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Learning is a complex process, during which our opinions and decisions are easily 
changed due to unexpected information. But the neural mechanism underlying 
revision and correction during the learning process remains unclear. For decades, 
prediction error has been regarded as the core of changes to perception in learning, 
even driving the learning progress. In this article, we  reviewed the concept of 
reward prediction error, and the encoding mechanism of dopaminergic neurons 
and the related neural circuities. We  also discussed the relationship between 
reward prediction error and learning-related behaviors, including reversal 
learning. We then demonstrated the evidence of reward prediction error signals in 
several neurological diseases, including Parkinson’s disease and addiction. These 
observations may help to better understand the regulatory mechanism of reward 
prediction error in learning-related behaviors.
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1. Introduction

Learning plays a key role in response to diverse stimuli and decision-making in all animals. 
Animals need learn to predict the outcomes of different actions, to associate and compare the 
likelihood of future events and, ultimately, decide accordingly. In doing so, animals are constantly 
shaping their expectations and actions to the variegated external environments guiding by the 
prediction error ability (Schultz and Dickinson, 2000; Schultz, 2016a). Prediction error 
represents a mismatch between reality and prediction. In learning process, prediction error is 
proceeded if and only if such a discrepancy occurs (Rescorla and Wagner, 1972a). When this 
discrepancy is caused by reward or absence of reward, prediction error will be called as positive 
or negative reward prediction error, which has been revealed to involve in many 
learning processes.

In associative learning process, an animal needs to learn the cue-response relationship and 
adjust its behavioral choice by the guidance of reward prediction error signal. In addition, 
reversal learning and reinforcement learning also represent the ever-changing and consistent 
environments, which require the effect of reward prediction error to correct an animal’s response 
after receiving an unconditional stimulus (Figure 1). These behavioral protocols allow us to 
explore the regulatory role of reward prediction error with different learning processes in 
multiple perspectives.

Dopamine is a well-explored modulatory neurotransmitter. There are abundant researches 
providing insights into the functions of dopamine, including learning, reward, motivation and 
so on (Diederen and Fletcher, 2021). Researchers believed that dopamine represents the degree 
of “pleasure” or “happiness” in prediction, anticipation and reward-seeking behaviors. Though 
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it has been evidenced that the dopaminergic neurons perform their 
role in signaling the absence of reward (Friston, 2010), most researches 
still focus on the relationships among the reward, behavior and 
dopamine signals, which includes the reward prediction error signal 
(Schultz, 2016b).

In this review, we first narrate the concept of reward prediction 
error to better understand the learning process, and discussed the 
dopamine signaling in the encoding of reward prediction error in 
detail. We  then review the model of associative learning and the 
memory reconsolidation related with the reward prediction error 
signal. As a case in point, we elaborate the concept, neuron mechanism 
and hypothesis about reversal learning and reinforcement learning. 
Lastly, we  indicate the reward prediction error in the Parkinson’s 
disease and addiction, and provide an overview of a recent study about 
the reward prediction error signal.

2. Reward prediction error

2.1. Concept of reward prediction error

Humans have long been curious about how our brain understands 
the world, and assess a current situation, and commands movement 
by afferent information from sensory inputs to earn a reward and 
avoid danger. In the theory of neuroscience, predictive coding remains 
the most influential that the brain is predicting continuously during 
sensing, learning or decision-making. In this process, the brain 
models the world according to differences between predicted and 
actual conditions. This deviation is termed prediction error, which is 
the most significant concept in predictive coding. During the learning 
progress, reward prediction error plays a crucial role in decision-
making. Reward prediction error refers to differences between 

expected and actual rewards. “Reward” represents any object, event, 
stimulus, situation or activity that can promote positive learning, 
induce approach behavior, maximize decision-making or trigger 
positive emotions (Schultz, 2017).

Reward prediction error can be positive or negative, depending 
on whether the predicted reward value surpasses the actual value, 
which is the signed reward prediction error (Montague et al., 1996). 
When the actual reward value surpasses the predicted value, the 
reward prediction error is positive, which could enhance the attention 
on the reward related cues (Mackintosh, 1975). Conversely, when the 
predicted value surpasses the actual reward value, the reward 
prediction error is negative. The positive prediction error can promote 
learning or behavioral responses (Schultz et al., 1997; Schultz, 2017; 
Ergo et al., 2020). In contrast, the negative reward prediction error 
could promote learning to avoid an analogous condition (Schultz 
et  al., 1997; Schultz, 2017; Rolls, 2019; Starita et  al., 2019). Both 
positive and negative reward prediction error signal can drive learning 
(Pearce and Hall, 1980), such as, reinforcement learning and reversal 
learning processes (Rescorla and Wagner, 1972a; Fouragnan 
et al., 2017).

2.2. Dopaminergic neurons encode reward 
prediction error signal

The relationship between reward prediction error and the activity 
of dopaminergic neurons was first reported by Schultz et al. (1997). 
In the last 20 years, technological breakthroughs, including 
optogenetics, have considerably advanced research on dopaminergic 
neuron function. Steinberg et  al. (2013) determined the role of 
dopaminergic neurons in the reward prediction error hypothesis. In 
a behavioral procedure known as “blocking,” animals were required 

FIGURE 1

Various situations and consequences of mice regulated by reward prediction error signals in reward-based learning process. NRPE: negative reward 
prediction error, PRPE: positive reward prediction error. (A) The wrong response will lead to NRPE, which would result in less choice of false response 
to avoid similar negative outcomes in the future. Red box shows the NRPE signal in mice brain. (B) The right choice will bring PRPE, which would result 
in more choice of the right response. Green box shows the PRPE signal in mice brain. Reinforcement learning involves in the utilization of both positive 
and negative RPE. (C) The reversal learning could be affected by both positive and negative RPE, during which the response-outcome relevance is 
easily to change. Red and green box shows both NRPE and PRPE signals in mice brain.
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to learn the relationship between cue A and reward and subsequently 
between cue AB and reward. Further experiments on the same batch 
of animals revealed that they learned nothing about cue B and 
reward. Since cue A can perfectly forecast the reward, there is no 
reward prediction error in the presentation of cue B. But 
optogenetically stimulating ventral tegmental area (VTA) 
dopaminergic neurons unblocked learning. Maes et al. (2020) used a 
similar procedure involving optogenetic inhibition of VTA 
dopaminergic neurons, which showed that these neurons encode the 
error between prediction and reality, not reward predictions. 
Together, recent studies in dopamine have substantially 
complemented the reward prediction error hypothesis, underscoring 
the importance of dopaminergic neurons for this hypothesis 
(Diederen and Fletcher, 2021; Lerner et al., 2021; Farrell et al., 2022).

Review by Schultz (2007) expounded the function of 
dopaminergic neurons in movement, learning, attention, reward, 
punishment and so on (Figure 2). Besides, they sorted the research 
about the reward signal in electrophysiology, and its relationship with 
reward prediction error. When animals perceive the reward, these 
neurons respond to process information, such as reward quantity, 
probability, risk, subjective value or utility, among other variables. 
Most dopaminergic neurons in the substantia nigra pars compacta 
(SNc) and VTA produce a brief, phasic response soon after perceiving 
the reward. This signal reflects the difference between a received and 
a predicted reward (Waelti et al., 2001; Tobler et al., 2003; Bayer and 
Glimcher, 2005; Pan et al., 2005; Lak et al., 2014; Ergo et al., 2020), 
which is extremely different from the slower dopamine activity 
(Fiorillo et al., 2003). Recent research has demonstrated that three 
types of signals are encoded by dopaminergic neurons (Schultz, 
2016a). One is a consistent signal, which may be unrelated to reward 
prediction error since it has no relationship with time lapse or given 
reward, but possibly influence the function of movement, cognition 
and motivation (Schultz, 2007). The other two are both stimulus-
related signals. Fast signals occur hundreds of milliseconds after the 
stimulus perception and disappear quickly; slow signals peak around 
10 min after the stimulus perception (Nomoto et al., 2010).

The sub-second-fast dopaminergic signals provide information 
about reward prediction error, whereas slow signals contain 
information about movement, cognition, attention and motivation. 
Schultz (2007) reported that these sub-second signals can be measured 

by electrophysiology or voltammetry, and described its relationship 
with reward prediction error. The signals can be divided by statistics 
into two parts (Schultz, 2016a). The first part represents the response 
to the emerging reward, such as perceiving the presence and 
recognizing the type of reward. The second part encodes the subjective 
value of reward. Evidence from behavioral experiments shows that 
this value-encoding signal is weakened by temporal discounting and 
aversive stimuli (Schultz, 2017). Although this detection-
discrimination hierarchical processing also occurs in other neurons 
(Thompson et al., 1996), only dopaminergic neurons in the midbrain 
dopamine system determine the strength of reward prediction error.

Besides, dopamine receptors could have different functions in 
reward prediction error signal transmission. In striatum, D1 receptors 
are mainly localized in the neurons projecting to pallidum and 
substantia nigra pars reticulata, whereas D2 receptors are mainly 
localized in the neurons projecting to external pallidum (Hersch et al., 
1995). Of all D1 receptor, 80% are in low-affinity state, the other 20% 
are in high-affinity state (Richfield et al., 1989). The D2 receptors differ 
from D1 receptors for about 80–90% of D2 receptors are in high-
affinity state, whereas only 0–10% are in low-affinity state. Taken 
together, D1 receptors have nearly 100 times lower affinities than D2 
receptors have (Schultz, 1998). The reward prediction error encoded 
by dopaminergic neurons could have different influence for the 
difference in the location and affinity of dopamine receptors. The 
dopamine release caused by reward or reward prediction could 
influence D1 and D2 receptors in striatum. But the reduction of 
dopamine release caused by the reduction or deletion of reward would 
reduce the stimulation of D2 receptors for its higher affinity. Thus 
positive reward prediction error signal would have influences on most 
of striatal dopaminergic output neurons, whereas the negative reward 
prediction error signal mainly influence the neurons projecting to 
external pallidum (Schultz, 1998).

The reward prediction error can be positive or negative, depending 
on whether the actual reward is bigger than prediction. The positive 
and negative reward prediction error signals can be widely found in 
lateral habenula neurons, or the specific neurons in striatum, globus 
pallidus, amygdala, anterior cingulate cortex and supplementary eye 
field (Bermudez and Schultz, 2010; So and Stuphorn, 2012; Schroll 
et  al., 2015; Schultz, 2017; Alexander and Brown, 2019; Lee and 
Hikosaka, 2022; Basanisi et al., 2023).

FIGURE 2

Dopaminergic neural pathways play a critical role in cognitive behavioral experiment protocols discussed above. The dopamine projections from SNc 
to dorsal striatum(dStr) are mainly associated with sensorimotor functions, and from VTA to ventral striatum(vStr) primarily associated with limbic-
related functions.
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Dopaminergic neurons in VTA can induce conditioned place 
preference (Tsai et  al., 2009), which indicates better context 
associations based on reward (McKendrick and Graziane, 2020). In 
turn, GABAergic neuron inhibition interferes with reward-based 
behavior (Van Zessen et al., 2012). These mechanisms coincide with 
the ability of VTA dopaminergic neurons to encode reward value and 
are regulated by GABAergic neurons. Simultaneously, different brain 
regions in reward-related pathways perform different functions. For 
example, glutamatergic neurons projecting from the basolateral 
amygdala to the nucleus accumbens encode reward behaviors (Stuber 
et al., 2011), whereas glutamatergic projections from the basal ganglia 
to the ventral tegmental area encode aversive behaviors, and 
GABAergic projections encode positive behaviors (Jennings et al., 
2013). Therefore, in different regions, dopaminergic neurons may have 
different molecular signatures supporting their specific functions.

3. Reward prediction error and 
behavior

Several studies have reported that the reward prediction error 
signal coded by dopaminergic neurons is necessary for cue-reward 
association learning and consolidation via activating or inhibiting 
dopaminergic neurons (Steinberg et al., 2013; van Zessen et al., 2021; 
Nishioka et  al., 2023). Also, Reward prediction error is tightly 
correlated to other learning-related behaviors, such as reversal 
learning and reinforcement learning (Rescorla and Wagner, 1972a; 
Fouragnan et al., 2017; Katthagen et al., 2020). We thus illustrated the 
relationships of reward prediction error with several types of learning 
processes in this section.

3.1. Research models in associative 
learning

Associative learning refers to the process of acquiring associations 
between different environmental events that occur in close temporal 
or spatial proximity, or when one event reliably predicts the occurrence 
of another (Takehara-Nishiuchi, 2022). Researchers have studied the 
role of reward prediction error in associative learning for a long time. 
In the last century, Rescorla and Wanger proposed a model whereby 
synaptic strength becomes stronger when reward is more valuable 
than prediction and weaker otherwise (Rescorla and Wagner, 1972a). 
The model indicates that the learning process depends on the 
prediction error. Building on the Rescorla-Wagner model, temporal 
difference learning was subsequently proposed as an improvement to 
the previous model (Sutton and Barto, 1987; Sutton and Barto, 1998). 
In temporal difference learning, the prediction error is the difference 
between the expected value of all future rewards at a specific point in 
time and at later time points. Some studies on ventral tegmental area 
(VTA) highlighting the activity pattern of dopaminergic neuron in 
this area have supported this model (Eshel et al., 2016). Studies in 
primates have also indicated that this model can be used to predict 
expected reward in gambling (Stauffer et al., 2014). Furthermore, this 
model was also confirmed in studies about artificial intelligence. For 
example, the algorithm based on temporal difference learning can 
be  used to solve challenging tasks which traditional artificial 
intelligence cannot (Mnih et  al., 2015). Broadly speaking, reward 

prediction error is crucial for understanding the learning process 
physiologically and behaviorally.

3.2. Memory reconsolidation during 
learning

For decades, studies involving humans and other animals have 
demonstrated that reward prediction error, or “mistake,” is crucial for 
promoting memory change (Schultz et al., 1997; Schultz, 2017; Sinclair 
and Barense, 2019). In the learning process, learners must adjust their 
own strategy in a timely manner to the conditional response to 
maximize the reward or minimize the loss. Learning driven by 
negative response primarily consists of updating memory adaptively 
when the learner encounters information that contradicts prior 
experiences. But how does this ‘error’ renew cognition and thus 
change behavior? According to the memory reconsolidation theory, 
memory reconsolidation reactivates and temporarily destroys 
established long-term memories (Miller and Springer, 1973; Lewis, 
1979; Lee, 2009; Lee et al., 2017; Sinclair and Barense, 2019). After 
several hours of protein synthesis, memory will be restabilized and 
consolidated. The reconsolidation process is usually divided into three 
parts, namely encoding, reactivation and detection (Sinclair and 
Barense, 2019). Numerous studies have interfered with this process in 
different ways, all of which have found that memory is suppressed or 
distorted after the reactivation process (Das et al., 2018).

In the learning process, prediction error is a prerequisite for 
memory reconsolidation (Krawczyk et al., 2017). For example, in the 
Pavlovian conditioning experiment, after pairing conditioned and 
unconditioned stimuli, giving the conditioned stimulus alone in the 
experiment will also cause prediction error. This incomplete cue will 
promote the reconsolidation process of human memory (Sinclair and 
Barense, 2018). In another study about aversive associative memory, 
providing incomplete cues positively affects visual fear memory 
(Schiller et al., 2010).

In addition to associative learning reconsolidation, incomplete 
cues also trigger changes in other types of memory, such as complex 
episodic memory. For example, in one study, subjects were shown a 
series of videos with a strong narrative, and the next day some videos 
were played and stopped before the outcome, thereby producing 
prediction error. This study showed that the subjects who had 
observed interrupting videos are more likely to generate false 
memories (Sinclair and Barense, 2019). Similar experiments have 
been performed in rodents (Krawczyk et  al., 2017) and humans 
(Sevenster et al., 2013). In short, such incomplete and unexpected cues 
both disrupt and update the original memory.

Similar incomplete cues, however, cannot lead to memory 
updating. For example, when museum visitors were shown pictures 
and distraction pictures during their visit, which may be regarded as 
incomplete cues for the tour process, whether in chronological order 
or not, the cues that disrupted the chronological order reduced the 
accuracy of location recall and the process of memory updating (St 
Jacques and Schacter, 2013). Accordingly, prediction errors, which 
represented by incomplete cues, may lead to memory updating in 
most cases, underlying error-driven learning processes.

Though the unsigned reward prediction error can represent how 
‘surprised’ subjects were with these ‘incomplete cues’, we are not yet 
able to quantify this process. Furthermore, it is still unknown whether 
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memory changes are due to reward prediction error or interference 
from retrospective inhibition. Some studies have attempted to use 
real-time functional magnetic resonance imaging (fMRI) to detect 
changes in neural activity during the retrieval phase of episodic 
memory in subjects (DeBettencourt et al., 2019). However, further 
research is needed to analyze the mechanisms of regulation of reward 
prediction error and learning reconsolidation.

3.3. Reward prediction error and reversal 
learning

Reward prediction error occurs in many learning-related 
behaviors. In the sections below, we studied the function of reward 
prediction signal in behavioral changes in two conditions. One is the 
reversal learning, which represents the learning process in the ever-
changing environment. The other is the reinforcement learning, which 
represents the organism repeats one specific behavior which will bring 
positive outcome during the operant learning process in the 
constant condition.

3.3.1. The concept of reversal learning
Reversal learning refers to a set of paradigms used for assessing 

cognitive flexibility by evaluating adaptive responses in the changing 
stimulus-outcome or response-outcome contingencies (Izquierdo 
et al., 2017). For example, the common visual reversal learning task 
has at least two types of visual stimuli for the animal to learn in 
experiments. Some choices lead to reward, whereas others lead to 
punishment. For both types of stimuli condition, the results 
associated with the stimuli will be exchanged after a specific number 
of experiments. The stimulus previously associated with the reward 
will lead to the punishment, and the stimulus previously associated 
with the punishment will in turn lead to the reward. During the 
whole process, this exchange can be repeated many times. Throughout 
the experiment, the animals will break the original stimulus-result 
connection multiple times with reversal, and form a new connection. 
This learning process can be divided into two stages (Swainson et al., 
2000): the acquisition stage and the reversal stage. In the acquisition 
stage, experimental animals mainly complete preliminary learning by 
associating a stimulus with the corresponding outcome. After 
reversal, the choice which is related with positive outcomes does not 
bring reward anymore. Therefore, this kind of choice would bring the 
negative reward prediction error as the actual reward is much lower 
than the predicted reward. For the same reason, the new reward-
related choice would bring positive reward prediction error, for it 
provides actual reward with no prediction reward. During the 
reversal stage, the learning criterion is achieved by updating the 
original stimulus-outcome relationship. As the experiment 
progresses, the animal will become more familiar with the procedure 
and spend less time in the reversal stage. In complex and uncertain 
environment, the ability of reversal learning is particularly important 
for helping organisms behave adaptively to earn more feedback, or 
avoid punishment.

3.3.2. Neural mechanisms of reversal learning
Butter (1969) conducted the first reversal learning experiment. At 

the beginning of the experiment, two visual stimuli were given to 
macaques, and one of the stimuli was bound to a reward. Once the 

macaques learned to choose the correct image for the reward, the 
reward was paired with another visual stimulus. Normal macaques 
adjusted their choices quickly when the reward was reversed, and 
increasing the number of reversals accelerated the correction of their 
choices. In contrast, macaques with completely destroyed orbitofrontal 
lobes took much longer to learn new choice after reversal, and the 
learning rate hardly increased with the number of reversals. Based on 
these results, some studies have proposed a response theory. In the 
response theory, the orbitofrontal cortex plays a key role in inhibiting 
the original choice and weakening the original stimulus–response 
connection. But another theory was also proposed, termed value 
theory. According to the value theory, the orbitofrontal cortex is 
responsible for encoding either two visual stimuli whereby the 
subjective value is continuously updated with feedback during the 
learning period or the strength of the stimulus–reward connection, 
which it is adjusted over time.

Based on the two hypotheses above, many studies have analyzed 
the role of brain regions such as the orbitofrontal cortex in the process 
of reversal learning. The results showed that the nerve fibers in the 
orbitofrontal cortex are essential in reversal learning, not the neurons 
in the orbitofrontal cortex. These nerve fibers update the subjective 
value of the stimulus at any time (Rudebeck et  al., 2013). The 
orbitofrontal cortex and the amygdala have functions in reward or 
punishment-related reversal learning tasks and different ‘learning 
speeds’. The orbitofrontal cortex affects learning flexibility by affecting 
the encoding of stimulus–response connections in the basolateral 
amygdala (Stalnaker et al., 2007; Morrison et al., 2011). Furthermore, 
GABAergic neurons in the orbitofrontal cortex projecting to the 
striatum are crucial for reversing the original stimulus-result 
connection that inhibits learning (Yang et al., 2021). In conclusion, 
distinct orbitofrontal cortex-amygdala-striatal circuits mediate 
different parts of the reversal learning and subsequent decision-
making process (Groman et al., 2019).

In addition, many previous physiological, pathological and 
imaging studies have indicated that the frontal cortex and amygdala 
are important for reward, punishment and related decision-making 
processes (O’Doherty et al., 2001; Baxter and Murray, 2002; Holland 
and Gallagher, 2004). The frontal cortex also has bidirectional 
projections with amygdala (Cavada et  al., 2000). Given the 
characteristics of the reversal learning task, these two brain regions 
likely play a key role in this learning process (Trinh et al., 2012). On 
the one hand, the human amygdala is crucial for representing expected 
rewards in the frontal cortex, which can guide future behavior 
(Hampton et al., 2007). On the other hand, demonstrating that the 
midbrain dopamine system, which encodes reward value, plays a key 
role in reversal learning, would provide the strongest evidence for the 
value theory. Accordingly, studies have shown that mice lacking 
TGF-β signaling in midbrain dopaminergic neurons are significantly 
impaired in establishing new stimulus–response connections during 
reversal learning (Luo et al., 2016). Moreover, dopamine signaling in 
both the striatum and amygdala is essential in the reversal learning 
task (Costa et al., 2016).

Regardless of reversal-learning hypothesis, at this process covers 
many advanced cognitive functions of the brain, including learning 
simple conditioned reflexes, predicting future rewards, recognizing 
missing rewards, and changing to previous perceptions and behavior 
in similar circumstances. Since so many brain regions and functions 
are involved in these cognitive and behavioral functions, reversal 
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learning can be analyzed in different brain regions. Neurons in the 
anterior cingulate cortex have the ability to integrate outcomes with 
actions, thereby drawing on past experiences to guide future behavior 
(Shima and Tanji, 1998; Williams et al., 2004). Therefore, neurons in 
the anterior cingulate cortex area are crucial for reversal learning tasks 
requiring adjusting behaviors over time according to environmental 
changes (Kawai et al., 2015). The lateral habenula, where most neurons 
are activated by reward omission, aversive cues, and predictions 
(Matsumoto and Hikosaka, 2007; Matsumoto and Hikosaka, 2009), 
has a similar function. Therefore, studies have also confirmed that 
lateral habenula plays a key role in reversal learning tasks (Kawai 
et al., 2015).

In the reversal learning task, the process between two reversals 
can be regarded as a reinforcement learning process. The midbrain 
dopaminergic neurons encode reward prediction error signals, 
thereby driving plasticity in the striatum to facilitate reinforcement 
learning (Schultz, 2015). Thus, reversal learning tasks are often 
analyzed in research on reinforcement learning. For example, a study 
by Costa et al. (2016) on the contribution of the amygdala and ventral 
striatum to reinforcement learning mentioned the function of these 
two brain regions to reinforcement learning in uncertain 
environments, that is, reversal learning. Reversal learning is closely 
related to the cognitive flexibility of individuals, so reversal learning 
tasks are often used in research on cognition and learning flexibility 
to study synaptic plasticity in the hippocampus (Davenport et al., 
2021) and to gather information on diseases such as frontotemporal 
dementia (Ahmed et al., 2022).

3.4. Reinforcement learning and reward 
prediction error

3.4.1. Reinforcement prediction error
‘Reinforcement’ refers to the process whereby an animal acquires 

one specific behavior which will bring about a positive outcome in a 
specific state and learns to link behavior and outcome (Shibata et al., 
2022). During this process, the neutral stimuli are referred to as 
‘conditioned reinforcer’. In most cases, predicting and comparing 
different outcomes of every possible reaction leads to a decision-
making behavior, which involves choosing the action with most 
rewards. The goal of reinforcement learning is to choose actions that 
maximize rewards and minimize punishments or losses (Neftci and 
Averbeck, 2019). The reward prediction error guides decision-making 
during reinforcement learning as the brain compares the predicted 
and actual reward value and calculates the disparity between them 
(Garrison et al., 2013). For the same reason, the response learned 
through reinforcement will tend to extinguish when the reinforcer is 
no longer paired with reinforced behavioral responses, and this 
process is known as reinforcement learning extinction (Staddon and 
Cerutti, 2003; Shibata et al., 2022).

Edward Thorndike highlighted the essence of reinforcement 
learning in his study (Thorndike, 1911), stating that “Responses that 
produce a satisfying effect in a particular situation become more likely 
to occur again in that situation, and responses that produce a 
discomforting effect become less likely to occur again in that 
situation.” The neuronal mechanism of reinforcement learning in 
mammalian, particularly model-free reinforcement learning, may 
be one of the most studied systems in neuroscience (Rescorla and 

Wagner, 1972b; Schultz et al., 1997; Neftci and Averbeck, 2019). The 
activity of dopaminergic neurons and their activating effects on 
behavior can be successfully predicted based on temporal-difference 
reinforcement learning and Rescorla-Wagner theories (Rescorla and 
Wagner, 1972b). According the model proposed by Jonathan (Mink, 
1996), the cortex represents the set of available choices, and cortical 
synapses on striatal cells encode information about the values of each 
choice. Activity in striatal cells results in stronger synapses, expressing 
the values of the options represented by cortex (O’Doherty et al., 2004; 
Lau and Glimcher, 2008). Striatal activity can be transmitted from the 
basal ganglia and the thalamus to the cortex or brain-stem motor 
output areas, resulting in choice behavior (Figure  3). Once the 
unconditioned stimuli is given, dopaminergic neurons encode a 
reward prediction error signal (Neftci and Averbeck, 2019).

3.4.2. Reinforcement delay
Several concepts of reinforcement value can be used to summarize 

the effect of different variables, such as reinforcement delay, 
reinforcement magnitude, and deprivation level, on behavior (Buriticá 
and Dos Santos, 2017). Among them, reinforcement delay is the most 
significant and widely researched concept. In fact, reinforcement delay 
affects not only the reinforcement learning process but also all 
mechanisms of associative learning. When I. P. Pavlov. proposed the 
concept of Pavlovian conditioning forward, reinforcement delay was 
overlooked. But reinforcement delay soon became a great advance in 
understanding Pavlovian conditioning. The interval between stimuli 
is essential in associative learning (Gallistel and Gibbon, 2000), and 
the interval between a conditioned stimulus and a unconditioned 
stimulus may also be important for the learning process (Gallistel and 
Gibbon, 2000).

Broadly speaking, the shorter the period between the last behavior 
response and the next reinforcer is, the more effective reinforcement 
will be  in modifying such behavior (Jablonsky and Devries, 1972; 
Miltenberger, 2015). The effect of immediacy on reinforcement 
learning has been widely documented (Black et  al., 1985). A few 

FIGURE 3

Neural pathways related to reinforcement learning. The projections 
from BLA to OFC are highly related to the reinforcement with 
positive outcome, projections from OFC to vStr have function in the 
reinforcement process with negative outcome.

https://doi.org/10.3389/fnins.2023.1171612
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Deng et al. 10.3389/fnins.2023.1171612

Frontiers in Neuroscience 07 frontiersin.org

decades ago, Lea (1979) compared predictions of optimal foraging 
theory with laboratory research on reinforcement schedules. This 
experiment showed that animals strongly prefer reinforcement with a 
shorter delay over a longer delay, even when reinforcement density 
favors reinforcement with a longer delay. Research has also shown that 
animals are virtually unable to learn through reinforcement if the 
reinforcement delay is too long.

Considering the importance of reinforcement delay for 
associative learning, several studies have aimed at understanding the 
mechanism of reinforcement learning and temporal relations 
between events and operant behavior. Most reinforcement delay 
studies have addressed three research questions (Lattal, 2010). The 
first question is whether the effect of the interval between responses 
and reinforcers on reinforcement delay can be separated from its 
indirect effect on stimuli or reinforcement rate. The second question 
is whether operant behavior is affected by reinforcement delay or 
varies with the protocol and condition. The third question refers to 
the effects of reinforcement delay, which strongly affect the response-
reinforcer temporal relation during associative learning and other 
operating behavioral processes.

The temporal delay between responses and reinforcers is not 
simply a static parameter for reinforcement learning. Instead, this 
temporal delay between can have a strong effect on learning process, 
whether directly or indirectly. Both correlational and mediational 
accounts of reinforcement delay, in different ways, highlight that 
disruptions in temporal contiguity determine reinforcement delay 
effects (Lattal, 2010).

These ongoing research in reversal and reinforcement learning 
provides deeper insights into the brain and neural systems, fostering 
outstanding advances in the neural mechanism under the cognition 
and behavioral change.

4. Reward prediction error and 
diseases

Since encoded by dopamine system, the reward prediction error 
has been shown its involvement in several neurological diseases, 
including Parkinson diseases and addiction, that are pathologically 
related to dopamine system.

4.1. Reward prediction error is associated 
with Parkinson’s disease

Parkinson disease (PD) is a progressive neurodegenerative 
disorder with many clinical symptoms, such as bradykinesia, rigidity 
and resting tremor, among others (Lees et  al., 2009). The main 
neuropathological hallmark of PD is dopaminergic neuronal loss in 
SNc. In PD, the neurodegenerative process begins in the midbrain, 
especially in these dopaminergic neurons of the substantia nigra. 
Thus, the clinical changes in motor and cognitive function observed 
in patients with PD, may help us understand the role of dopaminergic 
neurons in reward learning and assess the effect of dopamine in 
reward-based learning underlying the pathological manifestations of 
basal ganglia, which is crucial for motor function (Alexander et al., 
1986), reward and learning (Packard and Knowlton, 2002; Schultz 
et al., 2003).

The most common treatment for PD is to increase dopamine 
availability and activity (Van Wouwe et al., 2012) using dopaminergic 
precursors or dopaminergic agonists. This medication improves the 
motor function of patients with PD but is less effective in ameliorating 
cognitive deficits and may even have negative consequences in 
different cognition functions. For example, reversal learning and 
extinction learning， which refers to the reduction of the conditioned 
response as a result of the repeat of conditioning stimulus, can 
be impaired by dopaminergic medication (Cools et al., 2001). Clinical 
evidence has also shown that PD patients who receive dopamine 
treatment develop pathological behaviors, such as gambling, 
compulsive shopping and eating disorders. These patients may 
be  manifesting hypersensitivity to reward caused by dopamine 
treatment (Drew et al., 2020). These findings support the “overdose” 
hypothesis, which explains the negative effect of dopamine medication 
on some cognitive processes (Swainson et al., 2000).

However, dopamine treatment can still improve the performance 
of PD patients in some reward-based learning processes. Frank (Frank 
et al., 2004) showed that dopamine medication helps to learn some 
actions, but not others. For example, research has indicated that the 
performance of PD patients in feedback-based learning improves 
when they are on dopamine medication (Shohamy et al., 2005). These 
studies on pathological process and treatment of patients with PD 
shows that dopamine not only plays a key role in reward-based 
learning but may also have different functions on different types or 
processes of reward-based learning.

4.2. Reward prediction error involves In 
addiction

Addiction is a type of chronic, recurrent brain disease with 
extremely complicated pathogenesis, which is often manifested as 
spontaneous and compulsive behavior (Wise and Robble, 2020). The 
midbrain dopamine system plays an important role in the forming 
process of addiction, which highly relies on the dopaminergic 
projections from VTA to Nucleus accumbens (NAc) (Koob and 
Volkow, 2016). In drug addiction, after the intake of addictive drugs, 
the dopaminergic neurons in VTA were activated and encoding the 
information of the “reward.” Reward prediction error signal in this 
process were blunted, which makes the pleasant feeling by drug 
become weaker, resulting in more drug intake to satisfy the drug 
needed (Lei et al., 2022).

Associative learning is often used in research on the mechanism 
of addiction curation. For example, some researchers believe that, 
once a stimulus–response connection is established between addiction 
elements and feelings of pleasure, a new stimulus–response connection 
with punishment is difficult to establish and that this difficulty is the 
essence of addiction (Fernández-Serrano et al., 2012). Studies have 
reported that substance-related cues can significantly increase 
dopamine release in the striatum (Everitt and Robbins, 2013), 
confirming that cocaine, marijuana, and alcohol addicts have impaired 
reversal learning ability (Pope et al., 2016). fMRI studies have also 
shown stronger connections between the anterior cingulate cortex and 
the dorsolateral prefrontal cortex in cocaine users than in normal 
subjects (Camchong et  al., 2011). This result may indicate that 
addictive elements can enhance existing stimulus–response 
connections in the brain of patients while interfering with their ability 

https://doi.org/10.3389/fnins.2023.1171612
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Deng et al. 10.3389/fnins.2023.1171612

Frontiers in Neuroscience 08 frontiersin.org

to revise the original connection and form new stimulus–response 
connections, ultimately manifesting as extreme dependence on 
addictive substances. From this point of view, research on the 
mechanism of associative learning is helpful to explore the mechanism 
of addiction and essential to addiction treatment and prevention.

5. Conclusion

Learning process cannot be  prosperous every time. When a 
difference between the expected and actual state of the world is 
identified, prediction will promote learning, and behavior is corrected 
accordingly. In the last 50 years, exciting advances have been made as 
numerous studies have supported the relationship between reward 
prediction error and learning using various techniques in many 
species. We have much more understanding about the promotion of 
dopaminergic neurons to the operant learning process and the 
dynamic dopamine reward prediction-error signal behind. 
Nevertheless, many unanswered research questions and challenges 
lie ahead. Given the complexity of brain, there is much to understand 
about the concrete neuronal mechanism of the learning process, such 
as the function of dopaminergic neurons and other circuits in reward 
prediction error and how the reward prediction error drives different 
learning processes and guides decision-making. Studies about the 
way of the reward prediction error signal generated by upstream 
neural circuits have made certain progress, while there is much more 
to do. Moreover, we  must better understand how the reward 
prediction error regulate dopamine release with the complex axonal 
arbors of dopamine midbrain neurons. Different release mechanism 
could regulate dopamine release and to further lead into the diverse 
function of dopamine system. Considering the different neural 
mechanism and its complicated interacting net, it may take a long 
time to deliberate. Besides, it is prospective to have better understand 
about the impact of gender, development and disease in the 
mechanism above. Therefore, future studies would be required to 
investigate the mechanisms of neuronal circuits across a wide range 
of learning processes. In general, this work helps better understand 
the association between reward prediction error signal and 

learning-related processes in different aspects of neural encoding, 
behaviors and diseases.
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