature mean of two independent sample

sets has significant differences (Liu et al., 2018). Two-sample t-test

requires two groups of samples to be independent of each other

and subject to normal distribution. The calculation formula that

satisfies homoscedasticity is as follows:

t =
X̄1 − X̄2

√

(n1−1)S21+(n2−1)S22
n1+n2−2 ( 1

n1
+ 1

n2
)

, (3)

where X̄1 and S1 represent the mean and standard deviation of

each feature of the sample set, and n1 is the capacity of the

sample set. The smaller the t value, the higher the significance

level of the feature. The features are classified according to the

calculated t value, and the features with weak discrimination ability

are removed to improve the classifier’s performance. Mousa et al.

applied a t-test to select discriminative features between normal

subjects and AD patients. Then they trained a support vector

machine (SVM) with these features, achieving an accuracy of

99.3% (Mousa et al., 2022). Shi et al. (2021a) proposed a model

obtaining an accuracy of 83.5%, which determined the different

characteristics between the SCZ and health subjects by two-sample

t-test and used maximum uncertainty linear discriminate analysis-

based classifier.

3.2. Recursive feature elimination

Recursive feature elimination (RFE) is a wrapper feature

selection approach that recursively reduces the size of the original

feature set through multiple training rounds on a base model.

SVM-RFE calculates the features’ contribution to the model’s

classification performance by training SVM on the original feature

set. Then, remove the features with small contributions and repeat

the training process until the remaining featuresmatch the required

number. Zhou et al. (2022) used the RFE to select and rank the

features and revealed the pathological mechanism of MCI through

the feature contribution ranking. Zang et al. (2021) reduced the

dimensionality of features by RFE before the classification.

3.3. Least absolute shrinkage and selection
operator

The least absolute shrinkage and selection operator (LASSO)

is an embedded feature selection method, which is a least square

method with an L1 penalty item (Hsu et al., 2008; Pang et al., 2021;
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Khatri and Kwon, 2022). LASSO calculates model coefficients β by

minimizing the following functions:

β = argβ min{

n
∑

i=1

(yi −

m
∑

j=1

βjxij − β0)
2 + α

m
∑

j=1

|βj|}, (4)

where n is the total number of samples, yi is the category label

of the ith subject, xij is the jth characteristic of the ith subject, βj

represents the regression coefficient of the jth feature, and m is the

feature dimension. α is a non-negative regularization parameter

that aims to limit the sparsity of the model. When the bigger α

is, the more βj is set to zero to achieve the purpose of feature

selection to reduce unimportant features. Shi et al. (2021b) applied

a t-test (P < 0.05) and LASSO to determine the characteristics

that significantly differed between PD patients and healthy subjects.

Cao et al. selected features using the Mann–Whitney U-test, pre-

determined thresholds to screen for highly correlated variables, and

LASSO. These selected features were then used to distinguish PD

from healthy subjects (Cao et al., 2020).

4. Classifier

Based on the selected features, the classifier distinguishes

patients and healthy subjects. The classification accuracies are

greatly impacted by the classifiers, summarized in Table 1.

4.1. Logistic regression

Logistic regression (LR) is a common method to solve

the binary classification problem, which judges the category

of samples by comparing the relationship between decision

boundaries and samples. Its main idea is to assume that

the data obey a certain distribution and make parameter

estimation according to the maximum likelihood estimation.

Chen et al. (2023) combined a t-test with random forest

(RF) to screen out the discriminative features and then

distinguish the IPD and MSA-P subjects by LR, obtaining

92.31% accuracy.

4.2. Random forest

RF is an ensemble classification model based on the

decision tree, which can process high-dimensional data without

feature selection. It randomly deletes some features in decision

tree training, then selects features with better classification

ability through integrated learning to improve the overall

performance. In addition, Bi et al. (2020, 2021b, 2022) optimized

the traditional random forest and successively proposed the

cluster evolutionary RF, genetic-evolutionary RF, and weighted

evolutionary RF algorithms based on genetic data and rs-fMRI data.

Improved models can dynamically delete irrelevant or redundant

sample features to discover the disease-related risk genes and

brain regions.

4.3. Support vector machine

SVM is a powerful supervised machine learning approach

aiming to find a decision boundary in the high-dimensional space

that can maximize the interval between two categories. SVM

has good generalization and robustness, which has advantages in

solving small data sets and over-fitting problems in learning. Yang

et al. (2020) diagnosed 236 SCZ patients from 386 subjects by SVM,

achieving an accuracy of 71.6%. Gullett et al. (2021) applied SVM

to separate stable participants from those with the greatest marginal

decline at follow-upwith an accuracy of 94.5%. Shi et al. (2022) built

SVM to distinguish PD patients from normal subjects, obtaining

81.5% accuracy on the initial training set containing 100 subjects.

Furthermore, Bi et al. (2021a) proposed the evolutionary weighted

SVM ensemble method to investigate the changes from normal

subjects to eMCI to lMCI.

The selection of kernel function and kernel parameter is crucial

to SVM’s performance. Unlike traditional SVM, multiple kernel

SVM (MK-SVM) trains SVM by the kernel that fuses multiple

kernel functions. It can effectively learn features of multi-mode

data and is more flexible than single-kernel SVM. For example,

Liu et al. (2020b) combine structural and functional features

by MK-SVM to complete the MCI classification task. Xu et al.

(2020) adapted MK-SVM to combine multimodal information to

effectively distinguish MCI and healthy subjects, and accuracy was

achieved at 92.9%.

4.4. Deep learning models

Besides the classifiers mentioned above, deep learning models

have also been extensively adopted in brain disease diagnosis. With

powerful learning and analysis capabilities, deep learning models

can automatically find the representation with strong recognition

and directly learn the optimal strategy from the original data

using hierarchical structures of varying complexity. For instance,

Kam et al. (2020) presented a new convolutional neural network

(CNN) framework sdMB-CNN, which extracts deep embedded

characteristics from static and dynamic functional connectivity

networks through 3D-CNN. Compared with traditional methods

such as SVM, it significantly improves the diagnosis performance

by nearly 10%. Wang et al. presented the multi-kernel capsule

network considering the brain’s anatomical structure. Set the kernel

to match the brain’s anatomical structure partition size to capture

the connection between regions on different scales (Wang T. et al.,

2022). Research shows that the capsule network is viable and

prospective in diagnosing SCZ. To directly process 4D fMRI data,

Li et al. (2020a) designed a C3d-LSTM for AD recognition, which

integrated 3D-CNNs and a long short-term memory network to

capture the spatial and time-varying information in the data.

Huang et al. (2021) designed a graph-based classification model

based on the deep belief network, which is more accurate

and efficient than other advanced methods. Ahammed et al.

(2021) proposed the DarkASDNet model, predicting the binary

classification between ASD patients and normal subjects by 3D

fMRI data, with a classification accuracy of 94.7%.
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TABLE 2 The definitions of common nodal and global measures.

Measures Definitions

Nodal Measures of node i,

denoted by ni
(Freeman, 1977; Watts and Strogatz,

1998; Latora and Marchiori, 2001; Xu

et al., 2020)

Nodal shortest path length L(i) L(i) = 1
N−1

∑

i6=j∈V di,j , where di,j = Lmin(ni , nj), N is the number of nodes in graph G

Nodal clustering coefficient C(i)
C(i) = ei

Di(Di−1)/2
, where ei is the number of edges directly connected to ni ,

and Di is the degree of ni

Betweenness centrality BC(i)
BC(i) =

∑

j6=i6=k∈V

δj,k(i)

δj,k
, where δj,k is the number of shortest paths from nj to nk ,

and δj,k(i) is the number of those shortest paths that pass through ni

Nodal local efficiency Eloc(i) Eloc(i) =
1

NGi (NGi−1)

∑

j6=k∈VGi

1
dj,k

, where Gi is the subgraph composed of neighbors of ni

Nodal efficiency Enodal(i) Enodal(i) =
1

N−1

∑

i6=j∈V
1
di,j

Global Measures (Watts and Strogatz,

1998; Latora and Marchiori, 2001;

Rubinov and Sporns, 2010)

Clustering coefficient CP CP = 1
N

∑

i∈V C(i)

Characteristic path length LP LP = 1
N

∑

i∈V L(i)

Small-worldness σ
σ =

γ

λ
, where γ = CP

Cr
, λ = LP

Lr
, Cr denotes the random clustering coefficient,

and Lr denotes the random characteristic path length

Local efficiency Eloc Eloc =
1
N

∑

i∈V Eloc(i)

Global efficiency Eglob Eglob = 1
N

∑

i∈V Enodal(i)

TABLE 3 Public dataset information and number of disease studies using public datasets.

Disease Number of studies Studies based on public
datasets

Public datasets

MCI/AD 31 28 (90.3%)

Alzheimer’s disease Neuroimaging Initiativea

Human Connectome Projectb

Neuroimaging Informatics Tools and Resources

Clearinghousec

ASD 13 13 (100%)
Autism Brain Imaging Data Exchanged

National Database for Autism Researche

PD 6 2 (33.3%)

Functional Connectomes Project/International

Neuroimaging Data-Sharing Initiativef

Nanjing Brain Hospital public databaseg

SCZ 5 2 (40%) The Center for Biomedical Research Excellenceh

ahttp://adni.loni.usc.edu/.
bhttps://www.humanconnectome.org/study/hcp-young-adult.
chttp://www.nitrc.org/projects/modularbrain/.
dhttp://fcon_1000.projects.nitrc.org/indi/abide/.
ehttp://ndar.nih.gov.
f http://fcon_1000.projects.nitrc.org/indi/retro/parkinsons.html.
ghttp://dx.doi.org/10.6084/m9.figshare.1433996.
hhttp://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

5. Performance evaluation

As shown in Figure 1, the performance evaluation is the

final step in brain disease diagnosis. Larson (1931) proposed

in the 1930s that training and evaluating the performance

of models on the same data would yield overly optimistic

results. Accordingly, cross-validation (CV) is proposed to avoid

overfitting by testing the model on new data sets, which

can extract as much effective information as possible from

limited data.

5.1. Hold-out validation

Hold-out validation randomly divides the original data set into

independent training and test set (Arlot and Celisse, 2010). This

method is simple to operate and avoids the overfitting problems

caused by traditional training and testing based on the same

data. However, different partitioning methods lead to different

results, requiring multiple grouping to ensure the stability and

persuasiveness of the model’s result. Zhou et al. (2022) evaluated

the model’s classification performance by the hold-out method.
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FIGURE 2

Scatter plot of the total sample size and reported accuracy.

FIGURE 3

Distribution of the total sample size of the investigated papers.

They divided 80% of the dataset into the training set and the

rest into the testing set. The dataset was randomly divided by the

same proportion for evaluation 100 times. The model acquired

an average classification accuracy of 89.4%. Wang et al. (2022b)

evaluated the model performance by dividing the dataset into a

training set, a validation set, and a testing set at the percentage

of 40%, 10%, and 50%, respectively. The hold-out validation was

repeated 50 times in their study.

5.2. Leave-one-out cross-validation

Leave-one-out CV (LOOCV) is the most classical exhaustive

CV method, which selects one sample from the original data set

as the test data, and the remaining are training data (Arlot and

Celisse, 2010; Xu et al., 2020; Cai et al., 2022; Zhao et al., 2022).

FIGURE 4

Box-plot of the overall accuracy of the report of the investigated

papers.

The experimental data are not affected by random factors because

almost all samples in each round are applied to train the model.

To avoid the problem of overfitting, Cai et al. (2022) adopted the

LOOCVmethod to estimate the model’s classification performance

on a dataset containing 67 subjects to overcome the problem

of limited data. The obtained results of LOOCV are stable and

reliable, ensuring the reproducibility of the experimental process.

However, it is more excessive computational overhead than other

CV methods, suitable for limited sample sets.

5.3. K-fold cross-validation

K-fold CV was presented by Geisser (1975) as an alternative to

the computationally expensive LOOCV, which divides the dataset

into k subsets of almost equal size. Each subset of data is tested

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1227491
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Teng et al. 10.3389/fnins.2023.1227491

FIGURE 5

Validation methods of the surveyed studies.

once, and the rest k-1 subsets are used as training sets to obtain

k models. Combine and analyze the classification accuracy of k

models to obtainmore stable and accurate model performance. The

constant k is variable. When k is the total number of samples in the

dataset, k-fold CV is equivalent to LOOCV. Under limited samples,

k-fold CV is the simplest and most extensively adopted method for

evaluatingmodel performance (Kam et al., 2020; Ghosal et al., 2021;

Khatri and Kwon, 2022; Lin et al., 2022).

6. Research summary

6.1. Functional magnetic resonance
imaging data sources

The articles listed in Table 1 mainly come from two fMRI

data sources: internal datasets collected by self or cooperative

agencies and public data sets. The former typically come from

the same location and have the same collection parameters. The

latter often comes from data from different locations, inevitably

bringing heterogeneity to the dataset regarding functional magnetic

resonance scanners, data collection protocols, and participant

population differences, making disease research and analysis more

challenging (Ghiassian et al., 2016). However, public datasets

typically contain more available data than internal datasets, which

can accommodate the demands of more academics for large-

scale database analysis. Table 3 summarizes the status of papers

and related datasets for the top four brain diseases in the past

three years, with 81.8% of the articles using public data. Of these,

90.3% of AD/MCI studies and 100% of ABIDE were conducted on

public datasets, demonstrating that well-maintained databases can

advance research technology.

6.2. Relationship between accuracy and
sample size

Figure 2 shows the relationship between sample sizes and

corresponding experimental accuracy. Among them, experiments

with high accuracy (79.2% of experiments have an accuracy higher

than 80%) are concentrated in the case of sample sizes less than

200 (60% of studies). It can be observed from Figure 2 that

the overall trend of AD/MCI and SCZ is that accuracy declines

with increasing sample size, which raises concerns about the

generalization problem of small sample size research.

6.3. Distribution of the total sample size

Figure 3 displays the histogram of the sample sizes of

investigated papers, which clearly illustrates the relationship

between the overall sample size and the number of studies. The

red dashed line denotes the average, while the blue dashed line

represents the median. As depicted in Figure 3, the conducted

research in the survey mainly focuses on small sample datasets due

to the difficulty in sample collection in clinical practice.

6.4. Accuracy of each disease

Figure 4 shows a summary of statistical information on the

overall accuracy of each disease report. The median accuracies

of AD/MCI and PD studies exceed 85%. In contrast, the median

accuracy of ASD is less than 80%. The median accuracy of SCZ is

between 80 and 85.

6.5. Validation methods

Figure 5 shows the validation methods used in the papers.

Regarding classifier verification methods, k-fold CV is the most

commonly used method (accounting for 58.2%, 32/55 articles).

Among them, the commonly used methods are LOOCV and

10-fold CV. Due to a lack of subjects, the hold-out scheme

ranked second.

7. Summary and future research
directions

This article reviews 55 brain disease classification studies based

on fMRI data and machine learning in the recent three years. We

summarize in detail these studies’ dataset information, extracted

features from fMRI, feature selection approaches, classification

methods, and overall accuracy. In addition, different feature

selection strategies and representative machine learning models

are introduced, which can help researchers choose appropriate

methods for practical classification problems. A new advancement

in the classification of brain diseases based on fMRI data has been

realized thanks to the quick development of machine learning

technologies. Here, we propose five directions that researchers need

to focus on, which are expected to promote the development of the

AI-aided diagnosis of brain diseases.

1) Explore specific machine-learning methods for fMRI

Generating new machine learning technologies for the specific

characteristics of fMRI by integrating the advantages of distinct
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methods to improve existing methods. We attempt to design

specific machine learning methods to gather more beneficial

information, thereby better identifying reliable biomarkers and

assisting clinicians in diagnosis.

2) The application of fuzzy technology

The uncertainty of fMRI data, introduced by the instability

of data collection equipment, the complexity of brain disease

pathophysiology, and the fuzziness in determining medical causes,

raises a challenge for brain disease diagnosis. Fuzzy technology,

which can deal with the uncertainty of knowledge and expression,

has been extensively adopted in the medical field (Parveen and

Singh, 2015; Baskar et al., 2018; Chowdhary et al., 2020; Hu

et al., 2022). Parveen and Singh (2015) segmented MRI images

by fuzzy c-means clustering (FCM) to detect suspicious regions.

Baskar et al. (2018) identified NC, MCI, and AD by combining

kernel FCM and backpropagation artificial neural networks, which

can improve classification performance by removing suspicious

training samples. A new classification model based on Takagi-

Sugeno-Kang fuzzy inference systems for ASD is proposed by

Hu et al. (2022), which has been proven advantageous in

interpretability and accuracy. Diagnosing brain diseases based on

fuzzy technology could be a promising direction.

3) Multiple-feature fusion

Many studies have shown that various indicators may be

complementary in revealing changes in brain function and

can provide more beneficial information. For example, Pang

et al. (2021) extracted multiple indicators based on fMRI data,

including FC, mReHo, mALFF, degree centrality, and voxel-

mirrored homotopic connectivity to classify PD motion subtypes

by SVM. The results show that the multi-layer index combination

of rs-fMRI can further promote performance. Kam et al. (2020)

extracted deep embedding characteristics from static and dynamic

BFNs through a designed 3D-CNN framework. This extension

method considers the subtle and complex (spatiotemporal)

changes of each BFN in eMCI and can use deep embedding

features well. The mutual complementation of static and dynamic

BFNs information further improves the diagnostic accuracy

of eMCI. As a result, multiple-feature fusion is a valuable

direction for future research, which could enhance existing

research results.

4) Multimodal data fusion

Fusing multimodal data has shown notable prospects in

analyzing changes in brain function at the individual level. For

example, Gullett et al. (2021) combined T1w MRI and rs-fMRI to

predict the overall model accuracy of diagnostic changes in aMCI

reached 94.5%, significantly better than the method using only

single mode diagnosis. In order to explore the potential of sMRI

and rs-fMRI in AD recognition, Khatri and Kwon (2022) utilized

their combined features in their research to achieve maximum

classification accuracy relative to a single feature. In addition,

Bi et al. (2020) fused fMRI and gene features to investigate the

association between brain regions and genes, offering novel insights

for the early detection and clinicopathological analysis of eMCI.

Deep learning has potential advantages in processing complex data.

Effectively combining multimodal data with deep learning models

to improve diagnostic accuracy is a direction worth exploring in

the future.

5) Establish an interpretable network

Deep learning models can be more accurate for classifying

and identifying diseases than machine learning. However, the

lack of interpretability of deep learning models has restricted

their application in the clinical field. Improving deep learning

models to establish interpretable networks are more conducive to

understanding the brain distinctions between patients and healthy

subjects, thereby benefiting neuroscientists studying brain diseases

in the future.

Author contributions

JT: supervision, conceptualization, and manuscript

draft. CM: manuscript draft, conceptualization, and data

analysis. JS: investigation. NL: investigation, data analysis,

and manuscript draft. All authors listed have contributed

substantially and directly to the article and approved it

for publication.

Funding

This work was supported by the National Natural Science

Foundation of China under Grant Nos. 61503137 and 61871181,

the Fundamental Research Funds for the Central Universities

under Grant No. 2020MS017, the Postdoctoral Science Foundation

of China (2020TQ0364), and the Natural Science Foundation of

Hunan (2020JJ5865).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1227491
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Teng et al. 10.3389/fnins.2023.1227491

References

Abdelrahman, H. A. F., Ubukata, S., Ueda, K., Fujimoto, G., Oishi, N., Aso, T., et al.
(2022). Combining multiple indices of diffusion tensor imaging can better differentiate
patients with traumatic brain injury from healthy subjects. Neuropsychiatr. Dis. Treat.
18, 1801–1814. doi: 10.2147/NDT.S354265

Abi-Dargham, A., and Horga, G. (2016). The search for imaging biomarkers in
psychiatric disorders. Nat. Med. 22, 1248–1255. doi: 10.1038/nm.4190

Ahammed, M. S., Niu, S., Ahmed, M. R., Dong, J., Gao, X., Chen, Y., et al. (2021).
DarkASDNet: classification of ASD on functional MRI using deep neural network.
Front. Neuroinform. 15, 635657. doi: 10.3389/fninf.2021.635657

Allely, C. S., Woodhouse, E., and Mukherjee, R. A. (2023). Autism spectrum
disorder and personality disorders: how do clinicians carry out a differential diagnosis?
Autism 136236132311513. doi: 10.1177/13623613231151356

Alorf, A., and Khan, M. U. G. (2022). Multi-label classification of Alzheimer’s
disease stages from resting-state fMRI-based correlation connectivity data and deep
learning. Comput. Biol. Med. 151, 106240. doi: 10.1016/j.compbiomed.2022.106240

Arlot, S., and Celisse, A. (2010). A survey of cross-validation procedures for model
selection. Stat. Surv. 4, 40–79. doi: 10.1214/09-SS054

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite,
R. E., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541.
doi: 10.1002/cne.21974

Baskar, D., Jayanthi, V. S., and Jayanthi, A. N. (2018). An efficient classification
approach for detection of Alzheimer’s disease from biomedical imaging
modalities. Multimed. Tools Appl. 78, 12883–12915. doi: 10.1007/s11042-018-6
287-8

Bellec, P., Rosa-Neto, P., Lyttelton, O. C., Benali, H., and Evans, A. C. (2010).
Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51,
1126–1139. doi: 10.1016/j.neuroimage.2010.02.082

Bi, X., Hu, X.,Wu, H., andWang, Y. (2020).Multimodal data analysis of Alzheimer’s
disease based on clustering evolutionary random forest. IEEE J. Biomed. Health Inf. 24,
2973–2983. doi: 10.1109/JBHI.2020.2973324

Bi, X., Xie, Y., Wu, H., and Xu, L. (2021a). Identification of differential brain regions
in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm.
Front. Comput. Sci. 15, 156903. doi: 10.1007/s11704-020-9520-3

Bi, X., Xing, Z., Zhou, W.W., Li, L., and Xu, L. (2022). Pathogeny detection
for mild cognitive impairment via weighted evolutionary random forest with
brain imaging and genetic data. IEEE J. Biomed. Health Inf. 26, 3068–3079.
doi: 10.1109/JBHI.2022.3151084

Bi, X., Zhou, W.W., Li, L., and Xing, Z. (2021b). Detecting risk gene and pathogenic
brain region in emci using a novel gerf algorithm based on brain imaging and genetic
data. IEEE J. Biomed. Health Inf. 25, 3019–3028. doi: 10.1109/JBHI.2021.3067798

Bihan, D. L., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., et al.
(2001). Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging
13, 534–546. doi: 10.1002/jmri.1076

Birur, B., Kraguljac, N. V., Shelton, R. C., and Lahti, A. C. (2017). Brain structure,
function, and neurochemistry in schizophrenia and bipolar disorder—a systematic
review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 3, 15.
doi: 10.1038/s41537-017-0013-9

Cai, C., Cao, J., Yang, C., and Chen, E. (2022). Diagnosis of amnesic mild cognitive
impairment using MGS-WBC and VGBN-LM algorithms. Front. Aging Neurosci. 14,
893250. doi: 10.3389/fnagi.2022.893250

Cao, P., Wen, G., Liu, X., Yang, J., and Zaiane, O. R. (2022). Modeling the dynamic
brain network representation for autism spectrum disorder diagnosis. Med. Biol. Eng.
Comput. 60, 1897–1913. doi: 10.1007/s11517-022-02558-4

Cao, X., Wang, X., Xue, C., Zhang, S., Huang, Q., Liu, W., et al. (2020).
A radiomics approach to predicting Parkinson’s disease by incorporating whole-
brain functional activity and gray matter structure. Front. Neurosci. 14, 751.
doi: 10.3389/fnins.2020.00751

Chen, B., Cui, W., Wang, S., Sun, A., Yu, H., Liu, Y., et al. (2023). Functional
connectome automatically differentiates multiple system atrophy (Parkinsonian type)
from idiopathic Parkinson’s disease at early stages. Hum. Brain Mapp. 44, 2176–2190.
doi: 10.1002/hbm.26201

Chen, C., Ai, Q., Shi, A., Wang, N., Wang, L., Wei, Y., et al. (2022).
Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases,
neuropsychiatric diseases and other brain disorders. Nutr. Neurosci. 26, 414–428.
doi: 10.1080/1028415X.2022.2051957

Chowdhary, C. L., Mittal, M., Kumaresan, P., Pattanaik, P. A., and Marszalek, Z.
(2020). An efficient segmentation and classification system in medical images using
intuitionist possibilistic fuzzy c-mean clustering and fuzzy svm algorithm. Sensors 20,
3903. doi: 10.3390/s20143903

Craddock, R. C., James, G., Holtzheimer, P. E., Hu, X. P., andMayberg, H. S. (2011).
A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum.
Brain Mapp. 33, 1914–1928. doi: 10.1002/hbm.21333

de Lau, L. M., and Breteler, M. M. (2006). Epidemiology of Parkinson’s disease.
Lancet Neurol. 5, 525–535. doi: 10.1016/S1474-4422(06)70471-9

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,
D., et al. (2006). An automated labeling system for subdividing the human cerebral
cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980.
doi: 10.1016/j.neuroimage.2006.01.021

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church,
J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science 329,
1358–1361. doi: 10.1126/science.1194144

ElNakieb, Y., Ali, M. T., Elnakib, A., Shalaby, A., Mahmoud, A., Soliman,
A., et al. (2023). Understanding the role of connectivity dynamics of resting-
state functional MRI in the diagnosis of autism spectrum disorder: a
comprehensive study. Bioengineering 10, 56. doi: 10.3390/bioengineering100
10056

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., et al. (2016). The human
brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex
26, 3508–3526. doi: 10.1093/cercor/bhw157

Farahani, F. V., Karwowski, W., and Lighthall, N. R. (2019). Application of graph
theory for identifying connectivity patterns in human brain networks: a systematic
review. Front. Neurosci. 13, 585. doi: 10.3389/fnins.2019.00585

Fathi, S., Ahmadi, M., and Dehnad, A. (2022). Early diagnosis of Alzheimer’s
disease based on deep learning: a systematic review. Comput. Biol. Med. 146, 105634.
doi: 10.1016/j.compbiomed.2022.105634

Freeman, L. M. (1977). A set of measures of centrality based upon betweenness.
Sociometry 40, 35–41. doi: 10.2307/3033543

Geisser, S. (1975). The predictive sample reuse method with applications. J. Am.
Stat. Assoc. 70, 320–328. doi: 10.1080/01621459.1975.10479865

Ghafoori, S., and Shalbaf, A. (2022). Predicting conversion from MCI
to AD by integration of rs-fMRI and clinical information using 3d-
convolutional neural network. Int. J. Comput. Assist. Radiol. Surg. 17, 1245–1255.
doi: 10.1007/s11548-022-02620-4

Ghiassian, S., Greiner, R., Jin, P., and Brown, M. R. G. (2016). Using functional
or structural magnetic resonance images and personal characteristic data to identify
ADHD and autism. PLoS ONE 11, e0166934. doi: 10.1371/journal.pone.0166934

Ghosal, S., Chen, Q., Pergola, G., Goldman, A. L., Ulrich, W., Berman, K.
F., et al. (2021). A generative-discriminative framework that integrates imaging,
genetic, and diagnosis into coupled low dimensional space. Neuroimage 238, 118200.
doi: 10.1016/j.neuroimage.2021.118200

Gullett, J. M., Albizu, A., Fang, R., Loewenstein, D. A., Duara, R., Rosselli,
M., et al. (2021). Baseline neuroimaging predicts decline to dementia from
amnestic mild cognitive impairment. Front. Aging Neurosci. 13, 758298.
doi: 10.3389/fnagi.2021.758298

Guo, H., Zeng, W., Shi, Y., Deng, J., and Zhao, L. (2020). Kernel granger causality
based on back propagation neural network fuzzy inference system on fMRI data. IEEE
Trans. Neural Syst. Rehabil. Eng. 28, 1049–1058. doi: 10.1109/TNSRE.2020.2984519

Guo, H., and Zhang, Y. (2020). Resting state fMRI and improved deep learning
algorithm for earlier detection of Alzheimer’s disease. IEEE Access 8, 115383–115392.
doi: 10.1109/ACCESS.2020.3003424

Hallquist, M. N., and Hillary, F. G. (2019). Graph theory approaches to functional
network organization in brain disorders: a critique for a brave new small-world. Netw.
Neurosci. 3, 1–26. doi: 10.1162/netn_a_00054

Haweel, R., Shalaby, A., Mahmoud, A., Seada, N., Ghoniemy, S., Ghazal, M., et al.
(2021). A robust DWT–CNN-based CAD system for early diagnosis of autism using
task-based fMRI.Med. Phys. 48, 2315–2326. doi: 10.1002/mp.14692

Heeger, D. J., and Ress, D. (2002). What does fMRI tell us about neuronal activity?
Nat. Rev. Neurosci. 3, 142–151. doi: 10.1038/nrn730

Hsu, N.-J., Hung, H.-L., and Chang, Y.-M. (2008). Subset selection for vector
autoregressive processes using lasso. Comput. Stat. Data Anal. 52, 3645–3657.
doi: 10.1016/j.csda.2007.12.004

Hu, Z., Wang, J., Zhang, C., Luo, Z., Luo, X., Xiao, L., et al. (2022).
Uncertainty modeling for multicenter autism spectrum disorder classification using
takagi–sugeno–kang fuzzy systems. IEEE Trans. Cogn. Dev. Syst. 14, 730–739.
doi: 10.1109/TCDS.2021.3073368

Huang, Z.-A., Zhu, Z., Yau, C. H., and Tan, K. C. (2021). Identifying
autism spectrum disorder from resting-state fMRI using deep belief network.
IEEE Trans. Neural Netw. Learn. Syst. 32, 2847–2861. doi: 10.1109/TNNLS.2020.30
07943

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2023.1227491
https://doi.org/10.2147/NDT.S354265
https://doi.org/10.1038/nm.4190
https://doi.org/10.3389/fninf.2021.635657
https://doi.org/10.1177/13623613231151356
https://doi.org/10.1016/j.compbiomed.2022.106240
https://doi.org/10.1214/09-SS054
https://doi.org/10.1002/cne.21974
https://doi.org/10.1007/s11042-018-6287-8
https://doi.org/10.1016/j.neuroimage.2010.02.082
https://doi.org/10.1109/JBHI.2020.2973324
https://doi.org/10.1007/s11704-020-9520-3
https://doi.org/10.1109/JBHI.2022.3151084
https://doi.org/10.1109/JBHI.2021.3067798
https://doi.org/10.1002/jmri.1076
https://doi.org/10.1038/s41537-017-0013-9
https://doi.org/10.3389/fnagi.2022.893250
https://doi.org/10.1007/s11517-022-02558-4
https://doi.org/10.3389/fnins.2020.00751
https://doi.org/10.1002/hbm.26201
https://doi.org/10.1080/1028415X.2022.2051957
https://doi.org/10.3390/s20143903
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1016/S1474-4422(06)70471-9
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1126/science.1194144
https://doi.org/10.3390/bioengineering10010056
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.3389/fnins.2019.00585
https://doi.org/10.1016/j.compbiomed.2022.105634
https://doi.org/10.2307/3033543
https://doi.org/10.1080/01621459.1975.10479865
https://doi.org/10.1007/s11548-022-02620-4
https://doi.org/10.1371/journal.pone.0166934
https://doi.org/10.1016/j.neuroimage.2021.118200
https://doi.org/10.3389/fnagi.2021.758298
https://doi.org/10.1109/TNSRE.2020.2984519
https://doi.org/10.1109/ACCESS.2020.3003424
https://doi.org/10.1162/netn_a_00054
https://doi.org/10.1002/mp.14692
https://doi.org/10.1038/nrn730
https://doi.org/10.1016/j.csda.2007.12.004
https://doi.org/10.1109/TCDS.2021.3073368
https://doi.org/10.1109/TNNLS.2020.3007943
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Teng et al. 10.3389/fnins.2023.1227491

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V.
D., Corbetta, M., et al. (2013). Dynamic functional connectivity: promise, issues, and
interpretations. Neuroimage 80, 360–378. doi: 10.1016/j.neuroimage.2013.05.079

Insel, T. R., and Cuthbert, B. N. (2015). Brain disorders? precisely. Science 348,
499–500. doi: 10.1126/science.aab2358

Ji, J., and Yao, Y. (2021). Convolutional neural network with graphical lasso
to extract sparse topological features for brain disease classification. IEEE/ACM
Trans. Comput. Biol. Bioinform. 18, 2327–2338. doi: 10.1109/TCBB.2020.29
89315

Jia, H., Wang, Y., Duan, Y., and Xiao, H. (2021). Alzheimer’s disease classification
based on image transformation and features fusion.Comput.Math.MethodsMed. 2021,
1–11. doi: 10.1155/2021/9624269

Jin, D., Wang, P., Zalesky, A., Liu, B., Song, C., Wang, D., et al. (2020).
grab − AD: generalizability and reproducibility of altered brain activity and
diagnostic classification in Alzheimer’s disease. Hum. Brain Mapp. 41, 3379–3391.
doi: 10.1002/hbm.25023

Kam, T.-E., Zhang, H., Jiao, Z., and Shen, D. (2020). Deep learning of static and
dynamic brain functional networks for early MCI detection. IEEE Trans. Med. Imaging
39, 478–487. doi: 10.1109/TMI.2019.2928790

Khatri, U., and Kwon, G.-R. (2022). Alzheimer’s disease diagnosis and biomarker
analysis using resting-state functional MRI functional brain network with multi-
measures features and hippocampal subfield and amygdala volume of structural MRI.
Front. Aging Neurosci. 14, 818871. doi: 10.3389/fnagi.2022.818871

Koch, C., and Laurent, G. (1999). Complexity and the nervous system. Science 284,
96–98. doi: 10.1126/science.284.5411.96

Lama, R. K., and Kwon, G.-R. (2021). Diagnosis of Alzheimer’s disease using brain
network. Front. Neurosci. 15, 605115. doi: 10.3389/fnins.2021.605115

Larson, S. C. (1931). The shrinkage of the coefficient of multiple correlation. J. Educ.
Psychol. 22, 45–55. doi: 10.1037/h0072400

Latora, V., and Marchiori, M. (2001). Efficient behavior of small-world networks.
Phys. Rev. Lett. 87, 198701. doi: 10.1103/PhysRevLett.87.198701

Lei, B., Yu, S., Zhao, X., Frangi, A. F., Tan, E.-L., Elazab, A., et al. (2020). Diagnosis of
early Alzheimer’s disease based on dynamic high order networks. Brain Imaging Behav.
15, 276–287. doi: 10.1007/s11682-019-00255-9

Li, A., and Li, C. (2022). Detecting Parkinson’s disease through gait measures using
machine learning. Diagnostics 12, 2404. doi: 10.3390/diagnostics12102404

Li, W., Lin, X., and Chen, X. (2020a). Detecting Alzheimer’s disease based on 4d
fMRI: an exploration under deep learning framework. Neurocomputing 388, 280–287.
doi: 10.1016/j.neucom.2020.01.053

Li, W., Zhang, L., Qiao, L., and Shen, D. (2020b). Toward a better
estimation of functional brain network for mild cognitive impairment
identification: a transfer learning view. IEEE J. Biomed. Health Inf. 24, 1160–1168.
doi: 10.1109/JBHI.2019.2934230

Liang, Y., Liu, B., and Zhang, H. (2021). A convolutional neural network combined
with prototype learning framework for brain functional network classification of
autism spectrum disorder. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 2193–2202.
doi: 10.1109/TNSRE.2021.3120024

Liang, Y., and Xu, G. ur Rehman, S. (2022). Multi-scale attention-based deep
neural network for brain disease diagnosis. Comput. Mater. Contin. 72, 4645–4661.
doi: 10.32604/cmc.2022.026999

Lin, K., Jie, B., Dong, P., Ding, X., Bian, W., Liu, M., et al. (2022). Convolutional
recurrent neural network for dynamic functional MRI analysis and brain disease
identification. Front. Neurosci. 16, 933660. doi: 10.3389/fnins.2022.933660

Liu, J., Pan, Y., Wu, F.-X., and Wang, J. (2020a). Enhancing the feature
representation of multi-modal MRI data by combining multi-view information for
MCI classification. Neurocomputing 400, 322–332. doi: 10.1016/j.neucom.2020.03.006

Liu, J., Tan, G., Lan, W., and Wang, J. (2020b). Identification of early mild
cognitive impairment usingmulti-modal data and graph convolutional networks. BMC
Bioinformatics 21(S6), 123. doi: 10.1186/s12859-020-3437-6

Liu, M., Li, B., and Hu, D. (2021). Autism spectrum disorder studies
using fMRI data and machine learning: a review. Front. Neurosci. 15, 697870.
doi: 10.3389/fnins.2021.697870

Liu, Z., Xu, T., Ma, C., Gao, C., and Yang, H. (2018). T-test based Alzheimer’s
disease diagnosis with multi-feature in MRIs.Multimed. Tools Appl. 77, 29687–29703.
doi: 10.1007/s11042-018-5768-0

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI.Nature
453, 869–878. doi: 10.1038/nature06976

Lord, C., Elsabbagh, M., Baird, G., and Veenstra-Vanderweele, J. (2018). Autism
spectrum disorder. Lancet 392, 508–520. doi: 10.1016/S0140-6736(18)31129-2

Lu, J., Zeng, W., Zhang, L., and Shi, Y. (2022). A novel key features screening
method based on extreme learning machine for Alzheimer’s disease study. Front. Aging
Neurosci. 14, 888575. doi: 10.3389/fnagi.2022.888575

Moridian, P., Ghassemi, N., Jafari, M., Salloum-Asfar, S., Sadeghi, D., Khodatars,
M., et al. (2022). Automatic autism spectrum disorder detection using artificial

intelligence methods with MRI neuroimaging: a review. Front. Mol. Neurosci. 15,
999605. doi: 10.3389/fnmol.2022.999605

Mousa, D., Zayed, N., and Yassine, I. A. (2022). Alzheimer disease stages
identification based on correlation transfer function system using resting-
state functional magnetic resonance imaging. PLoS ONE 17, e0264710.
doi: 10.1371/journal.pone.0264710

Mulkey, S. B., Yap, V. L., Bai, S., Ramakrishnaiah, R. H., Glasier, C. M., Bornemeier,
R. A., et al. (2015). Amplitude-integrated EEG in newborns with critical congenital
heart disease predicts preoperative brainmagnetic resonance imaging findings. Pediatr.
Neurol. 52, 599–605. doi: 10.1016/j.pediatrneurol.2015.02.026

Nasrallah, I., and Dubroff, J. (2013). An overview of PET neuroimaging. Semin.
Nucl. Med. 43, 449–461. doi: 10.1053/j.semnuclmed.2013.06.003

Pang, H., Yu, Z., Yu, H., Cao, J., Li, Y., Guo, M., et al. (2021). Use of machine
learning method on automatic classification of motor subtype of Parkinson’s disease
based on multilevel indices of rs-fMRI. Parkinsonism Relat. Disord. 90, 65–72.
doi: 10.1016/j.parkreldis.2021.08.003

Pang, H., Yu, Z., Yu, H., Chang, M., Cao, J., Li, Y., et al. (2022). Multimodal
striatal neuromarkers in distinguishing Parkinsonian variant of multiple system
atrophy from idiopathic Parkinson’s disease. CNS Neurosci. Ther. 28, 2172–2182.
doi: 10.1111/cns.13959

Parveen and Singh, A. (2015). “Detection of brain tumor in MRI images, using
combination of fuzzy c-means and SVM," in 2015 2nd International Conference
on Signal Processing and Integrated Networks (SPIN) (Noida: IEEE), 98–102.
doi: 10.1109/SPIN.2015.7095308

Perrin, R. J., Fagan, A. M., and Holtzman, D. M. (2009). Multimodal
techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461, 916–922.
doi: 10.1038/nature08538

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,
et al. (2011). Functional network organization of the human brain.Neuron 72, 665–678.
doi: 10.1016/j.neuron.2011.09.006

Price, T.,Wee, C.-Y., Gao,W., and Shen, D. (2014). “Multiple-network classification
of childhood autism using functional connectivity dynamics,” in Medical Image
Computing and Computer-Assisted Intervention MICCAI 2014. MICCAI 2014. Lecture
Notes in Computer Science, Vol 8675, eds P. Golland, N. Hata, C. Barillot, J. Hornegger,
and R. Howe (Cham: Springer), 177–184. doi: 10.1007/978-3-319-10443-0_23

Raji, C. A., Ho, A. J., Parikshak, N. N., Becker, J. T., Lopez, O. L., Kuller,
L. H., et al. (2009). Brain structure and obesity. Hum. Brain Mapp. 31, 353–364.
doi: 10.1002/hbm.20870

Rubinov, M., and Sporns, O. (2010). Complex network measures of
brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069.
doi: 10.1016/j.neuroimage.2009.10.003

Scheltens, P., Blennow, K., Breteler, M. M. B., de Strooper, B., Frisoni,
G. B., Salloway, S., et al. (2016). Alzheimer’s disease. Lancet 388, 505–517.
doi: 10.1016/S0140-6736(15)01124-1

Shi, D., Li, Y., Zhang, H., Yao, X., Wang, S., Wang, G., et al. (2021a). Machine
learning of schizophrenia detection with structural and functional neuroimaging. Dis.
Markers 2021, 1–12. doi: 10.1155/2021/9963824

Shi, D., Zhang, H., Wang, G., Wang, S., Yao, X., Li, Y., et al. (2022). Machine
learning for detecting Parkinson’s disease by resting-state functional magnetic
resonance imaging: amulticenter radiomics analysis. Front. Aging Neurosci. 14, 806828.
doi: 10.3389/fnagi.2022.806828

Shi, D., Zhang, H., Wang, S., Wang, G., and Ren, K. (2021b). Application of
functional magnetic resonance imaging in the diagnosis of Parkinson’s disease: a
histogram analysis. Front. Aging Neurosci. 13, 624731. doi: 10.3389/fnagi.2021.624731

Shoeibi, A., Khodatars, M., Jafari, M., Ghassemi, N., Moridian, P., Alizadehsani, R.,
et al. (2023). Diagnosis of brain diseases in fusion of neuroimaging modalities using
deep learning: a review. Inf. Fusion 93, 85–117. doi: 10.1016/j.inffus.2022.12.010

Slobounov, S., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al.
(2011). Alteration of brain functional network at rest and in response to YMCA
physical stress test in concussed athletes: RsFMRI study. Neuroimage 55, 1716–1727.
doi: 10.1016/j.neuroimage.2011.01.024

Subah, F. Z., Deb, K., Dhar, P. K., and Koshiba, T. (2021). A deep learning approach
to predict autism spectrum disorder using multisite resting-state fMRI. Appl. Sci. 11,
3636. doi: 10.3390/app11083636

Tanveer, M., Richhariya, B., Khan, R. U., Rashid, A. H., Khanna, P., Prasad, M.,
et al. (2020). Machine learning techniques for the diagnosis of Alzheimer’s disease.
ACM Trans. Multimedia Comput. Commun. Appl. 16(1s), 1–35. doi: 10.1145/33
44998

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,
Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of
activations in SPM using a macroscopic anatomical parcellation of the MNI
MRI single-subject brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.
0978

van den Heuvel, M. P., and Pol, H. E. H. (2010). Exploring the brain network: a
review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20,
519–534. doi: 10.1016/j.euroneuro.2010.03.008

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2023.1227491
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1126/science.aab2358
https://doi.org/10.1109/TCBB.2020.2989315
https://doi.org/10.1155/2021/9624269
https://doi.org/10.1002/hbm.25023
https://doi.org/10.1109/TMI.2019.2928790
https://doi.org/10.3389/fnagi.2022.818871
https://doi.org/10.1126/science.284.5411.96
https://doi.org/10.3389/fnins.2021.605115
https://doi.org/10.1037/h0072400
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1007/s11682-019-00255-9
https://doi.org/10.3390/diagnostics12102404
https://doi.org/10.1016/j.neucom.2020.01.053
https://doi.org/10.1109/JBHI.2019.2934230
https://doi.org/10.1109/TNSRE.2021.3120024
https://doi.org/10.32604/cmc.2022.026999
https://doi.org/10.3389/fnins.2022.933660
https://doi.org/10.1016/j.neucom.2020.03.006
https://doi.org/10.1186/s12859-020-3437-6
https://doi.org/10.3389/fnins.2021.697870
https://doi.org/10.1007/s11042-018-5768-0
https://doi.org/10.1038/nature06976
https://doi.org/10.1016/S0140-6736(18)31129-2
https://doi.org/10.3389/fnagi.2022.888575
https://doi.org/10.3389/fnmol.2022.999605
https://doi.org/10.1371/journal.pone.0264710
https://doi.org/10.1016/j.pediatrneurol.2015.02.026
https://doi.org/10.1053/j.semnuclmed.2013.06.003
https://doi.org/10.1016/j.parkreldis.2021.08.003
https://doi.org/10.1111/cns.13959
https://doi.org/10.1109/SPIN.2015.7095308
https://doi.org/10.1038/nature08538
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1007/978-3-319-10443-0_23
https://doi.org/10.1002/hbm.20870
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/S0140-6736(15)01124-1
https://doi.org/10.1155/2021/9963824
https://doi.org/10.3389/fnagi.2022.806828
https://doi.org/10.3389/fnagi.2021.624731
https://doi.org/10.1016/j.inffus.2022.12.010
https://doi.org/10.1016/j.neuroimage.2011.01.024
https://doi.org/10.3390/app11083636
https://doi.org/10.1145/3344998
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Teng et al. 10.3389/fnins.2023.1227491

Vardi, G., and Merrick, J. (2008). Neurological disorders: public health challenges.
J. Policy Pract. Intellect. Disabil. 5, 75–75. doi: 10.1111/j.1741-1130.2007.00143.x

Wang, B., Li, L., Peng, L., Jiang, Z., Dai, K., Xie, Q., et al. (2022).
Multigroup recognition of dementia patients with dynamic brain connectivity
under multimodal cortex parcellation. Biomed. Signal Process. Control 76, 103725.
doi: 10.1016/j.bspc.2022.103725

Wang, M., Lian, C., Yao, D., Zhang, D., Liu, M., Shen, D., et al. (2020). Spatial-
temporal dependency modeling and network hub detection for functional MRI
analysis via convolutional-recurrent network. IEEE Trans. Biomed. Eng. 67, 2241–2252.
doi: 10.1109/TBME.2019.2957921

Wang, N., Yao, D., Ma, L., and Liu, M. (2022). Multi-site clustering and nested
feature extraction for identifying autism spectrum disorder with resting-state fMRI.
Med. Image Anal. 75, 102279. doi: 10.1016/j.media.2021.102279

Wang, T., Bezerianos, A., Cichocki, A., and Li, J. (2022). Multikernel capsule
network for schizophrenia identification. IEEE Trans. Cybern. 52, 4741–4750.
doi: 10.1109/TCYB.2020.3035282

Wang, Y., Amdanee, N., and Zhang, X. (2022a). Exosomes in schizophrenia:
pathophysiological mechanisms, biomarkers, and therapeutic targets. Eur. Psychiatry
65, e61. doi: 10.1192/j.eurpsy.2022.2319

Wang, Y., Fu, Y., and Luo, X. (2022b). Identification of pathogenetic brain regions
via neuroimaging data for diagnosis of autism spectrum disorders. Front. Neurosci. 16,
900330. doi: 10.3389/fnins.2022.900330

Wang, Y., Liu, X., and Yu, C. (2021). Assisted diagnosis of Alzheimer’s disease
based on deep learning and multimodal feature fusion. Complexity 2021, 1–10.
doi: 10.1155/2021/6626728

Wattjes, M. P. (2011). Structural MRI. Int. Psychogeriatr. 23, S13–S24.
doi: 10.1017/S1041610211000913

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature 393, 440–442. doi: 10.1038/30918

Xing, Y., Fu, S., Li, M., Ma, X., Liu, M., Liu, X., et al. (2021). Regional neural activity
changes in Parkinson’s disease-associated mild cognitive impairment and cognitively
normal patients.Neuropsychiatr. Dis. Treat. 17, 2697–2706. doi: 10.2147/NDT.S323127

Xu, X., Li, W., Mei, J., Tao, M., Wang, X., Zhao, Q., et al. (2020). Feature selection
and combination of information in the functional brain connectome for discrimination
of mild cognitive impairment and analyses of altered brain patterns. Front. Aging
Neurosci. 12, 28. doi: 10.3389/fnagi.2020.00028

Yang, J., Pu, W., Wu, G., Chen, E., Lee, E., Liu, Z., et al. (2020). Connectomic
underpinnings of working memory deficits in schizophrenia: evidence from

a replication fMRI study. Schizophr. Bull. 46, 916–926. doi: 10.1093/schbul/s
bz137

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,
M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/jn.00338.2011

Zang, J., Huang, Y., Kong, L., Lei, B., Ke, P., Li, H., et al. (2021). Effects of brain
atlases and machine learning methods on the discrimination of schizophrenia patients:
a multimodal MRI study. Front. Neurosci. 15, 697168. doi: 10.3389/fnins.2021.697168

Zang, Y., He, Y., Zhu, C., Cao, Q., Sui, M.-Q., Liang, M., et al. (2007). Altered
baseline brain activity in childrenwith ADHD revealed by resting-state functionalMRI.
Brain Dev. 29, 83–91. doi: 10.1016/j.braindev.2006.07.002

Zang, Y., Jiang, T., Lu, Y., He, Y., and Tian, L. (2004). Regional
homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400.
doi: 10.1016/j.neuroimage.2003.12.030

Zhang, J. (2019). Basic neural units of the brain: neurons, synapses and action
potential. arXiv. [preprint]. doi: 10.48550/arXiv.1906.01703

Zhang, L., Ni, H., Yu, Z., Wang, J., Qin, J., Hou, F., et al. (2020). Investigation on the
alteration of brain functional network and its role in the identification of mild cognitive
impairment. Front. Neurosci. 14, 558434. doi: 10.3389/fnins.2020.558434

Zhang, T., Liao, Q., Zhang, D., Zhang, C., Yan, J., Ngetich, R., et al.
(2021). Predicting MCI to AD conversation using integrated sMRI and rs-fMRI:
machine learning and graph theory approach. Front. Aging Neurosci. 13, 688926.
doi: 10.3389/fnagi.2021.688926

Zhang, Y., Zhang, H., Adeli, E., Chen, X., Liu, M., Shen, D., et al. (2022). Multiview
feature learning with multiatlas-based functional connectivity networks for MCI
diagnosis. IEEE Trans. Cybern. 52, 6822–6833. doi: 10.1109/TCYB.2020.3016953

Zhang, Y., Zhu, C., Chen, H., Duan, X., Lu, F., Li, M., et al. (2015). Frequency-
dependent alterations in the amplitude of low-frequency fluctuations in social anxiety
disorder. J. Affect. Disord. 174, 329–335. doi: 10.1016/j.jad.2014.12.001

Zhao, L., Sun, Y.-K., Xue, S.-W., Luo, H., Lu, X.-D., Zhang, L.-H., et al.
(2022). Identifying boys with autism spectrum disorder based on whole-brain
resting-state interregional functional connections using a boruta-based support
vector machine approach. Front. Neuroinform. 16, 761942. doi: 10.3389/fninf.2022.
761942

Zhou, Y., Si, X., Chao, Y.-P., Chen, Y., Lin, C.-P., Li, S., et al. (2022).
Automated classification of mild cognitive impairment by machine learning with
hippocampus-related white matter network. Front. Aging Neurosci. 14, 866230.
doi: 10.3389/fnagi.2022.866230

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2023.1227491
https://doi.org/10.1111/j.1741-1130.2007.00143.x
https://doi.org/10.1016/j.bspc.2022.103725
https://doi.org/10.1109/TBME.2019.2957921
https://doi.org/10.1016/j.media.2021.102279
https://doi.org/10.1109/TCYB.2020.3035282
https://doi.org/10.1192/j.eurpsy.2022.2319
https://doi.org/10.3389/fnins.2022.900330
https://doi.org/10.1155/2021/6626728
https://doi.org/10.1017/S1041610211000913
https://doi.org/10.1038/30918
https://doi.org/10.2147/NDT.S323127
https://doi.org/10.3389/fnagi.2020.00028
https://doi.org/10.1093/schbul/sbz137
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.3389/fnins.2021.697168
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1016/j.neuroimage.2003.12.030
https://doi.org/10.48550/arXiv.1906.01703
https://doi.org/10.3389/fnins.2020.558434
https://doi.org/10.3389/fnagi.2021.688926
https://doi.org/10.1109/TCYB.2020.3016953
https://doi.org/10.1016/j.jad.2014.12.001
https://doi.org/10.3389/fninf.2022.761942
https://doi.org/10.3389/fnagi.2022.866230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Brain disease research based on functional magnetic resonance imaging data and machine learning: a review
	1. Introduction
	2. Features extracted from fMRI data
	2.1. Functional connectivity
	2.2. Regional homogeneity
	2.3. Amplitude of low-frequency fluctuation
	2.4. Graph measures
	2.5. Multimodal

	3. Feature selection
	3.1. Two-sample t-test
	3.2. Recursive feature elimination
	3.3. Least absolute shrinkage and selection operator

	4. Classifier
	4.1. Logistic regression
	4.2. Random forest
	4.3. Support vector machine
	4.4. Deep learning models

	5. Performance evaluation
	5.1. Hold-out validation
	5.2. Leave-one-out cross-validation
	5.3. K-fold cross-validation

	6. Research summary
	6.1. Functional magnetic resonance imaging data sources
	6.2. Relationship between accuracy and sample size
	6.3. Distribution of the total sample size
	6.4. Accuracy of each disease
	6.5. Validation methods

	7. Summary and future research directions
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


